当前位置:首页 > 单片机 > 单片机
[导读] 实验前须知:SPI的原理:注:CLK传输时钟MISO主机输入从机输出MOSI主机输出从机输入CS片选信号,由于SPI控制器可以外接多个SPI设备,所以这个用于选中SPI设备。SPI的操作流程大体如下图所示:实验的目的

实验前须知:
SPI的原理:

注:

CLK传输时钟

MISO主机输入从机输出

MOSI主机输出从机输入

CS片选信号,由于SPI控制器可以外接多个SPI设备,所以这个用于选中SPI设备。


SPI的操作流程大体如下图所示:


实验的目的:
用s3c2440的SPI控制器操作SPI总线上的两个设备,分别是OLED和FLASH

实验的源程序:
07th_spi_i2c_adc_mini2440_tq2440_spi_controller.rar

实验的问题总结:
1>我们主要分析一下s3c2440_spi.c这个文件
/*************************************s3c2440_spi.c**********************************
#include "s3c24xx.h"

/* SPI controller */

static void SPI_GPIO_Init(void)
{
/* GPG1 OLED_CSn output
* GPG10 FLASH_CSn output
*/
GPGCON &= ~((3<<(1*2)) " (3<<(10*2)));
GPGCON |= (1<<(1*2)) | (1<<(10*2));
GPGDAT |= (1<<1) | (1<<10);


/*
* GPF3 OLED_DC output
* GPE11 SPIMISO
* GPE12 SPIMOSI
* GPE13 SPICLK
*/
GPFCON &= ~(3<<(3*2));
GPFCON |= (1<<(3*2));


GPECON &= ~((3<<(11*2)) | (3<<(12*2)) | (3<<(13*2)));
GPECON |= ((2<<(11*2)) | (2<<(12*2)) | (2<<(13*2)));
}


void SPISendByte(unsigned char val)
{
while (!(SPSTA0 & 1));
SPTDAT0 = val;
}


unsigned char SPIRecvByte(void)
{
SPTDAT0 = 0xff;
while (!(SPSTA0 & 1));
return SPRDAT0;
}




static void SPIControllerInit(void)
{
/* OLED : 100ns, 10MHz
* FLASH : 104MHz
* 取10MHz
* 10 = 50 / 2 / (Prescaler value + 1)
* Prescaler value = 1.5 = 2
* Baud rate = 50/2/3=8.3MHz
*/
SPPRE0 = 2;
SPPRE1 = 2;


/* [6:5] : 00, polling mode
* [4] : 1 = enable
* [3] : 1 = master
* [2] : 0
* [1] : 0 = format A
* [0] : 0 = normal mode
*/
SPCON0 = (1<<4) | (1<<3);
SPCON1 = (1<<4) | (1<<3);

}


void SPIInit(void)
{
/* 初始化引脚 */
SPI_GPIO_Init();


SPIControllerInit();
}

***********************************s3c2440_spi.c***************************************/

在这个文件中,我们主要分析一下SPISendByte()和SPIRecvByte(),
从这两个函数中,我们可以很清晰地知道SPI的操作是非常简单的。这些操作就是根据上述那个流程图来的。

由于我们的SPI总线上没有接MMC或SD,所以步骤3,4,10都不需要。而在接收数据时,我们选择了接收数据(1)的方式。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭