当前位置:首页 > 单片机 > 单片机
[导读]1. 读取半字(16位)函数//读取指定地址的半字(16位数据)//faddr:读地址(此地址必须为2的倍数!!)//返回值:对应数据.u16 STMFLASH_ReadHalfWord(u32 faddr){return *(vu16*)faddr;}2. 不进行检查的直接写入//不检查的

1. 读取半字(16位)函数

//读取指定地址的半字(16位数据)

//faddr:读地址(此地址必须为2的倍数!!)

//返回值:对应数据.

u16 STMFLASH_ReadHalfWord(u32 faddr)

{

return *(vu16*)faddr;

}

2. 不进行检查的直接写入

//不检查的写入

//WriteAddr:起始地址

//pBuffer:数据指针

//NumToWrite:半字(16位)数

void STMFLASH_Write_NoCheck(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite)

{

u16 i;

for(i=0;i

{

FLASH_ProgramHalfWord(WriteAddr,pBuffer[i]);

WriteAddr+=2;//地址增加2.一次写入一个半字(16位数)

}

}

3. 从指定地址读取指定长度的数据

//从指定地址开始读出指定长度的数据

//ReadAddr:起始地址

//pBuffer:数据指针

//NumToWrite:半字(16位)数

void STMFLASH_Read(u32 ReadAddr,u16 *pBuffer,u16 NumToRead)

{

u16 i;

for(i=0;i

{

pBuffer[i]=STMFLASH_ReadHalfWord(ReadAddr);//读取2个字节.

ReadAddr+=2;//偏移2个字节.

}

}

4.从指定地址开始写入指定长度的数据

程序的思路





//从指定地址开始写入指定长度的数据

//WriteAddr:起始地址(此地址必须为2的倍数!!)

//pBuffer:数据指针

//NumToWrite:半字(16位)数(就是要写入的16位数据的个数.)

#if STM32_FLASH_SIZE<256

#define STM_SECTOR_SIZE 1024 //字节

#else

#define STM_SECTOR_SIZE 2048

#endif

u16 STMFLASH_BUF[STM_SECTOR_SIZE/2];//最多是2K字节

void STMFLASH_Write(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite)

{

u32 secpos; //扇区地址

u16 secoff; //扇区内偏移地址(16位字计算)

u16 secremain; //扇区内剩余地址(16位字计算)

u16 i;

u32 offaddr; //去掉0X08000000后的地址

if(WriteAddr=(STM32_FLASH_BASE+1024*STM32_FLASH_SIZE)))return;//非法地址 ,先确定所要写的地址是不是非法地址

FLASH_Unlock(); //解锁


offaddr=WriteAddr-STM32_FLASH_BASE; //实际偏移地址.

secpos=offaddr/STM_SECTOR_SIZE; //扇区地址 0~127 for STM32F103RBT6,确定在哪个页或扇区

secoff=(offaddr%STM_SECTOR_SIZE)/2; //在扇区内的偏移(2个字节为基本单位.)

secremain=STM_SECTOR_SIZE/2-secoff; //扇区剩余空间大小

if(NumToWrite<=secremain)secremain=NumToWrite;//不大于该扇区范围

while(1)

{

STMFLASH_Read(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE,STMFLASH_BUF,STM_SECTOR_SIZE/2);//读出整个扇区的内容,读到STMFLASH_BUF中

for(i=0;i

{

if(STMFLASH_BUF[secoff+i]!=0XFFFF)break;//需要擦除

}

if(i上面的校验在中途退出,i一定是小于secremain,否则全部校验成功应该是等于secremain.

{

FLASH_ErasePage(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE);//擦除这个扇区

for(i=0;i

{

STMFLASH_BUF[i+secoff]=pBuffer[i]; //把需要更新的数据写到数组

}

STMFLASH_Write_NoCheck(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE,STMFLASH_BUF,STM_SECTOR_SIZE/2);//写入整个扇区

}

elseSTMFLASH_Write_NoCheck(WriteAddr,pBuffer,secremain);//写已经擦除了的,直接写入扇区剩余区间.

if(NumToWrite==secremain)break;//写入结束了

else//写入未结束

{

secpos++; //扇区地址增1

secoff=0; //偏移位置为0

pBuffer+=secremain; //指针偏移

WriteAddr+=secremain; //写地址偏移

NumToWrite-=secremain; //字节(16位)数递减

if(NumToWrite>(STM_SECTOR_SIZE/2))secremain=STM_SECTOR_SIZE/2;//下一个扇区还是写不完

else secremain=NumToWrite;//下一个扇区可以写完了

}

};

FLASH_Lock();//上锁

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭