当前位置:首页 > 单片机 > 单片机
[导读]//晶振=8M//MCU=STC10F04XE//P0.0-P0.6共阳数码管引脚//Trig=P1^0//Echo=P3^2#include//包括一个52标准内核的头文件#defineucharunsignedchar//定义一下方便使用#defineuintunsignedint#defineulongunsignedlong//**

//晶振=8M

//MCU=STC10F04XE

//P0.0-P0.6共阳数码管引脚

//Trig=P1^0

//Echo=P3^2

#include//包括一个52标准内核的头文件

#defineucharunsignedchar//定义一下方便使用

#defineuintunsignedint

#defineulongunsignedlong

//***********************************************

sfrCLK_DIV=0x97;//为STC单片机定义,系统时钟分频

//为STC单片机的IO口设置地址定义

sfrP0M1=0X93;

sfrP0M0=0X94;

sfrP1M1=0X91;

sfrP1M0=0X92;

sfrP2M1=0X95;

sfrP2M0=0X96;

//***********************************************

sbitTrig=P1^0;//产生脉冲引脚

sbitEcho=P3^2;//回波引脚

sbittest=P1^1;//测试用引脚

ucharcodeSEG7[10]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};//数码管0-9

uintdistance[4];//测距接收缓冲区

ucharge,shi,bai,temp,flag,outcomeH,outcomeL,i;//自定义寄存器

bitsucceed_flag;//测量成功标志

//********函数声明

voidconversion(uinttemp_data);

voiddelay_20us();

//voidpai_xu();

voidmain(void)//主程序

{uintdistance_data,a,b;

ucharCONT_1;

CLK_DIV=0X03;//系统时钟为1/8晶振(pdf-45页)

P0M1=0;//将io口设置为推挽输出

P1M1=0;

P2M1=0;

P0M0=0XFF;

P1M0=0XFF;

P2M0=0XFF;

i=0;

flag=0;

test=0;

Trig=0;//首先拉低脉冲输入引脚

TMOD=0x11;//定时器0,定时器1,16位工作方式

TR0=1;//启动定时器0

IT0=0;//由高电平变低电平,触发外部中断

ET0=1;//打开定时器0中断

//ET1=1;//打开定时器1中断

EX0=0;//关闭外部中断

EA=1;//打开总中断0

while(1)//程序循环

{

EA=0;

Trig=1;

delay_20us();

Trig=0;//产生一个20us的脉冲,在Trig引脚

while(Echo==0);//等待Echo回波引脚变高电平

succeed_flag=0;//清测量成功标志

EX0=1;//打开外部中断

TH1=0;//定时器1清零

TL1=0;//定时器1清零

TF1=0;//

TR1=1;//启动定时器1

EA=1;

while(TH1<30);//等待测量的结果,周期65.535毫秒(可用中断实现)

TR1=0;//关闭定时器1

EX0=0;//关闭外部中断

if(succeed_flag==1)

{

distance_data=outcomeH;//测量结果的高8位

distance_data<<=8;//放入16位的高8位

distance_data=distance_data|outcomeL;//与低8位合并成为16位结果数据

distance_data*=12;//因为定时器默认为12分频

distance_data/=58;//微秒的单位除以58等于厘米

}//为什么除以58等于厘米,Y米=(X秒*344)/2

//X秒=(2*Y米)/344==》X秒=0.0058*Y米==》厘米=微秒/58

if(succeed_flag==0)

{

distance_data=0;//没有回波则清零

test=!test;//测试灯变化

}

///distance[i]=distance_data;//将测量结果的数据放入缓冲区

///i++;

///if(i==3)

///{

///distance_data=(distance[0]+distance[1]+distance[2]+distance[3])/4;

///pai_xu();

///distance_data=distance[1];

a=distance_data;

if(b==a)CONT_1=0;

if(b!=a)CONT_1++;

if(CONT_1>=3)

{CONT_1=0;

b=a;

conversion(b);

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭