当前位置:首页 > 单片机 > 单片机
[导读]  单片机编程者需要知道自己的程序需要花费多长时间、while周期是多少、delay延时是否真如函数功能描述那样精确延时。很多时候,我们想知道这些参数,但是由于懒惰或者没有简单的办法,将这件事推到“明天”。笔者

  单片机编程者需要知道自己的程序需要花费多长时间、while周期是多少、delay延时是否真如函数功能描述那样精确延时。很多时候,我们想知道这些参数,但是由于懒惰或者没有简单的办法,将这件事推到“明天”。笔者提出了一种简便的测试方法,可以解决这些问题。

  测试代码的运行时间的思路:

使用单片机内部定时器,在待测程序段的开始启动定时器,在待测程序段的结尾关闭定时器。为了测量的准确性,要进行多次测量,并进行平均取值。

借助示波器的方法是:在待测程序段的开始阶段使单片机的一个GPIO输出高电平,在待测程序段的结尾阶段再令这个GPIO输出低电平。用示波器通过检查高电平的时间长度,就知道了这段代码的运行时间。显然,借助于示波器的方法更为简便。

  以下内容为这两种方案的实例,以STM32为测试平台。如果读者是在另外的硬件平台上测试,实际也不难,思路都是一样的,自己可以编写对应的测试代码。

借助示波器方法的实例

Delay_us函数使用STM32系统滴答定时器实现

#include "systick.h"


/* SystemFrequency / 1000 1ms中断一次

* SystemFrequency / 100000 10us中断一次

* SystemFrequency / 1000000 1us中断一次

*/


#define SYSTICKPERIOD 0.000001

#define SYSTICKFREQUENCY (1/SYSTICKPERIOD)


/**

* @brief 读取SysTick的状态位COUNTFLAG

* @param 无

* @retval The new state of USART_FLAG (SET or RESET).

*/

static FlagStatus SysTick_GetFlagStatus(void)

{

if(SysTick->CTRL&SysTick_CTRL_COUNTFLAG_Msk)

{

return SET;

}

else

{

return RESET;

}

}


/**

* @brief 配置系统滴答定时器 SysTick

* @param 无

* @retval 1 = failed, 0 = successful

*/

uint32_t SysTick_Init(void)

{

/* 设置定时周期为1us */

if (SysTick_Config(SystemCoreClock / SYSTICKFREQUENCY))

{

/* Capture error */

return (1);

}


/* 关闭滴答定时器且禁止中断 */

SysTick->CTRL &= ~ (SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk);

return (0);

}


/**

* @brief us延时程序,10us为一个单位

* @param

* @arg nTime: Delay_us( 10 ) 则实现的延时为 10 * 1us = 10us

* @retval 无

*/

void Delay_us(__IO uint32_t nTime)

{

/* 清零计数器并使能滴答定时器 */

SysTick->VAL = 0;

SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;


for( ; nTime > 0 ; nTime--)

{

/* 等待一个延时单位的结束 */

while(SysTick_GetFlagStatus() != SET);

}


/* 关闭滴答定时器 */

SysTick->CTRL &= ~ SysTick_CTRL_ENABLE_Msk;

}

检验Delay_us执行时间中用到的GPIO(gpio.h、gpio.c)的配置

#ifndef __GPIO_H

#define __GPIO_H


#include "stm32f10x.h"


#define LOW 0

#define HIGH 1


/* 带参宏,可以像内联函数一样使用 */

#define TX(a) if (a)

GPIO_SetBits(GPIOB,GPIO_Pin_0);

else

GPIO_ResetBits(GPIOB,GPIO_Pin_0)

void GPIO_Config(void);


#endif


#include "gpio.h"


/**

* @brief 初始化GPIO

* @param 无

* @retval 无

*/

void GPIO_Config(void)

{

/*定义一个GPIO_InitTypeDef类型的结构体*/

GPIO_InitTypeDef GPIO_InitStructure;


/*开启LED的外设时钟*/

RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructure);

}

在main函数中检验Delay_us的执行时间

#include "systick.h"

#include "gpio.h"


/**

* @brief 主函数

* @param 无

* @retval 无

*/

int main(void)

{

GPIO_Config();


/* 配置SysTick定时周期为1us */

SysTick_Init();


for(;;)

{

TX(HIGH);

Delay_us(1);

TX(LOW);

Delay_us(100);

}

}


示波器的观察结果

  可见Delay_us(100),执行了大概102us,而Delay_us(1)执行了2.2us。

更改一下main函数的延时参数

int main(void)

{

/* LED 端口初始化 */

GPIO_Config();


/* 配置SysTick定时周期为1us */

SysTick_Init();


for(;;)

{

TX(HIGH);

Delay_us(10);

TX(LOW);

Delay_us(100);

}

}

示波器的观察结果

  可见Delay_us(100),执行了大概101us,而Delay_us(10)执行了11.4us。

结论:此延时函数基本上还是可靠的。

使用定时器方法的实例

  至于使用定时器方法,软件检测程序段的执行时间,程序实现思路见STM32之系统滴答定时器。笔者已经将检查软件的使用封装成库,使用方法在链接文章中也有介绍。我们这里只做一下简要的实践活动。

Delay_us函数使用STM32定时器2实现

#include "timer.h"


/* SystemFrequency / 1000 1ms中断一次

* SystemFrequency / 100000 10us中断一次

* SystemFrequency / 1000000 1us中断一次

*/


#define SYSTICKPERIOD 0.000001

#define SYSTICKFREQUENCY (1/SYSTICKPERIOD)


/**

* @brief 定时器2的初始化,,定时周期1uS

* @param 无

* @retval 无

*/

void TIM2_Init(void)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;


/*AHB = 72MHz,RCC_CFGR的PPRE1 = 2,所以APB1 = 36MHz,TIM2CLK = APB1*2 = 72MHz */

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

/* Time base configuration */

TIM_TimeBaseStructure.TIM_Period = SystemCoreClock/SYSTICKFREQUENCY -1;

TIM_TimeBaseStructure.TIM_Prescaler = 0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

TIM_ARRPreloadConfig(TIM2, ENABLE);

/* 设置更新请求源只在计数器上溢或下溢时产生中断 */

TIM_UpdateRequestConfig(TIM2,TIM_UpdateSource_Global);

TIM_ClearFlag(TIM2, TIM_FLAG_Update);

}


/**

* @brief us延时程序,10us为一个单位

* @param

* @arg nTime: Delay_us( 10 ) 则实现的延时为 10 * 1us = 10us

* @retval 无

*/

void Delay_us(__IO uint32_t nTime)

{

/* 清零计数器并使能滴答定时器 */

TIM2->CNT = 0;

TIM_Cmd(TIM2, ENABLE);


for( ; nTime > 0 ; nTime--)

{

/* 等待一个延时单位的结束 */

while(TIM_GetFlagStatus(TIM2, TIM_FLAG_Update) != SET);

TIM_ClearFlag(TIM2, TIM_FLAG_Update);

}


TIM_Cmd(TIM2, DISABLE);

}

在main函数中检验Delay_us的执行时间

#include "stm32f10x.h"

#include "Timer_Drive.h"

#include "gpio.h"

#include "systick.h"


TimingVarTypeDef Time;


int main(void)

{

TIM2_Init();

SysTick_Init();

SysTick_Time_Init(&Time);

for(;;)

{

SysTick_Time_Start();

Delay_us(1000);

SysTick_Time_Stop();

}

}


怎么去看检测结果呢

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

8位单片机在嵌入式设计领域已经成为半个多世纪以来的主流选择。尽管嵌入式系统市场日益复杂,8位单片机依然不断发展,积极应对新的挑战和系统需求。如今,Microchip推出的8位PIC®和AVR®单片机系列,配备了先进的独立...

关键字: 单片机 嵌入式 CPU

在嵌入式系统开发中,程序烧录是连接软件设计与硬件实现的关键环节。当前主流的单片机烧录技术已形成ICP(在电路编程)、ISP(在系统编程)、IAP(在应用编程)三大技术体系,分别对应开发调试、量产烧录、远程升级等不同场景。...

关键字: 单片机 ISP ICP IAP 嵌入式系统开发

在嵌入式系统开发中,看门狗(Watchdog Timer, WDT)是保障系统可靠性的核心组件,其初始化时机的选择直接影响系统抗干扰能力和稳定性。本文从硬件架构、软件流程、安全规范三个维度,系统分析看门狗初始化的最佳实践...

关键字: 单片机 看门狗 嵌入式系统

本文中,小编将对单片机予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 单片机 开发板 Keil

随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。

关键字: 单片机 电磁兼容

以下内容中,小编将对单片机的相关内容进行着重介绍和阐述,希望本文能帮您增进对单片机的了解,和小编一起来看看吧。

关键字: 单片机 复位电路

在这篇文章中,小编将为大家带来单片机的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 单片机 异常复位

今天,小编将在这篇文章中为大家带来单片机的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 仿真器

单片机将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 单片机 中断 boot

一直以来,单片机都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来单片机的相关介绍,详细内容请看下文。

关键字: 单片机 数字信号 模拟信号
关闭