当前位置:首页 > 单片机 > 单片机
[导读]  先简单的介绍下nRF24L01无线模块  (1) 2.4Ghz 全球开放ISM 频段免许可证使用  (2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合  (3) 126 频道,满足多点通信和跳频通信需要  

  先简单的介绍下nRF24L01无线模块

  (1) 2.4Ghz 全球开放ISM 频段免许可证使用

  (2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合

  (3) 126 频道,满足多点通信和跳频通信需要

  (4) 内置硬件CRC 检错和点对多点通信地址控制

  (5) 低功耗1.9 - 3.6V 工作,待机模式下状态为22uA;掉电模式下为900nA

  (6) 内置2.4Ghz 天线,体积小巧15mm X29mm

  (7) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种单片机使用,软件编程非常方便

  通过SPI方式完成数据的交换,包括数据的发送,数据的接收。说明一下,单片机中如果没有SPI的硬件电路,我们可以使用单片机的普通IO口进行SPI的时序模拟,只要符合无线模块的时序逻辑,一样能控制无线模块的通信。FPGA是可编程逻辑,最大的特点就是灵活,用户可根据需求加入所需要的逻辑器件,当然它所包含的逻辑单元也是相当的丰富,有SPI硬件模块。这样用户就省去了SPI方式的时序逻辑,可以更好的专注于功能的开发。

  下面将详细的介绍下nRF24L01无线模块在单片机与FPGA上的应用

单片机:这里我们使用的单片机型号为PIC16F877。

                    图1.3 NRF24L01接入PIC的原理图

  说明:从图1.3中可以看出,主要是图1.1中的6个信号(还有2个是地与电源)接入单片机中。而那些引脚是普通的IO口,需要用户模仿SPI时序进行控制。

  无线模块进行数据的交换就是数据的发送与数据的接收,下面将从这2个方面进行介绍。不管是数据的发送还是数据的接收,要想控制好NRF24L01无线模块,先要通过SPI方式对无线模块进行配置,只需要往它对应的寄存器里写入数值便可。

  先定义一下PIC上的宏,下面我们就可以很方便的对PIC的引脚进行操作。


1 #define MISO RC2

2 #define MOSI RC3

3 #define SCK RD0

4 #define CE RD2

5 #define CSN RD1

6 #define IRQ RC1

7 #define LED RD3

8 #define KEY0 RB0

9 #define KEY1 RB1

10 #define KEY2 RB2

11 #define KEY3 RB3

12 #define KEY4 RB4

13 #define KEY5 RB5

14 #define KEY6 RB6

15 #define KEY7 RB7


  

  NRF24L01无线模块的寄存器

1 //*******************NRF24L01寄存器指令

2 #define READ_REG 0x00 // 读寄存器指令

3 #define WRITE_REG 0x20 // 写寄存器指令

4 #define RD_RX_PLOAD 0x61 // 读取接收数据指令

5 #define WR_TX_PLOAD 0xA0 // 写待发数据指令

6 //*******************SPI(nRF24L01)寄存器地址

7 #define CONFIG 0x00   // 配置收发状态,

8 #define EN_AA 0x01   // 自动应答功能设置

9 #define EN_RXADDR 0x02   // 可用信道设置

10 #define SETUP_AW 0x03   // 收发地址宽度设置

11 #define SETUP_RETR 0x04   // 自动重发功能设置

12 #define RF_CH 0x05   // 工作频率设置

13 #define RF_SETUP 0x06   // 发射速率、功耗功能设置

14 #define STATUS 0x07   // 状态寄存器

15 #define RX_ADDR_P0 0x0A   // 频道0接收数据地址

16 #define TX_ADDR 0x10   // 发送地址寄存器

17 #define RX_PW_P0 0x11   // 接收频道0接收数据长度

18 #define FIFO_STATUS 0x17   // FIFO栈入栈出状态寄存器设置

  有2类寄存器是用户可以根据自己的需求所确定的,那就是地址的长度以及内容、发送与接收数据的长度,但无线模块一次最多可以发送32个字节,这两类寄存器一般设置为3~4个字节。

1 #define TX_PLOAD_WIDTH 4

2 #define RX_PLOAD_WIDTH 4

3 unsigned char TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10}; //本地地址

4 unsigned char RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10}; //接收地址

  A 模拟SPI方式

1 /****************************************************************************************************

2 /*函数:uint SPI_RW(uint uchar)

3 /*功能:NRF24L01的SPI时序

4 /****************************************************************************************************/

5 unsigned char SPI_RW(unsigned char a)

6 {

7 unsigned char i;

8 for(i=0;i<8;i++)

9 {

10 if((a&0x80)==0x80)

11 MOSI=1;

12 else MOSI=0; // output 'uchar', MSB to MOSI

13 a=(a<<1); // shift next bit into MSB..

14 SCK=1; // Set SCK high..

15 if(MISO==1)

16 a|=0x01;

17 else a&=0xfe; // capture current MISO bit

18 SCK=0; // ..then set SCK low again

19 }

20 return(a); // return read uchar

21 }

  B 以SPI方式对寄存器的操作

1 /****************************************************************************************************

2 /*函数:uchar SPI_Read(uchar reg)

3 /*功能:NRF24L01的SPI读操作

4 /****************************************************************************************************/

5 unsigned char SPI_Read(unsigned char reg)

6 {

7 unsigned char reg_val;

8 CSN=0; // CSN low, initialize SPI communication...

9 SPI_RW(reg); // Select register to read from..

10 reg_val=SPI_RW(0); // ..then read registervalue

11 CSN=1; // CSN high, terminate SPI communication

12 return(reg_val); // return register value

13 }

14 /****************************************************************************************************/

15 /*功能:NRF24L01读写寄存器函数

16 /****************************************************************************************************/

17 unsigned char SPI_RW_Reg(unsigned char reg, unsigned char value)

18 {

19 unsigned char status;

20 CSN = 0; // CSN low, init SPI transaction

21 status=SPI_RW(reg); // select register

22 SPI_RW(value); // ..and write value to it..

23 CSN = 1; // CSN high again

24 return(status); // return nRF24L01 status uchar

25 }

26 /****************************************************************************************************/

27 /*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)

28 /*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数

29 /****************************************************************************************************/

30 unsigned char SPI_Read_Buf(unsigned char reg, unsigned char *pBuf, unsigned char uchars)

31 {

32 unsigned char status,uchar_ctr;

33 CSN = 0; // Set CSN low, init SPI tranaction

34 status=SPI_RW(reg); // Select register to write to and read status uchar

35

36 for(uchar_ctr=0;uchar_ctr

37 {

38 pBuf[uchar_ctr]=SPI_RW(0);

39 }

40 CSN = 1;

41

42 re

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭