当前位置:首页 > 单片机 > 单片机
[导读];* 文件名 : startup_stm32f10x_hd.s;* 库版本 : V3.5.0;* 说明: 此文件为STM32F10x高密度设备的MDK工具链的启动文件;* 该模块执行以下操作:;* -设置初始堆栈指针(SP);* -设置初始程序计数器(PC)为复位向量,并在

;* 文件名 : startup_stm32f10x_hd.s
;* 库版本 : V3.5.0
;* 说明: 此文件为STM32F10x高密度设备的MDK工具链的启动文件
;* 该模块执行以下操作:
;* -设置初始堆栈指针(SP)
;* -设置初始程序计数器(PC)为复位向量,并在执行main函数前初始化系统时钟
;* -设置向量表入口为异常事件的入口地址
;* -复位之后处理器为线程模式,优先级为特权级,堆栈设置为MSP主堆栈
;*

Stack_Size EQU 0x00000200 ;定义堆栈的大小

;AREA 命令指示汇编器汇编一个新的代码段或数据段。
;段是独立的、指定的、不可见的代码或数据块,它们由链接器处理.
;段是独立的、命名的、不可分割的代码或数据序列。一个代码段是生成一个应用程序的最低要求

;默认情况下,ELF 段在四字节边界上对齐。expression 可以拥有 0 到 31 的任何整数。
;段在 2expression 字节边界上对齐
AREA STACK, NOINIT, READWRITE, ALIGN=3 ;堆栈段,未初始化,允许读写,8字节边界对齐
; 说明: Cortex-M3的指令地址要求是字边界对齐(4字节);但是代码段是8字节边界对齐的

Stack_Mem SPACE Stack_Size ;分配堆栈空间,把首地址赋给Stack_Mem
__initial_sp ;初始化堆栈指针,指向堆栈顶.

; 此处有个一个问题讨论,关于栈顶在RAM中所处位置问题,很多初学者一直以为是编译器特意放在HEAP段之后是有意为之,并且认为这样可以利用heap未分配空间来防止未知的栈溢出问题
; 这种理解是错误的,链接器并不会为栈的位置做特殊的处理,而且这样做也并不会利用heap段,在此文件的最后对堆栈的初始化代码中可以看出他们是两个互相独立的数据区。此处出现的现
; 象是因为MDK按数据段的字母顺序链接数据段的地址的,所以此处造成了堆的地址在栈的前面的假象,不要窃以为是有某种特殊的约定。

; Heap Configuration
; Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>

Heap_Size EQU 0x00000200 ;定义堆的大小

AREA HEAP, NOINIT, READWRITE, ALIGN=3 ;堆段,未初始化,允许读写,堆数据段8字节边界对齐
__heap_base
Heap_Mem SPACE Heap_Size ;分配堆空间
__heap_limit ;与__heap_base配合限制堆的大小

PRESERVE8 ; 命令指定当前文件保持栈的八字节对齐
THUMB ; 指令集,THUMB 必须位于使用新语法的任何Thumb代码之前

; EXPORT 命令声明一个符号,可由链接器用于解释各个目标和库文件中的符号引用,相当于声明了一个全局变量。 GLOBAL 于 EXPORT相同。
; 以下为向量表,在复位时被映射到FLASH的0地址
AREA RESET, DATA, READONLY ;复位段,只包含数据,只读
EXPORT __Vectors ;标号输出,中断向量表开始
EXPORT __Vectors_End ;中断向量表结束
EXPORT __Vectors_Size ;中断向量表大小

; DCD 命令分配一个或多个字的存储器,在四个字节的边界上对齐,并定义存储器的运行时初值。
__Vectors DCD __initial_sp ; Top of Stack 栈顶指针,被放在向量表的开始,FLASH的0地址,复位后首先装载栈顶指针
DCD Reset_Handler ; Reset Handler 复位异常,装载完栈顶后,第一个执行的,并且不返回。
DCD NMI_Handler ; NMI Handler 不可屏蔽中断
DCD HardFault_Handler ; Hard Fault Handler 硬件错误中断
DCD MemManage_Handler ; MPU Fault Handler 内存管理错误中断
DCD BusFault_Handler ; Bus Fault Handler 总线错误中断,一般发生在数据访问异常,比如fsmc访问不当
DCD UsageFault_Handler ; Usage Fault Handler 用法错误中断,一般是预取值,或者位置指令,数据处理等错误
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler 系统调用异常,主要是为了调用操作系统内核服务
DCD DebugMon_Handler ; Debug Monitor Handler 调试监视异常
DCD 0 ; Reserved
;DCD PendSV_Handler ; PendSV Handler 挂起异常,此处可以看见用作了uCOS-II的上下文切换异常,这是被推荐使用的,因为Cortex-M3会在异常发生时自动保存R0-R3,
; R12,R13(堆栈指针SP),R14(链接地址,也叫返回地址LR,在异常返回时使用),R15(程序计数器PC,为当前应用程序+4)和中断完成时自动回复,
;我们只需保存R4-R11,大大减少了中断响应和上下文切换的时间。
;说明:此处涉及到一个中断保存寄存器问题:因为在所有的运行模式下,未分组寄存器都指向同一个物理寄存器,他们未被系统用作特殊的用途,因此,在中断或者异常处理进行模式转换
; 时,由于不同模式(此处为"线程"和"特权")均使用相同的物理寄存器,可能会造成寄存器中数据的破坏。这也是常说的"关键代码段"和"l临界区"保护的原因。
;DCD SysTick_Handler ; SysTick Handler 滴答定时器,为操作系统内核时钟
DCD OS_CPU_PendSVHandler
DCD OS_CPU_SysTickHandler

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭