当前位置:首页 > 单片机 > 单片机
[导读]首先来看图 3-1,这是上节课已经见过的 USB 接口和供电电路。图 3-1 USB 接口和供电电路左边这张图,过了保险丝以后,接了一个 470uF 的电容 C16,右边这张图,经过开关后,接了一个 100uF 的电容 C19,并且并联了一

首先来看图 3-1,这是上节课已经见过的 USB 接口和供电电路。


图 3-1 USB 接口和供电电路


左边这张图,过了保险丝以后,接了一个 470uF 的电容 C16,右边这张图,经过开关后,接了一个 100uF 的电容 C19,并且并联了一个 0.1uF 的电容 C10。其中 C16 和 C19 起到的作用是一样的,C10 的作用和他们两个不一样,我们先来介绍这 2 个大一点的电容。

容值比较大的电容,理论上可以理解成水缸或者水池子,同时,大家可以直接把电流理解成水流,其实大自然万物的原理都是类似的。

作用一,缓冲作用。当上电的瞬间,电流从电源处流下来的时候,不稳定,容易冲击电子器件,加个电容可以起到缓冲作用。就如同我们直接用水龙头的水浇地,容易冲坏花花草草。我们只需要在水龙头处加个水池,让水经过水池后再缓慢流进草地,就不会冲坏花草,起到有效的保护作用。

作用二,稳定作用。我们的一整套电路,后级电子器件的功率大小都不一样,而器件正常工作的时候,所需电流的大小也不是一成不变的。比如后级有个器件还没有工作的时候,电流消耗是 100mA,突然它参与工作了,电流猛的增大到了 150mA,这个时候如果没有一个水缸的话,电路中的电压(水位)就会直接突然下降,比如我们的 5V 电压突然降低到 3V了。而我们系统中有些电子元器件,必须高于一定的电压才能正常工作,电压太低就直接不工作了,这个时候水缸就必不可少了。电容会在这个时候把存储在里边的电量释放一下,稳定电压,当然,随后前级的电流会及时把水缸充满的。

有了这个电容,可以说我们的电压和电流就会很稳定了,不会产生大的波动。这种电容常用的有如图 3-2、图 3-3、图 3-4 所示三种:


图 3-2 铝电解电容


图 3-3 钽电容 图 3-4 陶瓷电容

这三种电容是最常用的三种,其中第一种个头大,占空间大,单位容量价格最便宜,第 二种和第三种个头小,占空间小,性能一般也略好于第一种,但是价格也贵不少。当然,除 了价格,还有一些特殊参数,在通信要求高的场合也要考虑很多,这里暂且不说。我们板子 上现在用的是第一种,在同样的符合条件的耐压值和容值下,第一种 470uF 的电容不到一毛钱,而第二种和第三种可能要 1 块钱左右了。

电容的选取,第一个参数是耐压值的考虑。我们用的是 5V 系统,电容的耐压值要高于5V,一般推荐 1.5 倍到 2 倍即可,有些场合稍微再高点也可以。我们板子上用的是 10V 耐压的。第二个参数是电容容值,这个就需要根据经验来选取了,选取的时候,要看这个电容起作用的整套系统的功率消耗情况,如果系统耗电较大,波动可能比较大,那么容值就要选大一些,反之可以小一些。

同学们刚开始设计电路也是要模仿别人,别人用多大自己也用多大,慢慢积累。比如咱上边讲电容作用二的时候,电流从 100mA 突然增大到 150mA 的时候,其实即使加上这个电容,电压也会轻微波动,比如从 5V 波动到 4.9V,但是只要我们板子上的器件在电压 4.9V 以上也可以正常工作的话,这点波动是被容许的,但是如果不加或者加的很小,电压波动比较大,有些器件的工作就会不正常了。但是如果加的太大,占空间并且价格也高,所以这个地方电容的选取多参考经验。

我们再来看图 3-1 中的另一种电容 C10,它容值较小,是 0.1uF,也就是 100nF,是用来滤除高频信号干扰的。比如 ESD,EFT 等。我们初中学过电容的特性——可以通交流隔直流,但是电容的参数对不同频率段的干扰的作用是不一样的。这个 100nF 的电容,是我们的前辈根据干扰的频率段,根据板子的参数,根据电容本身的参数所总结出来的一个值。也就是说,以后大家在设计数字电路的时候,在电源处的去耦高频电容,直接用这个 0.1uF 就可以了,不需要再去计算和考量太多。

还有一点,大家可以仔细观察我们的 KST-51 开发板,在电路中需要较大电流供给的器件附近,会加一个大电容,比如在 1602 液晶左上角的 C18,靠近单片机的 VCC 以及 1602液晶背光的 VCC,起到稳定电压的作用,而图 3-1 中的 C19 的实际位置也是放在了在左上角电机和蜂鸣器附近,因为它们所需的电流都比较大,而且工作时电流的波动也很大。还有在所有的 IC 器件的 VCC 和 GND 之间,都会放一个 0.1uF 的高频去耦电容,特别在布板的时候,这个 0.1uF 电容要尽可能的靠近 IC,尽量很顺利的与这个 IC 的 VCC 和 GND 连到一起,这个大家先了解,细节以后再讨论。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为增进大家对电容的认识,本文将对旁路电容和去耦电容的区别予以介绍。

关键字: 去耦电容 指数 电容

为增进大家对电容的认识,本文将对去耦电容和滤波电容的区别,以及电容击穿的相关事项予以介绍。

关键字: 去耦电容 指数 电容

旁路电容是把电源或者输入信号中的交流分量的干扰作为滤除对象。有了旁路电容,将电源5V中的交流分量——波动进行滤除。将蓝色波形变成粉红色波形。一般来说,靠近电源放置。去耦电容是芯片的电源管脚,由于自身用电过程中信号跳变产生...

关键字: 去耦电容

旁路电容是把电源或者输入信号中的交流分量的干扰作为滤除对象。有了旁路电容,将电源5V中的交流分量——波动进行滤除。将蓝色波形变成粉红色波形。一般来说,靠近电源放置。去耦电容是芯片的电源管脚,由于自身用电过程中信号跳变产生...

关键字: 去耦电容

本文来源于面包板社区去耦电容有效使用方法的要点大致可以分为以下两种。另外,还有其他几点需要注意。・要点1:使用多个去耦电容・要点2:降低电容的ESL(等效串联电感)・其他注意事项要点1:使用多个去耦电容去耦电容的有效使用...

关键字: 去耦电容

为了保证高频输入和输出,每个集成电路(IC)都会在电源两端接一个去耦电容,原因有两个:一是防止噪声影响其本身的性能;二是防止它传输噪声而影响其它电路的性能。

关键字: 去耦电容 集成电路

你知道PCB设计中出现电磁干扰问题如何解决吗?最让工程师棘手的话题。莫过于设计PCB过程中会出现EMC和EMI的相关问题。由于工艺流程的不断改良,同时也要求元器件以及工艺向小型化发展,那EMI和EMC的问题更是无限制的扩...

关键字: emi 去耦电容 物理屏蔽

电源设计PCB布线的特性如下:

关键字: 电源设计 PCB 去耦电容

小编最近利用闲余时间,整理以下关于电源的知识,请需要的小伙伴可以看看!

关键字: 电源完整性pi 去耦电容 地平面阻抗 同步开关噪声ssn 电源分配网络pdn

手机设计中的Power Domain分组往往非常复杂,为了进行电源完整性仿真,工程师往往需要花费非常多的时间在繁琐的端口设定上,本次研讨会将为大家介绍利用Mentor工具自动化设定端口的方式,并介绍电源去耦方案的优化方法...

关键字: 电源仿真 去耦电容
关闭
关闭