当前位置:首页 > 单片机 > 单片机
[导读]在向 EEPROM 连续写入多个字节的数据时,如果每写一个字节都要等待几 ms 的话,整体上的写入效率就太低了。因此 EEPROM 的厂商就想了一个办法,把 EEPROM 分页管理。24C01、24C02 这两个型号是 8 个字节一个页,而 2

在向 EEPROM 连续写入多个字节的数据时,如果每写一个字节都要等待几 ms 的话,整体上的写入效率就太低了。因此 EEPROM 的厂商就想了一个办法,把 EEPROM 分页管理。24C01、24C02 这两个型号是 8 个字节一个页,而 24C04、24C08、24C16 是 16 个字节一页。我们开发板上用的型号是 24C02,一共是 256 个字节,8 个字节一页,那么就一共有 32 页。


分配好页之后,如果我们在同一个页内连续写入几个字节后,最后再发送停止位的时序。EEPROM 检测到这个停止位后,就会一次性把这一页的数据写到非易失区域,就不需要像上节课那样写一个字节检测一次了,并且页写入的时间也不会超过 5ms。如果我们写入的数据跨页了,那么写完了一页之后,我们要发送一个停止位,然后等待并且检测 EEPROM 的空闲模式,一直等到把上一页数据完全写到非易失区域后,再进行下一页的写入,这样就可以在很大程度上提高数据的写入效率。

/*****************************I2C.c 文件程序源代码*******************************/

(此处省略,可参考之前章节的代码)

/***************************Lcd1602.c 文件程序源代码*****************************/

(此处省略,可参考之前章节的代码)

/****************************eeprom.c 文件程序源代码*****************************/

#include

extern void I2CStart();

extern void I2CStop();

extern unsigned char I2CReadACK();

extern unsigned char I2CReadNAK();

extern bit I2CWrite(unsigned char dat);

/* E2 读取函数,buf-数据接收指针,addr-E2 中的起始地址,len-读取长度 */

void E2Read(unsigned char *buf, unsigned char addr, unsigned char len){

do { //用寻址操作查询当前是否可进行读写操作

I2CStart();

if (I2CWrite(0x50<<1)){ //应答则跳出循环,非应答则进行下一次查询

break;

}

I2CStop();

}while(1);

I2CWrite(addr); //写入起始地址

I2CStart();//发送重复启动信号

I2CWrite((0x50<<1)|0x01); //寻址器件,后续为读操作

while (len > 1){//连续读取 len-1 个字节

*buf++ = I2CReadACK(); //最后字节之前为读取操作+应答

len--;

}

*buf = I2CReadNAK(); //最后一个字节为读取操作+非应答

I2CStop();

}

/* E2 写入函数,buf-源数据指针,addr-E2 中的起始地址,len-写入长度 */

void E2Write(unsigned char *buf, unsigned char addr, unsigned char len){

while (len > 0){ //等待上次写入操作完成

do { //用寻址操作查询当前是否可进行读写操作

I2CStart();

if (I2CWrite(0x50<<1)){ //应答则跳出循环,非应答则进行下一次查询

break;

}

I2CStop();

} while(1);

//按页写模式连续写入字节

I2CWrite(addr); //写入起始地址

while (len > 0){

I2CWrite(*buf++); //写入一个字节数据

len--; //待写入长度计数递减

addr++; //E2 地址递增

//检查地址是否到达页边界,24C02 每页 8 字节,

//所以检测低 3 位是否为零即可

if ((addr&0x07) == 0){

break; //到达页边界时,跳出循环,结束本次写操作

}

}

I2CStop();

}

}

遵循模块化的原则,我们把 EEPROM 的读写函数也单独写成一个 eeprom.c 文件。其中E2Read 函数和上一节是一样的,因为读操作与分页无关。重点是 E2Write 函数,我们在写入数据的时候,要计算下一个要写的数据的地址是否是一个页的起始地址,如果是的话,则必须跳出循环,等待 EEPROM 把当前这一页写入到非易失区域后,再进行后续页的写入。

/*****************************main.c 文件程序源代码******************************/

#include

extern void InitLcd1602();

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);

extern void E2Read(unsigned char *buf, unsigned char addr, unsigned char len);

extern void E2Write(unsigned char *buf, unsigned char addr, unsigned char len);

void MemToStr(unsigned char *str, unsigned char *src, unsigned char len);

void main(){

unsigned char i;

unsigned char buf[5];

unsigned char str[20];

InitLcd1602(); //初始化液晶

E2Read(buf, 0x8E, sizeof(buf)); //从 E2 中读取一段数据

MemToStr(str, buf, sizeof(buf)); //转换为十六进制字符串

LcdShowStr(0, 0, str); //显示到液晶上

for (i=0; i

buf[i] = buf[i] + 1 + i;

}

E2Write(buf, 0x8E, sizeof(buf)); //再写回到 E2 中

while(1);

}

/* 将一段内存数据转换为十六进制格式的字符串,

str-字符串指针,src-源数据地址,len-数据长度 */

void MemToStr(unsigned char *str, unsigned char *src, unsigned char len){

unsigned char tmp;

while (len--){

tmp = *src >> 4; //先取高 4 位

if (tmp <= 9){ //转换为 0-9 或 A-F

*str++ = tmp + '0';

}else{

*str++ = tmp - 10 + 'A';

}

tmp = *src & 0x0F; //再取低 4 位

if (tmp <= 9){ //转换为 0-9 或 A-F

*str++ = tmp + '0';

}else{

*str++ = tmp - 10 + 'A';

}

*str++ = ' '; //转换完一个字节添加一个空格

src++;

}

}

多字节写入和页写入程序都编写出来了,而且页写入的程序我们还特地跨页写的数据,它们的写入时间到底差别多大呢。我们用一些工具可以测量一下,比如示波器,逻辑分析仪等工具。我现在把两次写入时间用逻辑分析仪给抓了出来,并且用时间标签 T1 和 T2 标注了开始位置和结束位置,如图 14-5 和图 14-6 所示,右侧显示的|T1-T2|就是最终写入 5 个字节所耗费的时间。多字节一个一个写入,每次写入后都需要再次通信检测 EEPROM 是否在“忙”,因此耗费了大量的时间,同样的写入 5 个字节的数据,一个一个写入用了 8.4ms 左右的时间,而使用页写入,只用了 3.5ms 左右的时间。



图 14-5 多字节写入时间


图 14-6 跨页写入时间


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭