当前位置:首页 > 通信技术 > 通信技术
[导读]介绍一种无线收发集成芯片CC1000的电路结构及典型的应用设计;着重说明CC1000与微控制器通信所要求的时序。

摘要:介绍一种无线收发集成芯片CC1000的电路结构及典型的应用设计;着重说明CC1000与微控制器通信所要求的时序。

    关键词:无线收发 可编程 跳频 CC1000

引 言

  CC1000是根据Chipcon公司的SmartRF技术,在0.35μm CMOS 工艺下制造的一种理想的超高频单片收发通信芯片。它的工作频带在315、868及915MHz,但CC1000很容易通过编程使其工作在300~1000MHz范围内。它具有低电压(2.3~3.6V),极低的功耗,可编程输出功率(-20~10dBm),高灵敏度(一般-109dBm),小尺寸(TSSOP-28封装),集成了位同步器等特点。其FSK数传可达72.8Kbps,具有250Hz步长可编程频率能力,适用于跳频协议;主要工作参数能通过串行总线接口编程改变,使用非常灵活。

图1 CC1000的简化模块图

1 电路结构

  图1所示为CC1000的简化模块图。在接收模式下,CC1000可看成是一个传统的超外差接收器。射频(RF)输入信号经低噪声放大器(LNA)放大后翻转进入混频器,通过混频器混频产生中频(IF)信号。在中频处理阶段,该信号在送入解调器之前被放大和滤波。可选的RSSI信号和IF信号也可通过混频产生于引脚RSSI/IF。解调后,CC1000从引脚DIO输出解调数字信号,解调信号的同步性由芯片上的PCLK提供的时钟信号完成。

  在发送模式下,压控振荡器(VCO)输出的信号直接送入功率放大器(PA)。射频输出是通过加在DIO脚上的数据进行控制的,称为移频键控(FSK)。这种内部T/R切换电路使天线的连接和匹配设计更容易。

  频率合成器产生的本振信号,在接收状态下送入功放。频率合成器是由晶振(XOSC)、鉴相器(PD)、充电脉冲、VCO以及分频器(/R和/N)构成,外接的晶体必须与XOSC引脚相连,只有外围电感需要与VCO相连。

图2 CC1000的典型应用电路图

2 应用电路

  CC1000工作时外围元件很少,典型的应用电路如图2所示。当配置CC1000不同的发射频率时,外围元器件参数也不同,具体参数请见参考文献[1]。

3 三线串行数据口

  CC1000 可通过简单的三线串行接口(PDATA、 PCLK 和PALE) 进行编程,有36个8位配置寄存器,每个由7位地址寻址。一个完整的CC1000配置,要求发送29个数据帧,每个16位(7个地址位,1个读/写位和8个数据位)。PCLK 频率决定了完全配置所需的时间。在10MHz的PCLK频率工作下,完成整个配置所需时间少于60μs。在低电位模式设置时,仅需发射一个帧,所需时间少于2μs。所有寄存器都可读。在每次写循环中,16位字节送入PDATA通道,每个数据帧中7个最重要的位(A6:0)是地址位,A6是MSB(最高位),首先被发送。下一个发送的位是读/写位(高电平写,低电平读),在传输地址和读/写位期间,PALE (编程地址锁存使能)必须保持低电平,接着传输8 个数据位(D7: 0),如图3所示。表1是对各参数的说明。PDATA 在PCLK 下降沿有效。当8位数据位中的最后一个字节位D0 装入后,整个数据字才被装入内部配置寄存器中。经过低电位状态下编程的配置信息才会有效,但是不能关闭电源。

表1 串行接口时序说明

参  数  名  称 符号/单位 最小值 说    明
PCLK频率 fCLOCK/MHz - -
PCLK低电平持续时间 tCL,min/ns 50 PCLK保持低电平的最短时间
PCLK高电平持续时间 tCH,min/ns 50 PCLK保持高电平的最短时间
PALE启动时间 tSA/ns 10 PCLK转到下降沿前,PALE保持低电平的最短时间
PALE持续时间 tHA/ns 10 PCLK转到上升沿后,PALE保持低电平的最短时间
PDATA启动时间 tSD/ns 10 PCLK转到下降沿前,PALE上数据准备好的最短时间
PDATA持续时间 tHD/ns 10 PCLK转到下降沿后,PALE上数据准备好的最短时间
上升时间 trise/ns - PCLK和PALE上升时间的最大值
下降时间 tfall/ns - PCLK和PALE下降时间的最大值

   微控制器通过相同的接口也能读出配置寄存器。首先,发送7位地址位,然后读/写位设为低电平,用来初始化读回的数据。接着,CC1000从寻址寄存器中返回数据。此时,PDATA 用作输出口,在读回数据期间(D7:0),微控制器必须把它设成三态,或者在引脚开路时设为高电平。读操作的时序如图4所示。

图3 CC1000写操作的编程时序图 图4 CC1000读操作的编程时序图

4 与微控制器连接

  微控制器使用3个输出引脚用于接口(PDATA、PCLK、PALE),与PDATA相连的引脚必须是双向引脚,用于发送和接收数据。提供数据计时的DCLK 应与微控制器输入端相连,其余引脚用来监视LOCK 信号(在引脚CHP_OUT)。当PLL 锁定时,该信号为逻辑高电平。图5为P87LPC762单片机与CC1000接口示意图。

P87LPC762单片机写CC1000内部寄存器的程序如下:

write_com(uchar addr,uchar com_data)//写内部寄存器子程序

{ char i;

addr<<=1;

pale=0; //允许地址锁存

for(i=0;i<7;i++) { //送地址

addr<<=1;

p_data=CY;

pclk=0; //上升沿

pclk=1;

}

p_data=1; //写操作

pclk=0;

pclk=1;

pale=1; //禁止地址锁存

for(i=0;i<8;i++){

com_data<<=1;

p_data=CY;

pclk=0;

pclk=1;

}

}

结 语

  当调制数据时,CC1000能被设置成三种不同的数据形式,分别为同步NRZ模式、同步曼彻斯特码模式、异步传输(UART)模式。为了满足电池供电情况下严格的电源损耗要求,CC1000 提供了十分方便的电源管理方法。通过MAIN 寄存器控制低电平模式,有单独的位控制接收部分、发射部分、频率合成以及晶振。这种独立控制可用来优化在某个应用中最低可能达到的电流损耗。CC1000优良的性能使它主要应用于ISM(工业、科学及医疗)方面以及SRD(短距离通信)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭