当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:载波的两种相位随二进制数字基带信号离散变化称为二进制移相键控(2PSK)。对BPSK和DPSK调制原理研究基础上,讨论了数字化处理2PSK调制系统的模块建立,在Max+PlusⅡ开发环境中,用VHDL语言设计BPSK和DPSK调制,

摘要:载波的两种相位随二进制数字基带信号离散变化称为二进制移相键控(2PSK)。对BPSK和DPSK调制原理研究基础上,讨论了数字化处理2PSK调制系统的模块建立,在Max+PlusⅡ开发环境中,用VHDL语言设计BPSK和DPSK调制,利用MUX模块完成了PSK调制系统,仿真和验证了其设计功能。
关键词:BPSK;DPSK;Max+PlusⅡ;VHDL

    在通信系统中,因基带信号中含有丰富的低频分量而不能在信道中直接传输,必须用基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,形成频带信号,这一过程称为数字调制。由于PSK系统抗噪声性能优于ASK和FSK,而且频带利用率较高,所以,在中、高速数字通信中被广泛采用。

1 2PSK的调制
   
在二进制数字调制中,当正弦载波的两种相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。数字调相(相移键控)常分为:绝对调相,记为BPSK;相对调相,记为DPSK。
    BPSK是用载波的不同相位去直接传送数字信息的一种方式,通常这两个相位相差π弧度,例如用相位0和π分别表示1和0。
    2PSK信号中,信号相位的变化是以未调正弦载波的相位作为参考,用载波相位的相对数值表示数字信息的。即用前后相邻码元的载波相对相位变化来表示数字信息,所以称为差分移相键控(2DPSK)。则一组二进制数字信息与其对应的2PSK信号的载波相位关系如下所示:
    二进制数字信息:0 1 0 1 O 0 1 1 1 0
    BPSK信号相位:
    0 π 0 π 0 0 π π π 0或π 0 π 0 π π 0 0 0 π
    DPSK信号相位:
    0 0 π π 0 0 0 π 0 π π或π π 0 0 π π π 0 π 0 0

2 调制实现
   
基于以上对PSK调制原理的分析,BPSK信号的产生有模拟调相法和键控实现法。由此建立的VHDL模型如图1所示,主要是由计数器和二选一开关等组成。计数器对外部时钟信号进行分频与计数,并输出两路相位相反的数字载波信号;二选一开关的功能是:在基带码的控制下,对两路载波信号进行选通完成BPSK调制。图中没有包含模拟电路部分,输出信号为数字信号。
    DPSK信号的实现方法:首先对二进制数字基带信号进行差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。建立的VHDL模型如图2所示。


    根据调制方框图的设计思想,采用VHDL语言完成的调制建模符号如图3所示。


    根据对BPSK和DPSK两种调制方式的建模实现,2PSK调制系统采用层次化设计的思想,利用二选一数据选择器完成调制方式的选择。2PSK调制系统原理图设计方式如图4所示。



3 仿真及分析
   
通过仿真软件Max+PlusⅡ对PSK进行编译后的功能仿真如图5所示。


    图5为2PSK调制仿真图,载波f1和f2是通过时钟信号2分频得到的,相位相差为π,start高电平有效。当控制信号s为0时,进行BPSK调制;s为1时,进行DPSK调制。

4 结语
   
本文对2PSK调制系统的设计是基于VHDL,在设计中不考虑电平转换等模拟部分,只考虑数字化处理部分。只需要掌握调制原理进行VHDL建模,可移植性强,不设计具体电路的实现,因此大大减少了设计人员的工作量,提高了设计的准确性和效率。利用二选一数据选择器完成BPSK和DPSK两种调制方式的选择,程序已在Max+PlusⅡ工具软件上进行了编译、仿真和调试,经过实验结果的分析,说明本设计是正确可行的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭