当前位置:首页 > 通信技术 > 通信技术
[导读]电路功能与优势图1所示电路使用ADM3485E收发器,是经过验证并测试的电磁兼容性(EMC)解决方案,可为使用广泛的RS-485通信端口提供三重保护。每个解决方案都经过测试和特性表征,确保收发器和保护电路元件之间的动态交

电路功能与优势

图1所示电路使用ADM3485E收发器,是经过验证并测试的电磁兼容性(EMC)解决方案,可为使用广泛的RS-485通信端口提供三重保护。每个解决方案都经过测试和特性表征,确保收发器和保护电路元件之间的动态交互能够协同工作,保护它们免遭静电放电(ESD)、电快速瞬变(EFT)和电涌的破坏——分别由IEC 61000-4-2、IEC 61000-4-4和IEC 61000-4-5标准定义。本电路使用ADM3485E提供经过验证的RS-485接口ESD、EFT和电涌(常见于恶劣工作环境)保护。

图1. 三个EMC兼容ADM3485E保护电路(原理示意图,未显示所有连接)

电路描述

在工业和仪器仪表应用中,RS-485总线标准是使用最广泛的物理层总线设计标准之一。RS-485提供多个系统之间的差分数据传输,这些系统通常相距很远。RS-485的应用包括:过程控制网络、工业自动化、远程终端、楼宇自动化(例如,暖通空调(HVAC)、保安系统)、电机控制和运动控制。

在这些实际的系统中,雷击、电源波动、感应开关和静电放电会通过产生较大瞬变电压对通信端口造成损害。设计人员必须确保设备不仅能在理想条件下工作,而且能够在实际可能遇到的恶劣环境下正常工作。为了确保这些设计能够在电气条件恶劣的环境下工作,必须符合EMC规范。

许多EMC的问题并不简单,且不易呈现,因此必须在产品开发周期的初级阶段即将其考虑在内。正确的解决方案和保护电路必须作为整体设计的一部分,而非留到最后一刻。保护电路必须集成特定收发器生产商的输入和输出结构,作为设计的组成部分。

IEC 61000规范定义了一组EMC耐受性要求。在这组规范中,设计人员必须考虑数据通信线路的下列三类高压瞬变:

· IEC 61000-4-2静电放电(ESD)

· IEC 61000-4-4电快速瞬变(EFT)

· IEC 61000-4-5电涌耐受

ESD和EFT具有类似的上升时间、脉冲宽度和能耗水平。电涌瞬变具有更长的上升时间和脉冲宽度;其幅度最终可能比ESD或EFT瞬变电能的幅度高3至4个数量级。由于ESD和EFT瞬变的相似性,它们的电路保护设计也相近。但是因为电涌瞬变的电能水平较高,因此必须将它们区别对待。

每款解决方案都向数据端口提供ESD电压(8 kV接触放电和15 kV气隙放电)以及2 kV的EFT电压保护。不同的解决方案提供高达6 kV的更高电涌保护等级。电路保护等级列于表1中。

图2显示EVAL-CN0313-SDPZ板的实物照片。电路板上有三个ADM3485E器件,每个器件用于一种保护方案。每种保护方案都提供本文描述的ESD和EFT保护,并提升电涌保护等级。

有关EVAL-CN0313-SDPZ板的完整设计支持包,包括原理图、布局文件和物料清单,请参阅www.analog.com/CN0313-DesignSupport。

图2. EVAL-CN0313-SDPZ板

ADM3485E是一款3.3 V低功耗数据收发器,适合用于多点传输线路的半双工通信。它的数据速率高达12 Mbps,总线引脚(A和B)上的共模电压范围为−7 V至+12 V。数据通过DI引脚发送出去,通过RO引脚接收。驱动器和接收器的输出都可使能或禁用,即通过改变DE和RE引脚上的相应逻辑电平,进入高阻抗状态。

电源和接地通过螺旋电缆连接器互相连接(VCC和GND)。该连接器供全部三个ADM3485E器件使用。

DE和RE逻辑输入通过LK1至LK6设置。对每个ADM3485E而言,LK2、LK4和LK6与DE有关;LK1、LK3和LK5与RE有关。对每条链路而言,位置A连接逻辑引脚至VCC;位置B连接逻辑引脚至GND;位置C连接逻辑引脚至四引脚侧面螺旋电缆连接器。输入DI和输出RO引脚直接连接四引脚螺旋连接器。

EVAL-CN0313-SDPZ还兼容ADI公司的ezLINX™板(EZLINX-IIIDE-EBZ),以及系统开发平台(EVAL-SDP-CB1Z)。连接器J8将SDP或ezLINX板上的UART和GPIO接口与ADM3485E器件的逻辑I/O相连。I/O连接和跳线配置如表2所示。

ADM3485E发送器和接收器共用同样的差分总线引脚(A和B)。保护电路用于保护这些总线引脚。

在第一个保护电路中(TVS,如图1所示),使用了一个元件,即Bourns公司的CDSOT23-SM712。它是EVAL-CN0313-SDPZ上的瞬变电压抑制器(TVS)阵列。它由两个双向TVS二极管组成,经过优化后保护RS-485系统,使其受到尽可能少的过应力,同时支持全范围RS-485信号和共模电压偏移。在正常工作条件下,TVS具有很高的对地阻抗。发生过压情况时,TVS进入雪崩击穿模式,并将引脚电压箝位于安全的预定电平。然后,它将瞬变电流从ADM3485E转移到地。

此保护方案提供高达8 kV(接触放电)和15 kV(气隙放电)ESD保护、2 kV EFT保护和1 kV电涌保护。

如CDSOT23-SM712数据手册中所述,该器件专为RS-485设备而设计。以下两个保护方案应用于CDSOT23-SM712,提供针对电涌的更高级电路保护。

在第二个方案中(图1中的TVS/TBU/TISP),CDSOT23-SM712 TVS提供第二级保护,而Bourns公司的TISP4240M3BJR-S提供第一级保护。TISP4240M3BJR-S是一款完全集成式电涌保护器(TISP)。TISP是一款固态晶闸管。当超过其预定保护电压时,TISP提供低阻抗接地路径,将大部分瞬变能量从ADM3485E转移开。

Bourns公司的TBU-CA065-200-WH瞬态闭锁单元(TBU)是一款非线性过流保护器件,位于第一级和第二级保护器件之间,确保协调工作。TBU是一款过流闭锁器件,在预定电流下开路。在阻隔模式下,它具有很高的阻抗以阻隔瞬变能量。此保护方案提供高达8 kV(接触放电)和15 kV(气隙放电)ESD保护、2 kV EFT保护和4 kV电涌保护。

第三级保护方案(图1中的TVS/TBU/ GDT)工作情况与保护方案2相似。该方案使用气体放电管(GDT)而非TISP。GDT针对比前述TISP保护方案更高的过压和过流提供保护。GDT是气体放电等离子器件,提供低阻抗接地路径以防止过压瞬变。所选GDT为Bourns公司的2038-15-SM-RPLF。

该第三级保护方案提供高达8 kV(接触放电)和15 kV(气隙放电)ESD保护、2 kV EFT保护和6 kV电涌保护。

ADM3485E有一个120 Ω引脚与总线引脚相连。

电路评估与测试

为EVAL-CN0313-SDPZ板施加3.3 V至VCC电源。电压可通过每个ADM3485E附近的VCC测试点检查。发送和接收路径可通过连接其中一个ADM3485E电路进行测试,如图3所示。信号或模式发生器可连接到DI。驱动器的输出可通过A和B测试点监控,而接收器的输出可通过RO测试点监控。跳线配置如图3所示。该测试设置可应用于全部三个电路。

图3. 发送和接收测试设置

根据IEC 61000-4-2,ESD测试需使用两种耦合方法,即接触放电和气隙放电。接触放电意味着放电枪与测试端口直接相连。采用气隙放电法时,放电枪的放电电极向测试端口移动,直到产生放电并在整个气隙上形成一道弧。向每条总线线路的螺丝端子连接器放电。

对于IEC 61000-4-4 EFT测试,使用容性耦合箝位将EFT突发脉冲耦合至连接总线线路的电缆。箝位的耦合电容值取决于电缆直径、电缆材料和电缆的屏蔽情况。

IEC 61000-4-5电涌测试表示需要使用耦合/去耦网络(CDN),以便将电涌瞬变耦合至总线引脚。根据规格要求,它必须使用两个80 Ω电阻针对两个端口测试。图4显示电涌测试的测试设置。将CDN连接至A和B引脚,以及将电涌发生器的共模端连接至4个引脚螺旋连接器的接地。

图4. IEC 61000-4-5电涌CDN输入ADM3485E的设置

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭