当前位置:首页 > 芯闻号 > 基础实用电路
[导读]直流电阻的测量方法无非是非在路测量的时候,通过测量输入脚和输出脚对地,或电源脚对地的直流电阻的大小来判断其运放好坏,跟一个好的运放进行比较来判断其好坏,第二,在路测量其输入脚和输出脚电压,如果输入脚有输入信号输出脚没有输出信号,排除偏置部分的问题,那么就是由于运放损坏,或者说在其输入端加入干扰信号观察输出端的波形,如果变化不大则说明运放已经坏了。

引言

目前在国内长电科技、天水华天等几家知名的封装测试厂家都能进行运算放大器的测试,且比较成熟。我们可以通过引进相关技术,消化吸收,实现在现有SOP8的测试分选设备上开发出运算放大器的测试能力,以开拓市场空间。

1、运算放大器LM358概述及特性

1.1、运算放大器LM358概述

LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。[]它的使用范围包括传感放大器、直流增益模组,音频放大器、工业控制、DC增益部件和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。

1.2、运算放大器LM358特性:

*内部频率补偿

*直流电压增益高(约100dB)

*单位增益频带宽(约1MHz)

*电源电压范围宽:单电源(3~30V);双电源(±1.5~±15V)

*低功耗电流,适合于电池供电

*低输入偏流

*低输入失调电压和失调电流

*共模输入电压范围宽,包括接地

*差模输入电压范围宽,等于电源电压范围

*输出电压摆幅大(0~Vcc-1.5V)

1.3、lm358参数:

输入偏置电流45nA;输入失调电流50nA;输入失调电压2.9mV;输入共模电压最大值VCC~1.5V;共模抑制比80d;电源抑制比100dB。

1.3.1.SOP8封装LM358产品的脚位和外形

 

浅析SOP8封装LM358运算放大器的测试

SOP8-LM358产品8个引脚功能说明:1脚是输出端;2脚是反相输入端;3脚是同相输入端;4脚是负电源(双电源工作时)或地(单电源工作时);5脚是同相输入端;6脚是反相输入端;7脚是输出端;8脚是正电源。(如图1所示。其中1、2、3脚是一个运放通道,5、6、7脚为另一运放通道)。

2、LM358P万用表测试其好坏的方法

运放的好坏判断一般是采取测量直流电阻的方法或测其输入和输出电压。

直流电阻的测量方法无非是非在路测量的时候,通过测量输入脚和输出脚对地,或电源脚对地的直流电阻的大小来判断其运放好坏,跟一个好的运放进行比较来判断其好坏,第二,在路测量其输入脚和输出脚电压,如果输入脚有输入信号输出脚没有输出信号,排除偏置部分的问题,那么就是由于运放损坏,或者说在其输入端加入干扰信号观察输出端的波形,如果变化不大则说明运放已经坏了。

3、分选机FT2030上搭配QT8100测试SOP8封装LM358产品的方法

3.1、测试夹具设计

 

浅析SOP8封装LM358运算放大器的测试

3.2、测试电路设计

通过对中华人民共和国标准GB-3442-86的研究以及不同测试机供应商测试板卡的分析,初步总结出一下测试方法和测试电路图。实现LM358关键参数的测试。

3.3、LM358关键参数测试电路及浅析

 

浅析SOP8封装LM358运算放大器的测试

3.3.1、SupplyCurrenTIcc:(电源电流Icc)

DVI2以FVMI模式提供一电压(如2.5V),而VCC由DVI0工作在FVMI模式提供+15V,DVI1提供VEE电压,VEE=-15V,DVI0所量测到电流值MI即为Icc,同理可由DVI1得到Iee电流。VCC、VEE和DVI2电压值如果测试规范没有说明,则可参考该电压条件设置。

3.3.2、InputOffsetVoltageVos(或称Vio)(输入失调电压Vos)

DVI2和DVI3提供1.4V电压,pvm测量出电压MV

Vos=(MV-1.4)x(50/(50+200K))

3.3.3、PowerSupplyRejectRaTIoPSRR(电源抑制比)

该项目在于测量出当VCC改变时所造成的Vos变化率:

DVI2、DVI3提供1.4V电压,pvm测量出电压MV

VCC1=VCCmin时可由Vos=(MV-1.4)x(50/(50+200K))式计算得到Vosmin

VCC2=VCCmax时同上可计算得到Vosmax

PSRR=20lg((VCC2–VCC1)/(Vosmax–Vosmin))

3.3.4、OpenLoopGainAv(开环电压增益或者大信号电压增益)

DVI2=0.7V

DVI3_1=-10V时,pvm量出电压MV,由Vos1=(MV-0.7)x(50/(50+200K))式计算得到Vos1

DVI3_2=10V时,pvm量出电压MV,由Vos2=(MV-0.7)x(50/(50+200K))式计算得到Vos2

Av=20lg((MVS0_2–MVS0_1)/(Vos2–Vos1))

3.3.5、InputBiasCurrenTIib&InputOffsetCurrenTIio(输入偏流Iib和输入失调电流Iio)

这个测试项目中分成两部分,Iib与Iio,而根据定义:

Iib=(Ib++Ib-)/2;Iio=Ib_-Ib+

其中Ib+是OPDUT的正端输入电流,Ib-是OPDUT负端输入电流,所以测试电路必须分成两个部分。

VCC=15V,DVI3=1.4V、DVI2=1.4V

pvm量测到一电压值MV

Vos_Ib+=(MV–1.4)x(50/(50+200K))

Ib+=(Vos-Vos_Ib+)/47K

 

浅析SOP8封装LM358运算放大器的测试

VCC、DVI3与DVI2同量测Ib+时的设定值。

pvm量测到一电压值MV

Vos_Ib-=(MV–1.4)x(50/(50+200K))

Ib+=(Vos_Ib--Vos)/47K

Iib=(Ib++Ib-)/2

Iio=Ib--Ib+

3.3.6、OutputVoltageSwingVoh&Vol(输出电压摆幅)

DVI2工作于FVMI模式,FV=2V,DVI3于FIMV模式运作,FI=0A,并量测到输出电压MV即为Voh。量测条件同Voh,由DVI3以FIMV模式量测到MV即为Vol。

备注:VCC和VEE电压以测试规范给出的条件为准。

3.3.7、OutputCurrentIsource&Isink(输出电流输出源电流和输出吸电流)

VCC=15V,VEE=-15V,DVI2于FVMI模式提供1V,DVI3工作于FVMI模式,FV=0V,量测到的电流MI即为Isource值。

VCC=15V,DVI2工作在FVMI模式且FV=1V,DVI3为FVMI模式工作且FV=0V,量测到的电流MI即为Isink值。电压值请参照测试规范的电压值来给

3.3.8、CommonModeRejectionRatioCMRR(共模抑制比)

CMRR主要的意义在于观察当Vcm变化时所产生的Vos变化量,故量测上要对Vcm作变动。

VCC=15V,VEE=-15V,DVI3=-3V:

当DVI2_1=-13V,pvm测量到MV:

Vos1=(MV–DVI2_1)x(50/(50+200K))

当DVI2_2=13V,OVICH8量测到另一MV:

Vos2=(MV–DVI2_2)x(50/(50+200K))

CMRR=20log10((DVI2_2–DVI2_1)/(Vos2–Vos1))

3.3.9、输出共模电压范围

 

浅析SOP8封装LM358运算放大器的测试

变化∆V,使得CMRR下降6dB,此时的∆V。

3.3.10、对地短路电流

同相输入端在施加规定的直流电压下,输出端对地短路时的直流输出电流。运算放大器在同相端输入规定的直流电压而使输出达到最大值时,输出端对地的短路电流。大小主要与输出级的保护电路有关。

同相输入端施加规定的正输入直流电压,在输出端测得流出被测器件的电流,即IOS(+)。同相输入端施加规定的负输入直流电压,在输出端测得流入被测器件的电流,即IOS(-)。

注意事项:

a、电流表内阻应小于1欧姆;

b、输入电压VI应满足:VIDM》DVI2》》Vos,VIDM为最大差模输入电压。

4、结语

SOP8封装的运算放大器LM358在市场上广泛应用于家庭影院系统和立体声收音机,对于在高速分选机上完成测试的量产无疑有很大的市场。本文简要的描述了测试夹具的设计,探讨了关键参数的测试电路设计和测试方法,在QT8100测试平台上实现LM358运算放大器的量产测试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子科技领域,集成电路芯片扮演着至关重要的角色。运算放大器作为集成电路的一种,其性能与应用广泛影响着各类电子电路的运行效率与稳定性。LM324N与LM324AD,作为两款备受瞩目的运算放大器,各自具有独特的特点和优势。...

关键字: lm324n lm324AD 运算放大器

运算放大器,简称运放,是一种具有极高电压增益、内部负反馈机制和广泛用途的集成电子电路。自其诞生以来,运算放大器在模拟信号处理、测量、控制、滤波等多个领域发挥了至关重要的作用,它的存在使得许多复杂的电子系统设计变得更为简洁...

关键字: 运算放大器 模拟信号

输入失调电流(Input Offset Current, Io)是实际运算放大器(Operational Amplifier, Op-Amp)的一个固有特性,它是指在同一型号的运算放大器内部,两个输入端的偏置电流不完全相...

关键字: 失调电流 运算放大器

在电子工程领域,电压跟随器(Voltage Follower)是一种极其重要的运算放大器电路配置,它以其独特的特性,在信号处理、系统接口设计以及电气隔离等方面扮演着关键角色。电压跟随器也称为缓冲放大器、单位增益放大器或隔...

关键字: 电压跟随器 运算放大器

新竹,台湾,2024年3月13日 -工业5.0注重智慧化、感测能力和高度自动化,代表着智慧工业领域的新一波革命,在这个背景下,工业自动化和物联网应用在多个领域对高精准、小型化传感器的需求不断增加。NuMicro M091...

关键字: 运算放大器 模拟数字转换器 传感器

高增益和内部频率补偿。LM358的内部包括两个独立的运算放大器,每个放大器都具有高增益和内部频率补偿,适合于单电源或双电源工作模式。

关键字: lm358芯片 运算放大器 高增益

静态电流仅160nA,有助于消费电子和工业设备应用更加省电

关键字: 运算放大器 静态电流 消费电子

典型应用包括工业、服务器和电信基础设施电源,以及汽车信号调理和电源转换电路

关键字: 运算放大器 服务器 电源转换电路

RC正弦波振荡器是一种常用的模拟振荡器,它利用电阻(R)和电容(C)元件以及运算放大器(Op-Amp)来产生正弦波信号。这种振荡器结构简单、易于实现,并且输出信号的频率和幅度可以通过改变电阻和电容的值来调整。本文将详细介...

关键字: RC正弦波振荡器 运算放大器 正弦波信号

以下内容中,小编将对运算放大器的相关内容进行着重介绍和阐述,希望本文能帮您增进对运算放大器的了解,和小编一起来看看吧。

关键字: 放大器 运算放大器
关闭
关闭