当前位置:首页 > 厂商动态 > ADI
[导读]电压控制开关是LTspice的基本电路元件,能够以简洁的方式在电路中实现开路或短路行为,并支持在仿真过程中动态切换。完善原理图后,设计人员最终可能需要采用更精确的FET或开关模型,但在设计初期,较简单的开关元件无疑是更理想的选择。

摘要

本文详细介绍了在LTspice®原理图中添加电压控制开关的步骤。文中列举了几个示例,着重说明了电压控制开关在瞬态仿真中的使用。

简介

电压控制开关是LTspice的基本电路元件,能够以简洁的方式在电路中实现开路或短路行为,并支持在仿真过程中动态切换。完善原理图后,设计人员最终可能需要采用更精确的FET或开关模型,但在设计初期,较简单的开关元件无疑是更理想的选择。

开始前的必需步骤

本文假设读者对LTspice的基本操作有一定了解。如果您尚未熟悉LTspice的使用方法,请先参阅入门指南和LTspice基础知识视频系列。

第1步:放置开关符号

打开需要添加开关的原理图。或者选择File(文件)→New Schematic(新建原理图),创建一个新的原理图。

选择Edit(编辑)→Component(元件,或按快捷键P),然后从元件库中选择sw(开关)。使用Rotate(旋转,CTRL+R)和Mirror(镜像,CTRL+E)命令可以微调开关符号的方向。单击Place(放置),再单击原理图以放置新的开关。参见图1。

图1.从Component(元件)对话框中选择开关。

第2步:添加模型语句

选择Edit→SPICE指令(或按快捷键“.”),为开关添加模型指令。输入以下示例代码:

.model MYSW SW()

其中,MYSW是分配给该模型指令的名称,SW()表示这是一个开关模型,使用默认参数值(图2)。单击OK(确定),然后单击原理图以放置.model指令。要查看关于开关模型指令的LTspice帮助主题,请选择Help(帮助)→LTspice Help(LTspice帮助),并搜索Voltage Controlled Switch(电压控制开关),查阅相关的SW()模型指令。

图2.向原理图添加.model指令。

第3步:将新开关指向相应模型语句

将.model指令添加到原理图后,请右键单击开关值(放置开关时默认为SW),确保新的开关符号正确链接到模型。将SW更改为MYSW,以将此开关正确链接到新创建的MYSW模型。参见图3。

图3.更改开关元件的值以匹配.model指令中的名称。

第4步:添加控制电压源

添加一个电压源来控制新开关的开/关状态。要添加电压源,请选择Edit(编辑)→Component(元件),从对话框中选择一个电压元件,然后单击Place(放置)或按快捷键V。单击原理图以放置电压源。

右键单击V值,然后输入下面的PULSE命令以创建三角波(如图4所示)。

PULSE(-1 1 0 .5m .5m 0 1m)

图4.向开关控制引脚添加控制电压。

电压控制开关的默认阈值参数为0 V,因此该示例三角波将以50%的占空比接通和关断此默认开关模型。

简单示例

使用此处提供的简单示例进行实验,或者选择File(文件)→Open Examples(打开示例)→Educational(教学)→Vswitch.asc。参见图5。

图5.Vswitch.asc示例原理图。

为了简化图表结果并展示改变Vh和Vt值的影响,请右键单击值3.3并将该值更改为1,从而将V2电压更改为1。

选择Simulate(仿真)→Run(运行)以运行仿真。参见图6。

图6.V2变成1 V后得到的仿真结果。

设置控制滞回的行为

Vh = 0时的行为

为探索开关在Vh改变时的行为,我们可以对Vswitch.asc示例进行一些更改。

右键单击.model指令,将Vh值更改为Vh = 0,然后重新运行仿真。请注意,此开关表现出理想的开关行为,在Vt值处瞬间完成完全导通与完全关断的状态切换。本例中的Vt为0.5 V。参见图7。

图7.Vh = 0时,开关表现出理想行为。

此外,我们还可以绘制开关行为与输入电压的关系图。删除V(in)迹线,然后右键单击x轴,将x轴从时间更改为V(in)。参见图8和图9。

图8.将横轴设置为V(in)。

图9.绘制V(out)与V(in)的关系图。

Vh为正值时的行为

Vh为正值时,开关将表现出滞回特性。在Vswitch.asc示例中,将Vh更改为0.2 V,以展示相应的滞回效应。参见图10。

图10.Vh为正值时,开关表现出滞回特性。

Vh为负值时的行为

Vh为负值时,开关在导通与关断状态之间的切换将变得更加平滑(过渡区域由负Vh值设置)。请注意,负Vh仅会让开关平滑过渡,而不会造成任何滞回。参见图11。

图11.负Vh值使过渡更平滑。

示例:可变增益运算放大器

第二个例子的灵感来源于此处发布的电学实验室项目。借助理想运算放大器和开关模型,我们可以模拟该电路的简单版本。该示例原理图名为Variable_Gain_Amplifier_Example.asc,您可以点击此处下载。

观察通过R3的电流路径在开路和短路之间循环变化时,放大器电路的增益如何变化。参见图12。

图12.通过开关实现可变增益。

LTspice中的FET、开关和多路复用器宏模型

如果您设计的电路需要更贴近实际的器件来替代理想化的电压控制开关,那么LTspice元件库为您提供了更多模型选择,包括晶体管、ADI开关和多路复用器。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭