当前位置:首页 > 单片机 > 单片机
[导读]深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。

深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。

最早的神经网络的思想起源于 1943 年的 MCP 人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,但直到最近,它才真正让人工智能火起来。主要原因在于:算法的突破、数据量的激增和计算机能力/成本的下降。其中计算能力的提升的作为人工智能实现的物理基础,对人工智能发展的意义不言而喻。

本文我们就来分析目前主流的深度学习芯片的优缺点。

CPU 不适合深度学习

深度学习与传统计算模式最大的区别就是不需要编程,它是从输入的大量数据中自发地总结出规律,而传统计算模式更多都需要人为提取所需解决问题的特征或者总结规律来进行编程。也正因为如此,深度学习对计算能力要求非常高,以至于有人将深度学习称之为“暴力计算”。

因此,传统的 CPU 并不适用于深度学习。

从内部结构上来看,CPU 中 70%晶体管都是用来构建 Cache(高速缓冲存储器)和一部分控制单元,负责逻辑运算的部分(ALU 模块)并不多。控制单元等模块的存在都是为了保证指令能够一条接一条的有序执行。

这种通用性结构对于传统的编程计算模式非常适合,但对于并不需要太多的程序指令,却需要海量数据运算的深度学习的计算需求,这种结构就显得有心无力了。

GPU 深度学习主流芯片

与 CPU 少量的逻辑运算单元相比,GPU 整个就是一个庞大的计算矩阵,GPU 具有数以千计的计算核心、可实现 10-100 倍应用吞吐量,而且它还支持对深度学习至关重要的并行计算能力,可以比传统处理器更加快速,大大加快了训练过程。GPU 是目前最普遍采用的深度学习运算单元之一。

目前,谷歌、Facebook、微软、Twitter 和百度等互联网巨头,都在使用 GPU 作为其深度学习载体,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种各样的软件功能。而某些汽车制造商也在利用这项技术开发无人驾驶汽车。

不过,由于 GPU 的设计初衷是为了应对图像处理中需要大规模并行计算。因此,根据乐晴智库介绍,其在应用于深度学习算法时有数个方面的局限性:

第一, 应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU 在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理, 并行度的优势不能完全发挥。

第二, 硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU 无法灵活的配置硬件结构。

另外,在能耗上面,虽然 GPU 要好于 CPU,但其能耗仍旧很大。

备受看好的 FPGA

FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件,由于其具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。

FPGA 作为人工智能深度学习方面的计算工具,主要原因就在于其本身特性:可编程专用性,高性能,低功耗。

北京大学与加州大学的一个关于 FPGA 加速深度学习算法的合作研究。展示了 FPGA 与 CPU 在执行深度学习算法时的耗时对比。在运行一次迭代时,使用 CPU 耗时 375 毫秒,而使用 FPGA 只耗时 21 毫秒,取得了 18 倍左右的加速比。

根据瑞士苏黎世联邦理工学院 (ETHZurich) 研究发现,基于 FPGA 的应用加速比 CPU/GPU 方案,单位功耗性能可提升 25 倍,而时延则缩短了 50 到 75 倍,与此同时还能实现出色的 I/O 集成。而微软的研究也表明,FPGA 的单位功耗性能是 GPU 的 10 倍以上,由多个 FPGA 组成的集群能达到 GPU 的图像处理能力并保持低功耗的特点。

根据英特尔预计,到 2020 年,将有 1/3 的云数据中心节点采用 FPGA 技术。

不可估量的 ASIC

ASIC(Application Specific Integrated Circuits,专用集成电路),是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。ASIC 用于专门的任务,比如去除噪声的电路,播放视频的电路,但是 ASIC 明显的短板是不可更改任务。但与通用集成电路相比,具有以下几个方面的优越性:体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低。

从算力上来说,ASIC 产品的计算能力是 GK210 的 2.5 倍。功耗上,ASIC 功耗做到了 GK210 的 1/15。

当然 ASIC 是能效最高的,但目前,都在早期阶段,算法变化各异。想搞一款通用的 ASIC 适配多种场景,还是有很多路需要走的。但从比特币挖矿机经历的从 CPU、GPU、FPGA 到最后 ASIC 的四个阶段来推论,ASIC 将是人工智能发展的重要趋势之一。另外,在通信领域,FPGA 曾经也是风靡一时,但是随着 ASIC 的不断发展和蚕食,FPGA 的份额和市场空间已经岌岌可危。

据了解,谷歌最近曝光的专用于人工智能深度学习计算的 TPU,其实也是一款 ASIC。

【文章转载自网络,版权归原作者所有,若有侵权请联系删除】

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭