当前位置:首页 > 单片机 > 单片机
[导读]HS0038Bhttp://www.51hei.com/stm32/3589.html我用的红外遥控是使用的NEC协议,即使用PWM来调制发送的信息 NEC协议,其特征如下:1、8位地址和8位指令长度;2、地址和命令2次传输(确保可靠性)3、PWM脉冲位置调制,

HS0038B

http://www.51hei.com/stm32/3589.html

我用的红外遥控是使用的NEC协议,即使用PWM来调制发送的信息

NEC协议,其特征如下:

1、8位地址和8位指令长度;

2、地址和命令2次传输(确保可靠性)

3、PWM脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;

4、载波频率为38Khz;

5、位时间为1.125ms或2.25ms;

NEC码的位定义:一个脉冲对应560us的连续载波,一个逻辑1传输需要2.25ms(560us脉冲+1680us低电平),一个逻辑0的传输需要1.125ms(560us脉冲+560us低电平)。而遥控接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑1应该是560us低+1680us高,逻辑0应该是560us低+560us高。

NEC遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。同步码由一个9ms的低电平和一个4.5ms的高电平组成,地址码、地址反码、控制码、控制反码均是8位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。


红外接收头与stm32连接如上图所示,既然是PWM调制,很容易想到了stm32的通用定时器的输入捕获和输出比较功能,这里由于stm32是接收红外遥控发送的信息,所以与红外接收头连接的IO口要设置位输入模式,因为在空闲状态的时候输入始终要保持高电平,所以要配置成上拉输入。

RCC->APB2ENR|=1<<3;

GPIOB->CRH&=0xffffff0f;

GPIOB->CRH|=0x00000080;

GPIOB->ODR|=1<<9;

因为PB.9是通用定时器的通道四,所以还要对定时器进行配置,额。。。好长时间没有用定时器了,都忘得差不多了,又得重新拾起来

void time4_init()

{

RCC->APB1ENR|=1<<2;//开启定时器四的时钟

TIM4->SR=0;//其实复位值就是0,多此一举了

TIM4->DIER|=1<<4;//允许定时器四的捕获中断

TIM4->PSC=71;//计数频率设置为1M CNT每增加一 时间为1us

TIM4->ARR=10000;//计数器每隔10ms溢出一次

TIM4->CCMR2|=1<<8;//CC4通道被配置为输入,IC4映射在TI4上;

TIM4->CCER&=~(1<<13);//通道四配置为上升沿捕获

TIM4->CCMR2|=3<<12;//进行滤波处理

TIM4->CCER|=1<<12;//通道四捕获使能

TIM4->CR1|=1<<0;//定时器四计数使能

}

因为红外接收头接收的信号第一个数据必然是同步码,首先低电平保持9ms,然后一个跳变,高电平保持4.5ms,而我们判断接收的数据是逻辑0还是逻辑1,或者是同步码,都是要根据高电平的持续时间来判定的,所以要关心高电平保持时间,故定时器四初始化时要配置为上升沿捕获,好了,定时器也设置好了,接下来该设置定时器四的中断处理函数啦

对啦,要先把NVIC中的TIM4中断打开

void nvic_init()

{

NVIC->ISER[0]|=1<<30;//TIM4的中断编号为30

}

void TIM4_IRQHandler(void)

{

if(TIM4->SR&0X10)//判断中断源是不是通道四捕获引起的

{

led1=~led1;//信号指示灯,能比较直观的判断定时器四是否产生捕获中断

if(CS==1)//发生上升沿捕获 在头文件里定义 #define CS PBin(9)

{

TIM4->CNT=0;//计数器清零

TIM4->CCER|=1<<13;//捕获中断触发方式改为下降沿

TIM4->SR=0;状态标志位清零

dcb=1;//一个数据位 要先发生上升沿中断再发生下降沿中断,才能记录高电平持续时间 所以一个数据位来说 两个中断必须是成对出现的

}

if(CS==0)//发生下降沿捕获

{

if(dcb==1)

{

dcb=0;//进门后要关门,不解释

TIM4->CCER&=~(1<<13);//改为上升沿捕获

temp=TIM4->CCR4;//发生下降沿中断时CNT的计数值

if(3000

{

OK1=1;

}

if(1000

{

data=data<<1;

data|=1<<0;

ray_flag++;

}

if(300

{

data=data<<1;

data&=~(0<<0);

ray_flag++;

}

if(ray_flag>=32)//NEC协议 一次发送的数据位为32位

OK2=1;

TIM4->SR=0;

}

}

}

}

中断服务程序配置好了,接下来就是中程序啦

int main()

{

Stm32_Clock_Init(9);

delay_init(72);

gpio_init();

nvic_init();

time4_init();

usart1_init();

while(1)

{

if(OK1==1&&OK2==1)

{

usart1_senddata(temp);

OK1=0;

OK2=0;

ray_flag=0;

}

}

使用的是串口打印数据,串口配置程序就不写啦

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭