当前位置:首页 > 单片机 > 单片机
[导读]使用ITM机制实现调试stm32单片机,实现printf与scanf。1. ITM简介ITM机制是一种调试机制,是新一代调试方式,在这之前,有一种比较出名的调试方式,称为半主机(semihosting)方式。在pc上编写过C语言的人都知道,pr

使用ITM机制实现调试stm32单片机,实现printf与scanf。

1. ITM简介
ITM机制是一种调试机制,是新一代调试方式,在这之前,有一种比较出名的调试方式,称为半主机(semihosting)方式。

在pc上编写过C语言的人都知道,printf可以向控制台输出,scanf可以从控制台获取输入,这里的printf/scanf都是标准库函数,利用操作系统的这些函数,我们可以很方便的调试程序。在嵌入式设备上(如stm32单片机平台上)开发工具(如MDK/IAR)也都提供了标准库函,自然也提供了printf/scanf函数,那么这些函数是否可以使用呢? 问题来了,printf向哪里输出呢?并且大部分情况下,也没有键盘,又如何使用scanf实现输入呢?

我们都知道,嵌入式设备一般的使用仿真器,如常见Jlink/ulink,可以实现烧录,单步,下断点,查看变量,等等。仿真器将PC机和单片机连接器来。聪明的设计者们就在考虑是否可以借助仿真器,使得单片机可以借助PC机的屏幕以及PC机的键盘实现printf的输出和scanf的按键获取。
也就是说,如下的hello,world程序

#include

intmain()

{

//硬件初始化

//....

printf("hello,world");

for(;;);

}


这个程序烧录到单片机中后,仿真器连接接单片机与PC,开始在线调试后,那么这个程序会将"Hello, world"输出到PC机上,在开发工具(MDK/IAR等)的某个窗口中显示。

这就相当于,单片机借助了PC机的显示/输入设备实现了自己的输出/输入。这种方式无疑可以方便程序开发者调试。

这种机制有多种实现方式,比较著名的就是semihosting(半主机机制)和ITM机制。
ITM是ARM在推出semihosting之后推出的新一代调试机制。现在我们来尝试一下这种方式调试。

2. stm32使用ITM调试
MCU:stm32f207VG
仿真器:Jlink V8
IDE:MDK4.50

2.1 硬件连接
ITM机制要求使用SWD方式接口,并需要连接SWO线,一般的四线SWD方式(VCC SDCLK,SDIO,GND)是不行的。标准的20针JTAG接口是可以的,只需要在MDK里设置使用SWD接口即可。

2.2 添加重定向文件
将下面的文件保存成任意C文件,并添加到工程中。这里对这个文件简单说明一下,要知道我们的程序是在单片机上运行的,为什么printf可以输出到MDK窗口里去呢?这是因为 标准库中的printf实际上调用 fputc实现输出,所以我们需要自己编写一个fputc函数,这个函数会借助ITM(类似于USART)提供的寄存器,实现数据的发送,仿真器会收到这些数据,并发往PC机。

实际上,如果你的单片机和一块LCD连接,那么你只需要重新实现fputc函数,并向LCD上输出即可,那么你调用printf时就会输出到LCD上了。这中机制,就是所谓的重定向机制。

#include

#defineITM_Port8(n)(*((volatileunsignedchar*)(0xE0000000+4*n)))

#defineITM_Port16(n)(*((volatileunsignedshort*)(0xE0000000+4*n)))

#defineITM_Port32(n)(*((volatileunsignedlong*)(0xE0000000+4*n)))

#defineDEMCR(*((volatileunsignedlong*)(0xE000EDFC)))

#defineTRCENA0x01000000

struct__FILE{inthandle;/*Addwhateveryouneedhere*/};

FILE__stdout;

FILE__stdin;

intfputc(intch,FILE*f)

{

if(DEMCR&TRCENA)

{

while(ITM_Port32(0)==0);

ITM_Port8(0)=ch;

}

return(ch);

}


2.2 配置JLINK的初始化配置文件

将下面文件放置在你的工程下,并取任意名称,这里笔者取名为 STM32DBG.ini

/******************************************************************************/

/*STM32DBG.INI:STM32DebuggerInitializationFile*/

/******************************************************************************/

//<<>>//

/******************************************************************************/

/*ThisfileispartoftheuVision/ARMdevelopmenttools.*/

/*Copyright(c)2005-2007KeilSoftware.Allrightsreserved.*/

/*Thissoftwaremayonlybeusedunderthetermsofavalid,current,*/

/*enduserlicencefromKEILforacompatibleversionofKEILsoftware*/

/*developmenttools.Nothingelsegivesyoutherighttousethissoftware.*/

/******************************************************************************/

FUNCvoidDebugSetup(void){

//DebugMCUConfiguration

//DBG_SLEEPDebugSleepMode

//DBG_STOPDebugStopMode

//DBG_STANDBYDebugStandbyMode

//TRACE_IOENTraceI/OEnable

//TRACE_MODETraceMode

//<0=>Asynchronous

//<1=>Synchronous:TRACEDATASize1

//<2=>Synchronous:TRACEDATASize2

//<3=>Synchronous:TRACEDATASize4

//DBG_IWDG_STOPIndependantWatchdogStoppedwhenCoreishalted

//DBG_WWDG_STOPWindowWatchdogStoppedwhenCoreishalted

//DBG_TIM1_STOPTimer1StoppedwhenCoreishalted

//DBG_TIM2_STOPTimer2StoppedwhenCoreishalted

//DBG_TIM3_STOPTimer3StoppedwhenCoreishalted

//DBG_TIM4_STOPTimer4StoppedwhenCoreishalted

//DBG_CAN_STOPCANStoppedwhenCoreishalted

//

_WDWORD(0xE0042004,0x00000027);//DBGMCU_CR

_WDWORD(0xE000ED08,0x20000000);//SetupVectorTableOffsetRegister

}

DebugSetup();//DebuggerSetup


这里对这个文件做简单的解释,
_WDWORD(0xE0042004, 0x00000027); // DBGMCU_CR
这一句表示想 0xE0042004地址处写入 0x000000027,这个寄存器是各个位表示的含义在注释中给出了详细的解释。 0x27即表示
BIT0 DBG_SLEEP
BIT1 DBG_STOP
BIT2 DBG_STANDBY
BIT5 TRACE_IOEN
注意,要使用ITM机制,必须要打开BIT5。

打开MDK工程,按照下图修改。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭