当前位置:首页 > 单片机 > 单片机
[导读]这两天一直在调试用普通IO口来承担串口的角色,再次做个笔记。当然广泛参考广大网友的代码在此感谢网友首先串口的最最最基本的数据格式是由10位数据组成,注意是最最最基本的当然要有些带各种校验的那些暂时不考虑毕

这两天一直在调试用普通IO口来承担串口的角色,再次做个笔记。当然广泛参考广大网友的代码在此感谢网友

首先串口的最最最基本的数据格式是由10位数据组成,注意是最最最基本的当然要有些带各种校验的那些暂时不考虑毕竟要先会走才能飞嘛,首先,第一位开始位,其次是八个数据位,然后一个停止位,数据位的时间长度由你的波特率决定的,我模拟的串口最实现了115200波特率当然偶尔有错位,这个就是接下来校验的工作了。


个人定义的数据格式

首先是发送部分,发送相对来说比较简单,直接就是基本的延时由于,stm32有比较方便的滴答定时器所以做出的延时还是相当精准的。

发送代码如下:

SendingDelay 需要延时的时间长度由波特率决定

void IO_TXD(u8 Data)

{

u8 i=8;

bit(0);

delay_us(SendingDelay);

while(i--) //数据位

{

bit(Data&0x01); //低位在前

delay_us(SendingDelay);

Data = Data>>1;

}

bit(1); //释放总线

}

相对来说接受就比较难搞定了,我通过阅读网友的代码,然后自己用的方法是通过一个外部中断来判断是否有数据发送过来,如果发生了外部中断在外部中断中启动定时器,利用定时器来延时读取数据。

之前在看到网友的一个例子是通过外部中断来接受数据,即,外部中断触发后屏蔽外部中断,然后用滴答定时器延时来接受数据,个人能力有限没调试出来所以自己就多浪费一个定时器

//接受定时器初始化

***********************************************************************************

* 注意:个人在调试期间发现发送时间要小于接受时间

* 9600波特率时 SendingDelay=104 TIME3_init(108,72c)

*115200波特率时 SendingDelay=8 TIME3_init(10,72c)

***********************************************************************************

void TIME3_init(u16 arr,u16 psc)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

NVIC_InitTypeDef NVIC_InitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能

TIM_TimeBaseStructure.TIM_Period = arr -1;

TIM_TimeBaseStructure.TIM_Prescaler = psc-1;

TIM_TimeBaseStructure.TIM_ClockDivision = 0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

TIM_ClearITPendingBit(TIM3, TIM_FLAG_Update);

TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE);

NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

}

//外部中断初始化

void IO_EXIT()

{

EXTI_InitTypeDef EXTI_InitStructure;

NVIC_InitTypeDef NVIC_InitStructure;

//RXD 管脚初始化位输入

IO_RXD_Init();

//RXD 外部中断配置

GPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_PinSource4);//选择GPIO管脚用作外部中断线路

EXTI_InitStructure.EXTI_Line=EXTI_Line4;//中断线选择

EXTI_InitStructure.EXTI_Mode=EXTI_Mode_Interrupt;//线路为中断请求

EXTI_InitStructure.EXTI_Trigger=EXTI_Trigger_Falling; //触发方式 下降沿触发

EXTI_InitStructure.EXTI_LineCmd=ENABLE; //中断线路状态

EXTI_Init (&EXTI_InitStructure) ; //初始化外部中断

//配置外部中断优先级

NVIC_InitStructure.NVIC_IRQChannel=EXTI4_IRQn ; //使能外部中断通道0

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2; //抢占优先级

NVIC_InitStructure.NVIC_IRQChannelSubPriority =2; //子优先级

NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断

NVIC_Init(&NVIC_InitStructure); //初始化终端优先级

}

void EXTI4_IRQHandler(void)

{

if(EXTI_GetFlagStatus(EXTI_Line4) != RESET)

{

EXTI->IMR &= ~1<<4; //屏蔽外部中断

TIM_SetCounter(TIM3, 0);

TIM_Cmd(TIM3,ENABLE); //开启TIM1

EXTI_ClearITPendingBit(EXTI_Line4);

}

}

extern uint8_t DATA,DATA1; //DATA定时器暂时存储数据 DATA1主函数中用于输出的

extern __IO uint8_t receivedFlag; //接受完成标志位

void TIM3_IRQHandler(void)

{

uint8_t tmp;

static uint8_t i;

if(TIM_GetFlagStatus(TIM3, TIM_FLAG_Update) != RESET)

{

tmp = GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_4);

if(tmp == 1)

DATA |= (1 << i);

i++;

if(i >= 8)

{

i = 0;

DATA1=DATA;

receivedFlag = 1;

EXTI->IMR |= 1<<4; //屏蔽外部中断

TIM_Cmd(TIM3,DISABLE); //关闭TIM1

}

TIM_ClearITPendingBit(TIM3, TIM_FLAG_Update);

}

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭