当前位置:首页 > 单片机 > 单片机
[导读]STM32一共有8个都为16位的定时器。其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控

STM32一共有8个都为16位的定时器。其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身订做的。
基本定时器:具备最基本的定时功能,下面是它的结构:

启动代码:
void TIM2_Configuration(void)
{基本定时器TIM2的定时配置的结构体(包含定时器配置的所有元素例如:TIM_Period = 计数值)
TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;
设置TIM2_CLK为72MHZ (即TIM2外设挂在APB1上,把它的时钟打开。)
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 , ENABLE);
设置计数值位1000
TIM_TimeBaseStructure.TIM_Period=1000;
将TIM2_CLK为72MHZ 除以72 = 1MHZ为定时器的计数频率
TIM_TimeBaseStructure.TIM_Prescaler= 71;
这个TIM_ClockDivision是设置时钟分割,这里不分割还是1MHZ的计数频率
TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;
设置为向上计数模式;(计数模式有向上,向下,中央对齐1,中央对齐2,中央对齐3)
TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;
将配置好的设置放进stm32f10x-tim.c的库文件中
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
清除标志位
TIM_ClearFlag(TIM2, TIM_FLAG_Update);
使能TIM2中断
TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);
使能TIM2外设
TIM_Cmd(TIM2, ENABLE);
}
通用定时器:就比基本定时器复杂得多了。除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。

如何生成PWM脉冲
通用定时器可以利用GPIO引脚进行脉冲输出,在配置为比较输出、PWM输出功能时,捕获/比较寄存器TIMx_CCR被用作比较功能,下面把它简称为比较寄存器。
这里直接举例说明定时器的PWM输出工作过程:若配置脉冲计数器TIMx_CNT为向上计数,而重载寄存器TIMx_ARR被配置为N,即TIMx_CNT的当前计数值数值X在TIMxCLK时钟源的驱动下不断累加,当TIMx_CNT的数值X大于N时,会重置TIMx_CNT数值为0重新计数。
而在TIMxCNT计数的同时,TIMxCNT的计数值X会与比较寄存器TIMx_CCR预先存储了的数值A进行比较,当脉冲计数器TIMx_CNT的数值X小于比较寄存器TIMx_CCR的值A时,输出高电平(或低电平),相反地,当脉冲计数器的数值X大于或等于比较寄存器的值A时,输出低电平(或高电平)。
如此循环,得到的输出脉冲周期就为重载寄存器TIMx_ARR存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器TIMx_CCR的值A乘以触发脉冲的时钟周期,即输出PWM的占空比为 A/(N+1)。
如果不想看的可以直接看我标注的红色字体,就大体可以理解。
具体代码:
void TIM3_GPIO_Config(void)
{配置TIM3复用输出PWM的IO
GPIO_InitTypeDef GPIO_InitStructure;
打开TIM3的时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
打开GPIOA和GPIOB的时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB, ENABLE);
配置PA6.PA7的工作模式
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
配置PB0.PB1的工作模式
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
void TIM3_Mode_Config(void)
{
TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure;//初始化TIM3的时间基数单位
TIM_OCInitTypeDefTIM_OCInitStructure;//初始化TIM3的外设

u16 CCR1_Val = 500;
u16 CCR2_Val = 375;
u16 CCR3_Val = 250;
u16 CCR4_Val = 125;//PWM信号电平跳变值(即计数到这个数值以后都是低电平之前都是高电平)


TIM3的时间基数单位设置(如计数终止值:999,从0开始 ;计数方式:向上计数)
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1 ;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM3的外设的设置
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//TIM脉冲宽度调制模式1
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//这个暂时不知道,stm32固件库里没有搜到。应该是定时器输出声明使能的意思
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//设置了待装入捕获比较寄存器的脉冲值
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//TIM输出比较极性高
TIM_OC1Init(TIM3, &TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);//使能或者失能TIMx在CCR1上的预装载寄存器
下面3路PWM输出和上面的一样不再解说
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);


TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR3_Val;
TIM_OC3Init(TIM3, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);


TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = CCR4_Val;
TIM_OC4Init(TIM3, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);


TIM_ARRPreloadConfig(TIM3, ENABLE);//使能TIM3重载寄存器ARR


TIM_Cmd(TIM3, ENABLE);//使能TIM3
}
程序达到的4路PWM的效果:


可以看到明显占空比不同的4路pwm波。
这一节终于讲完,个人觉得敲一遍代码学起来还是蛮容易懂的。希望看到的人也能搞懂。
最后补充一点pwm具体能干什么?特别是对广大电子DIY爱好者的应用:
智能小车的电机控制:我们可以利用pwm来控制我们的智能小车的车速;
机器人:给“机器人关节”舵机周期一定(我以前玩过具体多少毫秒忘记了)pwm波就可以控制舵机的转动角度了;
呼吸灯:输入不同的pwm波就可以达到明暗渐明渐暗的效果。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭