当前位置:首页 > 单片机 > 单片机
[导读]输入捕获作为定时器的一个功能,在工业测速上有很大的应用。STM32的一些定时器具有四个外部通道,可利用一个定时器采集外部四路脉冲频率,节约硬件资源和软件代码如需要测量一个或多个外部方波脉冲频率,频率低于单片

输入捕获作为定时器的一个功能,在工业测速上有很大的应用。STM32的一些定时器具有四个外部通道,可利用一个定时器采集外部四路脉冲频率,节约硬件资源和软件代码

如需要测量一个或多个外部方波脉冲频率,频率低于单片机运行频率,可如下操作:(以TIM4为例)

初始化:(省略GPIO配置,将TIM4的四个通道引脚配置为上拉或浮空输入,省略定时器RCC配置,省略中断NVIC配置)

void TIM_Configuration(void)

{

TIM_ICInitTypeDef TIM_ICInitStructure;

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; // TIM4 时基

TIM_DeInit(TIM4);

TIM_TimeBaseStructure.TIM_Period =0xffff;//自动重装值

TIM_TimeBaseStructure.TIM_Prescaler =719;//预分频值, 使TIMx_CLK=1MHz

TIM_TimeBaseStructure.TIM_ClockDivision =TIM_CKD_DIV1;//输入时钟不分频

TIM_TimeBaseStructure.TIM_CounterMode =TIM_CounterMode_Up;//向上计数

TIM_TimeBaseInit(TIM4,&TIM_TimeBaseStructure);//TIM4_TimeBase

// TIM_ICInitStructure.TIM_ICMode =TIM_ICMode_ICAP; //输入捕捉方式

TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;//|TIM_Channel_2; //输入通道

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //捕捉上升沿

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //捕捉中断

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //捕捉不分频

TIM_ICInitStructure.TIM_ICFilter =0x0; //捕捉输入不滤波

TIM_ICInit(TIM4, &TIM_ICInitStructure);

TIM_ICInitStructure.TIM_Channel = TIM_Channel_2 ;//|TIM_Channel_2; //输入通道

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //捕捉上升沿

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //捕捉中断

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //捕捉不分频

TIM_ICInitStructure.TIM_ICFilter =0x0; //捕捉输入不滤波

TIM_ICInit(TIM4, &TIM_ICInitStructure);

TIM_ICInitStructure.TIM_Channel = TIM_Channel_3 ;//|TIM_Channel_2; //输入通道

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //捕捉上升沿

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //捕捉中断

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //捕捉不分频

TIM_ICInitStructure.TIM_ICFilter =0x0; //捕捉输入不滤波

TIM_ICInit(TIM4, &TIM_ICInitStructure);

TIM_ICInitStructure.TIM_Channel = TIM_Channel_4 ;//|TIM_Channel_2; //输入通道

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //捕捉上升沿

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //捕捉中断

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //捕捉不分频

TIM_ICInitStructure.TIM_ICFilter =0x0; //捕捉输入不滤波

TIM_ICInit(TIM4, &TIM_ICInitStructure);

TIM_Cmd(TIM4, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC1, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC2, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC3, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC4, ENABLE);

}

其中:

TIM_TimeBaseStructure.TIM_Period = 0xffff;为自动重装值,与普通单片机一样

TIM_TimeBaseStructure.TIM_Prescaler = 719; 预分频值, 使TIMx_CLK=100KHz ,系统时钟运行于72M时720分频,定时器运行于100KHZ,即10us每分度

TIM_ICInitStructure.TIM_ICMode = TIM_ICMode_ICAP; 此句选择定时器为输入捕获模式,但在我的库函数下未定义,所以注释掉,未影响程序执行

TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;配置通道1

TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;上升沿捕获

TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;捕获中断

TIM_ICInitStructure.TIM_ICFilter = 0x0;不滤波

TIM_ICInit(TIM4, &TIM_ICInitStructure);将配置应用

以上每个通道都需要将整个配置再写一遍,使用与'|'是无效的。

TIM_Cmd(TIM4, ENABLE);使能定时器4

TIM_ITConfig(TIM4, TIM_IT_CC1, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC2, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC3, ENABLE);

TIM_ITConfig(TIM4, TIM_IT_CC4, ENABLE);打开四个通道的捕获中断

以上将TIM配置完成,下面是中断内代码:

void

TIM4_IRQHandler(void)

{

//频率缓冲区计数

static u16 this_time_CH1 = 0;

static u16 last_time_CH1 = 0;

static u8 capture_number_CH1 = 0;

vu16 tmp16_CH1;

static u16 this_time_CH2 = 0;

static u16 last_time_CH2 = 0;

static u8 capture_number_CH2 = 0;

vu16 tmp16_CH2;

static u16 this_time_CH3 = 0;

static u16 last_time_CH3 = 0;

static u8 capture_number_CH3 = 0;

vu16 tmp16_CH3;

static u16 this_time_CH4 = 0;

static u16 last_time_CH4 = 0;

static u8 capture_number_CH4 = 0;

vu16 tmp16_CH4;

if(TIM_GetITStatus(TIM4, TIM_IT_CC1) == SET)

{

TIM_ClearITPendingBit(TIM4, TIM_IT_CC1);

if(capture_number_CH1 == 0)

{

capture_number_CH1 = 1;

last_time_CH1 = TIM_GetCapture1(TIM4);

}

else if(capture_number_CH1 == 1)

{

capture_number_CH1 = 0;

this_time_CH1 = TIM_GetCapture1(TIM4);

if(this_time_CH1 > last_time_CH1)

{

tmp16_CH1 = (this_time_CH1 - last_time_CH1);

}

else

{

tmp16_CH1 = ((0xFFFF - last_time_CH1) + this_time_CH1);

}

//TIM2 counter clock = 1MHz

//

FreqBuf[cnt] = (1000000L * 100) / tmp16; //*100为扩大显示量程

Freq_Value[0]=tmp16_CH1;

}

}

if(TIM_GetITStatus(TIM4, TIM_IT_CC2) == SET)

{

TIM_ClearITPendingBit(TIM4, TIM_IT_CC2);

if(capture_number_CH2 == 0)

{

capture_number_CH2 = 1;

last_time_CH2 = TIM_GetCapture2(TIM4);

}

else if(capture_number_CH2 == 1)

{

capture_number_CH2 = 0;

this_time_CH2 = TIM_GetCapture2(TIM4);

if(this_time_CH2 > last_time_CH2)

{

tmp16_CH2 = (this_time_CH2 - last_time_CH2);

}

else

{

tmp16_CH2 = ((0xFFFF - last_time_CH2) + this_time_CH2);

}

//TIM2 counter clock = 1MHz

//

FreqBuf[cnt] = (1000000L * 100) / tmp16; //*100为扩大显示量程

Freq_Value[1]=tmp16_CH2;

}

}

if(TIM_GetITStatus(TIM4, TIM_IT_CC3) == SET)

{

TIM_ClearITPendingBit(TIM4, TIM_IT_CC3);

if(capture_number_CH3 == 0)

{

capture_number_CH3 = 1;

last_time_CH3 = TIM_GetCapture3(TIM4);

}

else if(capture_number_CH3 == 1)

{

capture_number_CH3 = 0;

this_time_CH3 = TIM_GetCapture3(TIM4);

if(this_time_CH3 > last_time_CH3)

{

tmp16_CH3 = (this_time_CH3 - last_time_CH3);

}

else

{

tmp16_CH3 = ((0xFFFF - last_time_CH3) + this_time_CH3);

}

//TIM2 counter clock = 1MHz //

FreqBuf[cnt] = (1000000L * 100) / tmp16; //*100为扩大显示量程

Freq_Value[2]=tmp16_CH3;

}

}

if(TIM_GetITStatus(TIM4, TIM_IT_CC4) == SET)

{

TIM_ClearITPendingBit(TIM4, TIM_IT_CC4);

if(capture_number_CH4 == 0)

{

capture_number_CH4 = 1;

last_time_CH4 = TIM_GetCapture4(TIM4);

}

else if(capture_number_CH4 == 1)

{

capture_number_CH4 = 0;

this_time_CH4 = TIM_GetCapture4(TIM4);

if(this_time_CH4 > last_time_CH4)

{

tmp16_CH4 = (this_time_CH4 - last_time_CH4);

}

else

{

tmp16_CH4 = ((0xFFFF - last_time_CH4) + this_time_CH4);

}

//TIM2 counter clock = 1MHz //

FreqBuf[cnt] = (1000000L * 100) / tmp16; //*100为扩大显示量程

Freq_Value[3]=tmp16_CH4;

}

}//

GPIO_WriteBit(GPIOC, GPIO_Pin_13,(BitAction)((1-GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_13))));

}

中断内四部分代码完全一样,只分析其中一段输入捕获的原理是,

定时器正常计数运行,当外部脉冲到来时,将定时器计数值存起来,当下次脉冲到来时,求出这两次计数值差值,即为这两段脉冲的周期。

例如,

定时器计数到10,外部脉冲到来,使用last_time_CH1存储10,

下次脉冲到来,此时定时器计数值运行到110,使用this_time_CH1存储110,

之后做差,tmp16_CH1存储差值100,由于定时器运行于100KHZ,10us计数值增加一次,所以脉冲周期为100*10=1000us=1ms,即为1KHZ。

当然,定时器会溢出重装,此时需要将差值补偿运算,tmp16_CH1 = ((0xFFFF - last_time_CH1) + this_time_CH1);

可测量的范围取决于定时器运行的频率,如果外部频率慢到当定时器整个计数一周后也没有触发两次,会发生溢出,此时计数值已不准确。

所以定时器时钟配置取决于外部脉冲频率,应配置得当使得脉冲频率范围不致溢出。

由于每次外部脉冲都会触发中断,尤其是四通道时,所以使用中断方式会略微占用CPU资源,使用DMA可以解决这一问题。

得到脉冲周期后,即可通过运算获得外部频率,进而测速。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32

通用MCU的成功与否,产品本身PPA固然重要,但除此外很大程度上取决于开发生态。生态的繁荣可以让其中的每一位参与者受益,当然也会反哺到MCU产品本身,影响到新的产品定义和走向。

关键字: ST STM32 MCU
关闭
关闭