当前位置:首页 > 单片机 > 单片机
[导读]此项功能是用来控制一个输出波形,或者指示一段给定的的时间已经到时。当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:● 将输出比较模式(TIMx_CCMRx寄存器中的OCxM位)和输出极性(TIMx_CCER寄存器

此项功能是用来控制一个输出波形,或者指示一段给定的的时间已经到时。

当计数器与捕获/比较寄存器的内容相同时,输出比较功能做如下操作:

● 将输出比较模式(TIMx_CCMRx寄存器中的OCxM位)和输出极性(TIMx_CCER寄存器中的

CCxP位)定义的值输出到对应的引脚上。在比较匹配时,输出引脚可以保持它的电平

(OCxM=000)、被设置成有效电平(OCxM=001)、被设置成无效电平(OCxM=010)或进行翻

转(OCxM=011)。

● 设置中断状态寄存器中的标志位(TIMx_SR寄存器中的CCxIF位)。

● 若设置了相应的中断屏蔽(TIMx_DIER寄存器中的CCxIE位),则产生一个中断。

● 若设置了相应的使能位(TIMx_DIER寄存器中的CCxDE位,TIMx_CR2寄存器中的CCDS位

选择DMA请求功能),则产生一个DMA请求。

TIMx_CCMRx中的OCxPE位选择TIMx_CCRx寄存器是否需要使用预装载寄存器。

● 设置中断状态寄存器中的标志位(TIMx_SR寄存器中的CCxIF位)。

● 若设置了相应的中断屏蔽(TIMx_DIER寄存器中的CCXIE位),则产生一个中断。

● 若设置了相应的使能位(TIMx_DIER寄存器中的CCxDE位,TIMx_CR2寄存器中的CCDS位选择DMA请求功能),则产生一个DMA请求。

TIMx_CCMRx中的OCxPE位选择TIMx_CCRx寄存器是否需要使用预装载寄存器。

在输出比较模式下,更新事件UEV对OCxREF和OCx输出没有影响。

同步的精度可以达到计数器的一个计数周期。输出比较模式(在单脉冲模式下)也能用来输出一个单脉冲。

输出比较模式的配置步骤:

1.选择计数器时钟(内部,外部,预分频器)

2.将相应的数据写入TIMx_ARR和TIMx_CCRx寄存器中

3.如果要产生一个中断请求和/或一个DMA请求,设置CCxIE位和/或CCxDE位。

4.选择输出模式,例如:必须设置OCxM=’011’、OCxPE=’0’、CCxP=’0’和CCxE=’1’,当计数器CNT与CCRx匹配时翻转OCx的输出管脚,CCRx预装载未用,开启OCx输出且高电平有效。

5.设置TIMx_CR1寄存器的CEN位启动计数器

TIMx_CCRx寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器OCxPE=’0’,否则TIMx_CCRx影子寄存器只能在发生下一次更新事件时被更新)

程序如下:

TIM_TimeBaseStructure.TIM_Period = 65535;

TIM_TimeBaseStructure.TIM_Prescaler = 0;

TIM_TimeBaseStructure.TIM_ClockDivision = 0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

TIM_PrescalerConfig(TIM2, 35999, TIM_PSCReloadMode_Immediate);

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;//这个地方就是改比较模式的

但是由于比较模式无论选哪个对于产生中断的作用是一样的,所以选TIMING都可以

TIM_OCInitStructure.TIM_Channel = TIM_Channel_1;

TIM_OCInitStructure.TIM_Pulse = CCR1_Val;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);//

TIMx_CCRx寄存器能够在任何时候通过软件进行更新以控制输出波形,条件是未使用预装载寄存器OCxPE=’0’,否则TIMx_CCRx影子寄存器只能在发生下一次更新事件时被更新)。这里设置为Disable就是为了后面在中断服务子程序可以修改TIMx_CCR实时起作用~

TIM_OCInitStructure.TIM_Channel = TIM_Channel_2;

TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

TIM_OCInitStructure.TIM_Channel = TIM_Channel_3;

TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

TIM_OCInitStructure.TIM_Channel = TIM_Channel_4;

TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

TIM_OCInit(TIM2, &TIM_OCInitStructure);

TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

TIM_ARRPreloadConfig(TIM2, ENABLE);//TIM_OCPreload_Enable

TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

// STM3210B-LK1, set PC.04 - PC.07

GPIO_SetBits(GPIOC, GPIO_Pin_4 |GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7);

TIM_Cmd(TIM2, ENABLE);

while (1)

{

}

}

中断服务子程序:

void TIM2_IRQHandler(void)

{ u16 capture;

u16 CCR1_Val = 1000;

u16 CCR2_Val = 500;

u16 CCR3_Val = 250;

u16 CCR4_Val = 125;

if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC1);

capture = TIM_GetCapture1(TIM2);

TIM_SetCompare1(TIM2, capture + CCR1_Val);

////设置TIMx捕获比较1寄存器值然后动态修改其CCR的值使整个程序一直进行下去

// PC.04

GPIO_WriteBit(GPIOC, GPIO_Pin_4, (BitAction)(1 - GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_4)));

}

else if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);

capture = TIM_GetCapture2(TIM2);

TIM_SetCompare2(TIM2, capture + CCR2_Val);

// PC.05

GPIO_WriteBit(GPIOC, GPIO_Pin_5, (BitAction)(1 - GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_5)));

}

else if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);

capture = TIM_GetCapture3(TIM2);

TIM_SetCompare3(TIM2, capture + CCR3_Val);

// PC.06

//GPIO_ResetBits(GPIOC, GPIO_Pin_6);

GPIO_WriteBit(GPIOC, GPIO_Pin_6, (BitAction)(1 - GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_6))); }

else

{

TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);

capture = TIM_GetCapture4(TIM2);

TIM_SetCompare4(TIM2, capture + CCR4_Val);

// PC.07

// GPIO_ResetBits(GPIOC, GPIO_Pin_7);

GPIO_WriteBit(GPIOC, GPIO_Pin_7, (BitAction)(1 - GPIO_ReadOutputDataBit(GPIOC, GPIO_Pin_7)));

}

}

在STM32的某些应用中,用户有周期性执行某些程序的要求,使用定时器可以产生固定的时间周期,满足这样的需求。

STM32相关特征:

STM32高级定时器TIM1、TIM8,通用定时器TIM2、TIM3、TIM4、TIM5;定时器最大时钟72MHz,配合预分频,提供灵活的时钟周期;每个TIM有4个独立捕获/比较通道,DMA/中断功能;通道工作在输出比较定时模式,一个TIM至多可以提供4个不同的定时周期。

原理:TIM某输出/捕获通道工作在输出比较定时模式,计数器计数至比较值时产生中断,在中断中刷新捕获比较寄存器,这样在相同时间间隔后可产生下一次中断

TIM2时钟设置为36MHz,预分频设置为2,使用输出比较-翻转模式(Output Compare Toggle Mode)。

TIM2计数器时钟可表达为:TIM2 counter clock = TIMxCLK / (Prescaler +1) = 12 MHz

设置TIM2_CCR1寄存器值为32768,则CC1更新频率为TIM2计数器时钟频率除以CCR1寄存器值,为366.2 Hz。因此,TIM2通道1可产生一个频率为183.1 Hz的周期信号。

同理,根据寄存器TIM2_CCR2 、TIM2_CCR3和 TIM2_CCR4的值,TIM2通道2可产生一个频率为366.3 Hz的周期信号;TIM2通道3可产生一个频率为732.4 Hz的周期信号;TIM2通道4可产生一个频率为1464.8 Hz的周期信号。

#include "stm32f10x_lib.h"

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

TIM_OCInitTypeDef TIM_OCInitStructure;

vu16 CCR1_Val = 32768;

vu16 CCR2_Val = 16384;

vu16 CCR3_Val = 8192;

vu16 CCR4_Val = 4096;

ErrorStatus HSEStartUpStatus;

void RCC_Configuration(void);

void GPIO_Configuration(void);

void NVIC_Configuration(void);

int main(void)

{

#ifdef DEBUG

debug();

#endif

RCC_Configuration();

NVIC_Configuration();

GPIO_Configuration();

TIM_TimeBaseStructure.TIM_Period = 65535; //这里必须是65535,设置计数溢出大小,每计1个数就产生一个更新事件
TIM_TimeBaseStructure.TIM_Prescaler = 2;

TIM_TimeBaseStructure.TIM_ClockDivision = 0;

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //管脚输出模式:翻转(TIM输出比较触发模式)

TIM_OCInitStructure.TIM_Channel = TIM_Channel_1;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32

通用MCU的成功与否,产品本身PPA固然重要,但除此外很大程度上取决于开发生态。生态的繁荣可以让其中的每一位参与者受益,当然也会反哺到MCU产品本身,影响到新的产品定义和走向。

关键字: ST STM32 MCU

摘要:在水位传感器的出厂检测过程中需要进行气密性检测,为此,设计了一个基于STM32的水位传感器气密性检测仪。该检测仪采用直压式气体检漏的方法,以STM32F030R8为控制核心,控制气泵进行充气,压力传感器检测气压并通...

关键字: 气密性 水位传感器 STM32

在2023年STM32峰会上,看通用MCU的未来发展方向。

关键字: STM32 ST AI 无线
关闭
关闭