当前位置:首页 > 单片机 > 单片机
[导读]操作stm32 有使用官方库函数(参见stm32 开发环境MDK+库文件配置)和 直接操作寄存器的方法直接操作寄存器的方法 会比库函数的方法效率更高 而且代码量会比较少 例如 在库函数下 配置一个GPIO口 需要 GPIO_InitType

操作stm32 有使用官方库函数(参见stm32 开发环境MDK+库文件配置)和 直接操作寄存器的方法

直接操作寄存器的方法 会比库函数的方法效率更高 而且代码量会比较少 例如 在库函数下 配置一个GPIO口 需要

GPIO_InitTypeDef GPIO_InitStructure; //结构体 初始化

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_Init(GPIOA , &GPIO_InitStructure);

五行代码 而直接操作寄存器只需要:

RCC->APB2ENR|=1<<2; //使能PORTA时钟

GPIOA->CRL&=0XFFF0FFFF;

GPIOA->CRL|=0X00030000;//PA4 推挽输出

三行代码 而且实际上这三行代码可以配置8个GPIO口 可以看出直接操作寄存器也是比较方便的

使用直接操作寄存器的方法操作stm32 环境配置和库函数类似 相关MDK设置可以参考stm32 开发环境MDK+库文件配置 直接操作寄存器需要的文件结构 会少得多

STM32 直接操作寄存器 keil工程结构

Startup 包含的是stm32的 启动文件,与芯片Flash容量有关

Library 下有两个文件夹,src文件夹用于放置标准外设库驱动源文件(*.c)和 inc文件夹用于放置标准外设库驱动头文件(*.h)

User中包含的是项目的代码 和中断代码

Project 用于包含编译是时生成的一系列文件,Output 用来放置输出文件 .hex .axf,Listing用来放置Listing信息

需要说明的是 Startup里的启动文件需要根据不同的芯片选择不同的启动文件,这些启动文件在MDK的安装文件夹下可以找到 在MDK新建工程是选择了stm32的芯片型号后 MDK也会询问是否将启动文件添加到工程里

在MDk安装路径ARMStartupSTSTM32F10x的所有启动文件:

小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx、STM32F102xx和STM32F103xx微控制器。 选择 startup_stm32f10x_ld.s。

中容量产品是指闪存存储器容量在64K至128K字节之间的STM32F101xx、STM32F102xx和STM32F103xx微控制器。选择 startup_stm32f10x_md.s。

大容量产品是指闪存存储器容量在256K至512K字节之间的STM32F101xx和STM32F103xx微控制器。选择 startup_stm32f10x_hd.s。


容量大小可以通过芯片型号得知:

还需要说明的一点是在MDk安装路径ARMStartupST下有一个 STM32F10x.s的启动文件

STM32F10x.s 可以作为大部分stm32型号的芯片的启动文件,但是并不能适用所有的STM32型号。

STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,里面定义了STM32的堆栈大小以及各种

中断的名字及入口函数名称,还有启动相关的汇编代码。它只定义了3个串口,4个定时器。

实际上STM32的系列产品有5个串口的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时

器。

比如,如果你用的STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口

1~3的中断,而串口4和5的中断,则无法正常使用。又比如,你TIM1~4的中断可以正常使用,而5~8

的,则无法使用。

和库函数操作类似 直接操作寄存器方法也需要先配置RCC时钟 配置中断等操作 这里提供一个配置函数,后面的例子中都会调用这个文件)

Library/src/system.c

#include#include"system.h"/************************************************************系统函数**功能:实现中断的初始化、RCC时钟初始化、Systick初始化以及延时函数等***********************************************************///设置向量表偏移地址//NVIC_VectTab:基址//Offset:偏移量voidNvic_SetVectorTable(u32NVIC_VectTab,u32Offset){//检查参数合法性assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));assert_param(IS_NVIC_OFFSET(Offset));SCB->VTOR=NVIC_VectTab|(Offset&(u32)0x1FFFFF80);//设置NVIC的向量表偏移寄存器//用于标识向量表是在CODE区还是在RAM区}//设置NVIC分组//NVIC_Group:NVIC分组0~4总共5组voidNvic_PriorityGroupConfig(u8NVIC_Group){u32temp,temp1;//配置向量表#ifdefVECT_TAB_RAMNvic_SetVectorTable(NVIC_VectTab_RAM,0x0);#elseNvic_SetVectorTable(NVIC_VectTab_FLASH,0x0);#endiftemp1=(~NVIC_Group)&0x07;//取后三位temp1<<=8;temp=SCB->AIRCR;//读取先前的设置temp&=0X0000F8FF;//清空先前分组temp|=0X05FA0000;//写入钥匙temp|=temp1;SCB->AIRCR=temp;//设置分组}//设置NVIC//NVIC_PreemptionPriority:抢占优先级//NVIC_SubPriority:响应优先级//NVIC_Channel:中断编号//NVIC_Group:中断分组0~4//注意优先级不能超过设定的组的范围!否则会有意想不到的错误//组划分://组0:0位抢占优先级,4位响应优先级//组1:1位抢占优先级,3位响应优先级//组2:2位抢占优先级,2位响应优先级//组3:3位抢占优先级,1位响应优先级//组4:4位抢占优先级,0位响应优先级//NVIC_SubPriority和NVIC_PreemptionPriority的原则是,数值越小,越优先voidNvic_Init(u8NVIC_PreemptionPriority,u8NVIC_SubPriority,u8NVIC_Channel,u8NVIC_Group){u32temp;u8IPRADDR=NVIC_Channel/4;//每组只能存4个,得到组地址u8IPROFFSET=NVIC_Channel%4;//在组内的偏移IPROFFSET=IPROFFSET*8+4;//得到偏移的确切位置Nvic_PriorityGroupConfig(NVIC_Group);//设置分组temp=NVIC_PreemptionPriority<<(4-NVIC_Group);temp|=NVIC_SubPriority&(0x0f>>NVIC_Group);temp&=0xf;//取低四位if(NVIC_Channel<32)NVIC->ISER[0]|=1<ISER[1]|=1<<(NVIC_Channel-32);NVIC->IPR[IPRADDR]|=temp<APB1RSTR=0x00000000;//复位结束RCC->APB2RSTR=0x00000000;RCC->AHBENR=0x00000014;//睡眠模式闪存和SRAM时钟使能.其他关闭.RCC->APB2ENR=0x00000000;//外设时钟关闭.RCC->APB1ENR=0x00000000;RCC->CR|=0x00000001;//使能内部高速时钟HSIONRCC->CFGR&=0xF8FF0000;//复位SW[1:0],HPRE[3:0],PPRE1[2:0],PPRE2[2:0],ADCPRE[1:0],MCO[2:0]RCC->CR&=0xFEF6FFFF;//复位HSEON,CSSON,PLLONRCC->CR&=0xFFFBFFFF;//复位HSEBYPRCC->CFGR&=0xFF80FFFF;//复位PLLSRC,PLLXTPRE,PLLMUL[3:0]andUSBPRERCC->CIR=0x00000000;//关闭所有中断}//THUMB指令不支持汇编内联//采用如下方法实现执行汇编指令WFI__asmvoidWFI_SET(void){WFI;}//进入待机模式voidSys_Standby(void){SCB->SCR|=1<<2;//使能SLEEPDEEP位(SYS->CTRL)RCC->APB1ENR|=1<<28;//使能电源时钟PWR->CSR|=1<<8;//设置WKUP用于唤醒PWR->CR|=1<<2;//清除Wake-up标志PWR->CR|=1<<1;//PDDS置位WFI_SET();//执行WFI指令}//系统软复位voidSys_Soft_Reset(void){SCB->AIRCR=0X05FA0000|(u32)0x04;}//JTAG模式设置,用于设置JTAG的模式//mode:jtag,swd模式设置;00,全使能;01,使能SWD;10,全关闭;voidJTAG_Set(u8mode){u32temp;temp=mode;temp<<=25;RCC->APB2ENR|=1<<0;//开启辅助时钟AFIO->MAPR&=0XF8FFFFFF;//清除MAPR的[26:24]AFIO->MAPR|=temp;//设置jtag模式}//系统时钟初始化函数//pll:选择的倍频数,从2开始,最大值为16voidRcc_Init(u8PLL){unsignedchartemp=0;Rcc_DeInit();//复位并配置向量表RCC->CR|=0x00010000;//外部高速时钟使能HSEONwhile(!(RCC->CR>>17));//等待外部时钟就绪RCC->CFGR=0X00000400;//APB1=DIV2;APB2=DIV1;AHB=DIV1;PLL-=2;//抵消2个单位RCC->CFGR|=PLL<<18;//设置PLL值2~16RCC->CFGR|=1<<16;//PLLSRCONFLASH->ACR|=0x32;//FLASH2个延时周期RCC->CR|=0x01000000;//PLLONwhile(!(RCC->CR>>25));//等待PLL锁定RCC->CFGR|=0x00000002;//PLL作为系统时钟while(temp!=0x02)//等待PLL作为系统时钟设置成功{temp=RCC->CFGR>>2;temp&=0x03;}}//初始化化SysTick定时器//无中断处理接口函数SysTick_Handler(),待开发..voidSysTick_Init(u32us){u8us_radix=72/8;//us延时倍乘数SYSTICk的时钟固定为HCLK时钟的1/8,这里使用系统时钟72MHzSysTick->CTRL&=0xfffffffb;//bit2清空,选择外部时钟HCLK/8SysTick->LOAD=us*us_radix;//时间加载SysTick->VAL=0x00;//清空计数器SysTick->CTRL=0x01;//开始倒数//SysTick->CTRL=0x00;//关闭计数器//SysTick->VAL=0X00;//清空计数器}//延时函数voiddelay(u32us)//vu321us一次{u32time=100*us/7;while(--time);}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在嵌入式开发中,STM32的时钟系统因其灵活性和复杂性成为开发者关注的焦点。然而,看似简单的时钟配置背后,隐藏着诸多易被忽视的陷阱,轻则导致系统不稳定,重则引发硬件损坏。本文从时钟源选择、PLL配置、总线时钟分配等关键环...

关键字: STM32 时钟系统

在嵌入式系统开发中,STM32系列微控制器的内部温度传感器因其低成本、高集成度特性,广泛应用于设备自检、环境监测等场景。然而,受芯片工艺差异和电源噪声影响,其原始数据存在±1.5℃的固有误差。本文从硬件配置、校准算法、软...

关键字: STM32 温度传感器

在能源效率与智能化需求双重驱动下,AC-DC转换器的数字控制技术正经历从传统模拟方案向全数字架构的深刻变革。基于STM32微控制器的PFM(脉冲频率调制)+PWM(脉冲宽度调制)混合调制策略,结合动态电压调整(Dynam...

关键字: AC-DC STM32

当前智能家居产品需求不断增长 ,在这一背景下 ,对现有浇花装置缺陷进行了改进 ,设计出基于STM32单片机的全 自动家用浇花机器人。该设计主要由机械结构和控制系统构成 ,机械结构通过麦克纳姆轮底盘与喷洒装置的结合实现机器...

关键字: STM32 麦克纳姆轮 安全可靠 通过性强

用c++编程似乎是让你的Arduino项目起步的障碍吗?您想要一种更直观的微控制器编程方式吗?那你需要了解一下Visuino!这个图形化编程平台将复杂电子项目的创建变成了拖动和连接块的简单任务。在本文中,我们将带您完成使...

关键字: Visuino Arduino ESP32 STM32

基于STM32与LoRa技术的无线传感网络凭借其低功耗、广覆盖、抗干扰等特性,成为环境监测、工业自动化等场景的核心解决方案。然而,如何在复杂电磁环境中实现高效休眠调度与动态信道优化,成为提升网络能效与可靠性的关键挑战。本...

关键字: STM32 LoRa

在实时控制系统、高速通信协议处理及高精度数据采集等对时间敏感的应用场景中,中断响应延迟的优化直接决定了系统的可靠性与性能上限。STM32系列微控制器凭借其灵活的嵌套向量中断控制器(NVIC)、多通道直接内存访问(DMA)...

关键字: STM32 DMA

数字电源技术向高功率密度、高效率与高动态响应方向加速演进,STM32微控制器凭借其基于DSP库的算法加速能力与对LLC谐振变换器的精准控制架构,成为优化电源动态性能的核心平台。相较于传统模拟控制或通用型数字控制器,STM...

关键字: STM32 数字电源

STM32微控制器凭借其针对电机控制场景的深度优化,成为高精度、高可靠性驱动系统的核心选择。相较于通用型MCU,STM32在电机控制领域的核心优势集中体现在FOC(磁场定向控制)算法的硬件加速引擎与PWM死区时间的动态补...

关键字: STM32 电机控制

无线充电技术加速渗透消费电子与汽车电子领域,基于Qi协议的无线充电发射端开发成为智能设备能量补给的核心课题。传统模拟控制方案存在响应滞后、参数调整困难等问题,而基于STM32的数字PID控制结合FOD(Foreign O...

关键字: STM32 无线充电
关闭