当前位置:首页 > 单片机 > 单片机
[导读]摘要:当前手工拨盘方式编码译码显示实验电路存在输入信号不稳定、控制性较差等缺点,为了克服上述缺点,电路设计采用89C51单片机为核心器件作为编码信号发生器和自动控制系统。通过Proteus平台仿真和实验调试,电路

摘要:当前手工拨盘方式编码译码显示实验电路存在输入信号不稳定、控制性较差等缺点,为了克服上述缺点,电路设计采用89C51单片机为核心器件作为编码信号发生器和自动控制系统。通过Proteus平台仿真和实验调试,电路能产生高质量输入信号和实现自动控制,较好地解决了手工拨盘方式编码译码显示实验电路存在的缺陷。
关键词:89C51单片机;编码译码;显示;Proteus仿真

0 引言
    在日常数字逻辑电路实验中编码译码显示实验电,路是编码、译码、显示三个电路的综合运用,在数字逻辑实验电路中具有重要的地位,在实验的过程中,时常会出现显示结果的抖动,经研究出现这种现象主要原因是:编码电路的编码信号输入采用手工拨盘方式,产生的编码输入信号往往不稳定;另外,电路控制性能较差,不能达到自动复位,为此有必要对现有电路进行改进,在电路的设计上采用89C51单片机为控制电路制作而成,自动提供稳定编码输入信号,显示结果稳定性和电路控制性能大大提升,提高了教学实验质量。

1 编码译码显示实验电路的基本结构
    编码译码显示电路的基本结构如图1所示,主要由控制电路、编码信号发生器、编码译码显示电路等组成,控制电路产生编码信号作为编码译码显示电路输入信号,译码电路将编码信号转换成对应的七段数码显示信号,送至LED数码管显示。

 

2 系统硬件设计
    控制系统和编码信号发生器采用89C51单片机实现。89C51性价比较高,采用12 MHz晶振,其内部带有4 KB的FLASH ROM,无须外扩程序存储器。编码译码电路没有大量运算和暂存数据。89C51内部的128 B片内RAM已能满足要求,无须外扩片外RAM。系统硬件设计如图2所示。


2.1 编码信号发生器电路
    编码信号由89C51内部编程控制,键盘输入“0~8”从P0.0~P0.7口送给编码器74LSl47,“9”从P2.O口送给编码器,具体编码见表1。


2.2 键盘设计
    键盘采用4×3阵列结构设计,P1.0~P1.3为键盘扫描高4位,P1.4~P1.6为低4位。设计有“O~9”、Rst(复位)、Ser(顺序)。列线通过电阻接正电源,并将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。当按键没有按下时,所有的输出端都是高电平,代表无键按下。行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下。
2.3 编码译码显示电路
    编码译码显示电路主要由编码器(74LS147)、六反相器(74AC04)、译码器(74LS247)、七段LED数码管组成。编码器74LS147的1~5脚,10~13脚为编码输入端,低电平有效,实验时可用接地作为低电平输入;14,6,7,9脚为编码输出(反码);16,8脚为电源正负极。
    译码器74LS247的6,2,1,7脚为译码输入(高电平有效);9~15为译码输出;8,16脚为电源正负极。六反相器(74AC04)主要是解决编码器74HC147和译码器74LS247信号匹配问题,共有6组输入与输出,只取其中4组。七段LED数码管主要是显示译码器输出状态。
    电路主要原理是在74LS147的输入011111111~111111110,编码后得到4位反码,经74AC04反相后送到74LS247,由74LS247驱动LED数码管,正确时能显示O~9。

3 系统软件设计
    软件设计由初始化、键盘扫描、编码程序三部分组成。开始进行初始化,P0、P2口按复位状态附值输出,LED无显示。然后4×3阵列式键盘开始进行扫描,当判断有键按下时,延时去键抖动,判断是否务抖动,当确定判断是有键按下时,等待闭合键释放,保存键值。根据键值调用编码程序,将表1对应的编码送到P0,P2口输出,主程序流程图如图3所示。


    当按Ser(顺序序列)键时,依次按1~9编码值送至PO,P2口,间隔O.5 s输出。Ser编码编码子程序如下:
   

4 系统仿真与调试
    Proteus是一个基于ProSpice混合模型仿真器的,完整的嵌入式系统软、硬件设计仿真平台。编码译码显示电路能很方便地在此平台上进行调试和仿真,延时时间同选用的单片机和所用晶体振荡器有关,在调试时须注意。

5 结语
    提出了一款编码译码显示实验电路设计,其控制系统和编码信号发生器采用89C51单片机实现,经Pro-teus仿真和实验调试结果来看,大大改善了电路的性能,电路制作方便、操作简单,在数字逻辑电路实验教学中具有一定的推广价值,电路主要不足是不能实现故障自动检查,如果能对电路故障进行自动检测,电路性能将更加完善。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

(全球TMT2022年9月23日讯)近日,浪潮城市信息模型(CIM)基础平台V1.0正式发布。该产品综合应用数字孪生、物联网、5G、区块链、大数据等技术,实现城市治理各环节全程管控、智能协同,强化城市全生命周期管理,助...

关键字: 模型 编码 大数据 区块链

加速小分子新药的早期研发进程 上海2022年8月8日 /美通社/ -- 保诺-桑迪亚,一家由安宏资本投资的、业内领先的药物发现、开发和商业服务CRDMO公司,和小分子药物研发DEL技术先驱X-Chem公司共同...

关键字: DNA 编码 DM BSP

构建可靠的硬件要求我们在设计阶段考虑所有公差。许多参考文献讨论了参数偏差导致的有源元件误差——展示了如何计算运算放大器失调电压、输入电流和类似参数的影响——但很少有人考虑无源元件容差。确实考虑了组件容差的参考文献是从科学...

关键字: 元件公差 电路设计

对于非比例电路,我们必须假设完整的电阻容差,因为容差不会分开。我们可以将输出电压计算为 V OUT =IR,其中 I 是理想的 1mA 电流源,R 是 5% 的电阻器(图 1a)。V OUT =1 mA (1±0.05±...

关键字: 电路设计 非比例电路

我们是否设计了一个电源,后来才发现我们的布局效率低下?按照这些关键提示创建电源布局并避免调试压力。什么是电源设计的布局?你知道吗?一个完美的电路设计,电源布局显得尤为重要。由于不同的设计方案的出发点不同,而有所差异,但是...

关键字: 电源布局 电路设计

摘要:传统的备件仓储管理模式存在备件到货后备件计划员未及时领用、备件实物查找效率低下、备件库存信息更新不及时等问题,为此研发了一个备件仓储管理辅助系统。该系统充分利用了互联网技术,提出了"互联网+"仓储管理模式,在备件到...

关键字: 仓储管理 微信 编码

摘要:基于摄像机远程操作技术,利用单片机控制步进电机,建立摄像镜头的电力驱动系统。此系统节约了经济成本,通过人机交互闭环系统、模块化等方法,进一步提高了系统的通用性,使其可以应用于工程。

关键字: 步进电机 单片机 电路设计

一直以来,智能硬件都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来智能功率模块的相关介绍,详细内容请看下文。

关键字: 智能功率模块 IPM 电路设计

首个中国科技公司代表 国际电信联盟任命阿里云叶琰为编码组副主席

关键字: 阿里云 编码 视频

与传统聚合物电容器相比,多层陶瓷电容器 (MLCC) 在电力电子设计中很受欢迎,原因有很多: MLCC 提供: · 具有相对较高电容的小轮廓。 · 非常低的等效串联电阻 (ESR)。 · 非常低的等效串联电感 (...

关键字: MLCC电容 电路设计

单片机

21600 篇文章

关注

发布文章

编辑精选

技术子站

关闭