当前位置:首页 > 电源 > 电源电路
[导读]对于非比例电路,我们必须假设完整的电阻容差,因为容差不会分开。我们可以将输出电压计算为 V OUT =IR,其中 I 是理想的 1mA 电流源,R 是 5% 的电阻器(图 1a)。V OUT =1 mA (1±0.05±0.05)1 kΩ=(1±0.05±0.05)V。V OUT的范围是 0.9V≤V OUT ≤1.1V,但我们可以通过使用另一个电阻器调整初始容差来缩小范围(图 1b)。

对于非比例电路,我们必须假设完整的电阻容差,因为容差不会分开。我们可以将输出电压计算为 V OUT =IR,其中 I 是理想的 1mA 电流源,R 是 5% 的电阻器(图 1a)。V OUT =1 mA (1±0.05±0.05)1 kΩ=(1±0.05±0.05)V。V OUT的范围是 0.9V≤V OUT ≤1.1V,但我们可以通过使用另一个电阻器调整初始容差来缩小范围(图 1b)。

最坏情况的电路设计包括元件公差,第二部分

图 1非比率电路必须假设完整的电阻容差,因为容差不会分开。基本计算很简单(a),我们可以通过添加另一个电阻来缩小范围以调整初始容差误差(b)。

我们可以计算可调电阻值 R P,如下所示:

1.

为 R 选择最接近的十进制值,该值小于 R=0.9 kΩ 的最小计算值;该值为 R=0.82 kΩ。

2.

3.

计算所选电阻的最小值如下:R MIN =(1–P–D)R=0.9(0.82)=0.738 kΩ。

4.

5.

可变电阻 R P必须弥补 R MIN和 1 kΩ 之间的差值,因此 R PMIN =1–0.738=0.262 kΩ。

6.

7.

电位器的容差可能相当高,因此 R P =R PMIN /(1–T)=0.262 kΩ/(1–D–P)=0.262/0.8=0.328 kΩ。

8.

9.

选择 R P =500Ω。

10.

最终值为 R=820Ω 和 R P =500Ω。一些工程师认为,最坏情况的设计程序过于严格,并迫使电位器值较大、分辨率较低和电位器漂移误差较大。此问题的一种可能解决方案是降低电位器值并冒险,但更好的解决方案是使用精度更高的部件。非比率电路必须考虑全公差摆动;因此,5% 的采购容差会导致 20% (±10%) 的总体容差。

比例电路

图 2和公式 1的分压器是经典的比例电路。参考公差方程,我们可以看到公差的某些部分超出了方程。


最坏情况的电路设计包括元件公差,第二部分

公式 1


最坏情况的电路设计包括元件公差,第二部分

图 2比率电路划分了电阻值的一些容差。

为获得最大增益值,我们将容差设置为 R 2高和 R 1低。因为 R 2的公差很高,所以它在等式的所有部分都显示为 (1+T)R 2 。表 2列出了四种电阻比的理想增益、最大增益和百分比误差。请注意,最小增益误差发生在 R 1 =R 2时,并且该增益误差等于容差。非比率电路必须接受两倍的容差或 2T,但比率电路可以只有 T 的容差。


最坏情况的电路设计包括元件公差,第二部分

当分压器中的两个电阻器容差同时高或低时,容差就会分开。当电阻器制造商保证所有电阻器在环境温度变化期间按比例并沿相同方向漂移时,温度容差就会分出。

差分放大器:独立

许多参考资料表明,我们无法使用分立部件构建具有良好 CMR(共模抑制)的精密差分放大器。差分放大器的这种容差分析解释了为什么这种说法是正确的。考虑图 3和公式 2(参考文献 1)中的差分放大器电路,并假设放大器是完美的。


最坏情况的电路设计包括元件公差,第二部分

图 3差分放大器使用比率电阻器来获得高 CMR。


最坏情况的电路设计包括元件公差,第二部分

公式 2

电路 CMR 是在没有信号的情况下测量的,因此 V 1 =V 2 =0.0,公式 2变为公式 3:


最坏情况的电路设计包括元件公差,第二部分

公式 3

当R 1 =R 3且R 2 =R 4时,增益变为零,CMR 为无限大。实际上,电阻器容差和运算放大器误差总是将 CMR 限制在大约 100 dB 或更低。将等式 3重写为等式 4将我们的注意力集中在差分增益和电阻器容差上。等式 4包含四个电阻器容差,因此有 16 个可能的误差因素。如果我们调查所有可能性,我们会发现误差范围从当所有电阻器容差都向同一方向变化时为零到 2T/(1–T)。


最坏情况的电路设计包括元件公差,第二部分

公式 4

当总容差为 1%(0.5% 电阻的 P+D)时,电阻容差可导致 CMR 的范围从高达运算放大器的限值到低至–34.89 dB。考虑到 1% 电阻器的采购和漂移容差,我们得到的 CMR 可低至 –24.17 dB。我们将此误差计算为 CMR 误差,但在没有共模电压和差分输入信号的情况下,它变成了增益误差。

分立差分放大器难以构建和微调,因此大多数设计人员都选择了内置微调电阻的 IC 差分放大器。低成本 IC 差分放大器提供高达 –86-dB CMR。

当我们分析我们的电路以确保长期性能和可制造性时,请记住无源元件具有购买和漂移容差,并且漂移容差可能大于购买容差。我们可以在制造过程结束时调整购买公差,但我们或我们的系统只能在进行测量之前调整漂移公差。非比率电路假设电阻容差的两倍,比率电路可以将误差降低到容差值。使用分立器件很难构建精确的差分放大器,但具有电阻微调和匹配能力的 IC 通常可以获得 –90 dB 的 CMR。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭