当前位置:首页 > 变换器
  • 如何轻松设计一个电流互感器

    如何轻松设计一个电流互感器

    电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图1所示。 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10/N)R=1V,在电阻中消耗的功率为P=(1V)^2/R。我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流为10A/200=50mA。互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。250kHz频率工作时,磁芯上的磁感应强度不会超过 其中4us为一个周期的时间,实际肯定是不到一个周期的。       由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此Ae可以很小,而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由200匝的绕组所占体积来确定。你可以用40号的导线流过500mA的峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 实用提示 除非一定要用,一般情况下不要使用规格小于36号线的导线。     现在我们来分析为什么不能用电压变压器来替代电流互感器?已经知道副边电压只有2V,因此原边电压为2V/200=100mV。如果输入直流电压为48V,那么电流互感器原边10mV电压对48V电压来说是微不足道的——那样你可以在副边得到50mA的电流,而对原边几乎没有什么影响。假设另一种情况(不现实的),原边的输入直流电压只有5mV,那么互感器的原边不可能有10mV的电压,同时由于原边阻抗(如反射副边阻抗)也比较大,决定了副边根本不可能产生50mA的电流。即使整个5mV电压全部加在原边,副边也只能产生200×5mV=1V的电压:不能在转换电阻上产生足够的电压。因此,电压变压器只能用作变压器,不能用来检测电流。 从另外一个角度来看:虽然输入电源的电压为48V时,但是流过电流互感器电流的大小不是由原边的这个48V电压决定的,而是其他因素决定的。 电流互感器是有阻抗限制的电压变压器。 最后,我们来看一下电流互感器的误差情况怎么样?答案在于电流互感器的基本定义上:感应的是电流。

    时间:2019-11-26 关键词: 变换器 电流互感器 电源资讯

  • WLED背光驱动电源技术

    WLED背光驱动电源技术

    现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。随着数码产品的飞速发展和迅速普及,数码产品的内部器件也面临了更高的要求,由于大多数便携式数码产品例如手机,数码相机,MP3, PMP以及数码相框都会需要显示模块。 其中的WLED背光驱动电源的设计也就越来越受到关注。它的性能会直接影响到显示效果,显示模块的寿命及电池的待机时间。近期,BCD新推出一款WLED驱动芯片-AP3029,此款芯片在WLED驱动电源设计和应用方面有着较大的优势,它在保证性能的前提下,提高了工作频率,进行了更高度的集成,减少了外围器件的数量及尺寸,降低了系统的成本。下面将对AP3029在 WLED驱动方面的应用方案及关键参数做一下介绍。 一、AP3029简介 AP3029 是将开关管与肖特基二极管集成在内的PWM(脉冲宽度调制)模式的升压型变换器。它仅通过几颗外部器件-升压电感,输入,输出电容,反馈电阻来完成对负载 WLED的驱动,且AP3029有着较高的频率(1.2MHZ),这样,还可以减小外部电感的尺寸,更加节省了系统的空间。AP3029有着较其它同类产品更宽的输入电压范围,可从2.5V到16V,大部分同类产品的输入电压最高只有6V,这样可以使系统的使用范围更广泛。 AP3029正常工作时采用输出恒定电流控制模式,它的输出电流是通过内部的基准电压和外部的反馈电阻来控制。AP3029内部的基准电压较低,只有200mV,这在一定程度上降低了驱动损耗,提高了工作效率。AP3029的输出电压是由负载WLED的串联个数来决定的,如果输出WLED出现断路情况,AP3029会将输出电压自动?位在27V,实现过电压保护。AP3029 内部有软启动功能,在系统启动时,输出电压变得很平滑,且输入冲击电流也得到了限制。通过完善而可靠的保护功能,可以大幅度的提高系统的安全性和实用性。 二、AP3029的典型应用方案 1. AP3029驱动串联WLED应用方案:通常,小尺寸的显示屏幕上需要2~6颗 WLED做背光,普通WLED一般工作在3.2V/20mA, 图1即为基于AP3029设计的6颗串联WLED驱动电路。根据屏幕尺寸不同可以调整WLED的数目。     图1. AP3029驱动串联6颗WLED的典型应用图 AP3029 通过反馈电阻R1对WLED进行恒定电流驱动,ILED=VFB/R1。输出电压即为六颗WLED的正向电压,6*3.2+0.2=19.4V。输出功率为388mW。该典型应用方案的Spec如表1所示:     表1. WLED串联输出的Spec 2. AP3029驱动并联WLED应用方案:     随着便携式数码产品显示屏幕尺寸的增大,显示模块所需要WLED的数量也随之增加,这样就对WLED驱动芯片的性能及驱动能力提出了更高的要求。 AP3029 驱动能力强的特点在大尺寸显示屏的背光驱动设计中得到了充分的发挥,由于大部分便携式数码产品都由锂电池供电,单节锂电池的输出电压范围通常为 3.2V~4.2V,所以,驱动6颗以上的WLED通常采取并联驱动方式,将输出电压控制在合理的范围内。保证系统有更好的工作状态。图2即为 AP3029并联驱动WLED典型应用方案。     图2. AP3029 驱动并联10颗WLED的典型应用图 该应用方案的Spec,如表2所示。基于AP3029变换器的WLED背光驱动电源设计表2. WLED 并联输出的Spec 表3即AP3029在85OC下驱动10颗WLED时,输出电流与反馈电压VFB的关系。如果AP3029驱动能力足够,VFB将会随着输出电流的增大基本保持不变。     表3. 85OC 时AP3029驱动10颗WLED的输出电流与反馈电压的关系 在该典型应用下,正常输出电流为40mA,从表3的数据可以看出AP3029在85OC下驱动10颗WLED还会有一定的裕量。所以,AP3029 完全可以满足驱动10颗WLED的要求。 在并联方案中,最值得注意的就是两排WLED的电流匹配问题。假如直接将两串WLED并联,该拓扑决定了两串WLED的正向电压之和。由图3可知,WLED 的正向压降VF存在一定的差异,且其工作点附近(IF=20mA)的动态阻抗很小。因此两串WLED的正向电流会存在较大的差异。使输出电流不能匹配。该情况会导致两排WLED的亮度有明显差异,严重的影响了显示效果。     图3,二极管正向电压正向电流的关系 为了解决上述问题,可以在输出端使用PNP对管来实现输出电流的匹配。连接方式见图3。在这里,要推荐使用集成PNP对管,且放大系数β〉〉2,这样可以保证两个PNP管的特征参数基本一致,减小误差,达到更好的均流效果。表4给出了在不同的输入电压下,两排WLED(每排五个WLED)在加入均流设计前后的电流分配情况。     表4,输出电流的均流精度 在表4中可以看出输出电流经过均流设计后,电流分配情况有了本质的提高。完全满足WLED背光驱动中的电流匹配要求。 三、总结 以上所介绍的AP3029两种驱动方式,已经过验证,结果可行,并满足客户的多种要求,被客户接受和采用。综上所述,AP3029 作为便携式数码产品的背光电源有着广大的市场,能够完全满足大部分客户的不同要求。是一种性能价格比很高的设计方案。虽然LED在生活中处处可见,但是LED也还有一些不足需要我们的设计人员拥有更加专业的知识储备,这样才能设计出更加符合生活所需的产品。

    时间:2019-11-12 关键词: 电源技术解析 变换器 驱动电源 wled

  • 开关电源概述

    开关电源概述

    生活之中处处会用到电,有电的地方就有开关,每个人心中都有一个“电源”的样子。我妈以为电源就是家里的电灯泡。我爸以为电源是手机上的电池板。工程师朋友们心中的电源可能就是AC/DC变换器。 “电源”这个词有点笼统了。出差住在旅馆里,找不到220V的交流插座,你可能会说这个旅馆里不提供“电源”。在这个语境下,“电源”是指可以用在某个供电设备的输入端的“交流输入电源”。 出差在外,你发现自己的笔记本电脑没有带“电源适配器”,你也会习惯说,带了电脑,但没带“电源”。 开关电源 如果有人问你的职业是什么,你说是做“电源”的或者回答做“开关电源”的,对方一下子可能就觉得你的职业很一般,不是什么高科技。但电源在你心中却是高科技,因为你在做的是一款高端电源,高端到国内还没有人能够做出来,而问你的人,他脑子里的“电源”只是墙上的220V交流电,或者墙上的一个开关而已。你们俩不在一个频道上。 电源似乎太过普通,因为它显得无处不在。泛义上说,只要能提供电能的设备、设施都是电源。 狭义上说,做电源的人心中的电源只是开关电源。我要谈的是开关电源。 我没有搜索查找开关电源的官方定义。在我的理解中,开关电源就是通过开关管的开通和关断来实现电能的变换。电能的变换则包括: 1,AC/DC。将交流变换为直流,通常是将来自电网的220V、两相交流电或380V、三相交流电转换为直流电。小功率AC/DC的交流输入是220V,大功率的交流输入是380V。根据应用行业、场合不同,又被称为AC/DC变换器,整流器,一次电源,通信电源,电源适配器,照明电源等。 2,DC/DC。将直流变换为直流,譬如将高压、小电流转换为低压、大电流,根据应用行业、场合不同,可能称为DC/DC变换器,二次电源,模块电源,板上电源,等。 3,DC/AC。将直流变换为交流,根据应用行业、场合不同,可能称为UPS,逆变器,并网逆变器,电机控制器,等。 4,AC/AC。 将交流变换为交流,通常的产品形式是变频器,用于电机控制方面。 上述四种电能的转换,细分出众多的行业! 在AC/DC,DC/DC这两个方向对应的行业市场,业内人士称之为“开关电源”,具体的行业有比较高端的一次电源(也叫通信电源,但通信电源的含义似乎更广),一般特指给电信机房供电的48V电源,二次电源,客户定制电源,电力电源,计算机电源,笔记本电脑等各种电器设备的电源适配器,手机充电器电源,充电桩电源,车载充电机(OBC,on-board charger),车载DC/DC变换器,照明电源(又可分为LED电源,电子镇流器,HID电源),等。 而对应于DC/AC,AC/AC的行业市场,人们一般就说是做UPS的,做光伏的(按光伏电池板直流电转换为交流电),做储能的,做变频器的,做电机控制器的。 以上就是开关电源的相关概述,正确理解各类开关电源很重要。

    时间:2019-07-31 关键词: 交流 直流 电源技术解析 变换器

  • 有关无电解电容LED驱动电路的设计

    有关无电解电容LED驱动电路的设计

    为了提高驱动电源的寿命、简化电路、降低成本以及提高功率密度,有必要去掉电解电容,为此文中提出一种无电解电容的高亮度LED驱动电源。 1 LED电源的基本工作原理  采用BUCK变换器、IPD控制实现开关电源,输出恒定的电流和电压,驱动LED灯。电路的总体框图如图1所示。 主电路部分,在市电之后紧接着接了一个滤波器,它的作用是滤除电源中的高次谐波以及电源中的浪涌,使得控制电路受电源的干扰小。输入整流部分采用一体式的整流桥,通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的脉动的直流电,再在滤波电容和电感的作用下,输出直流电压。经过MIP553和BUCK电路的调节和控制后输出供LED使用的电压。 2 LED电源的具体设计 2.1 输入电路的设计 为了延长LED驱动电源的使用寿命,使之与LED相匹配,必须要去除电路中的电解电容。 电路的设计指标为:输入交流电压Vm:198-264VAC/50Hz;输出电压Vo:27VDC;输出电流Io:0.35A. 输入电路包括噪声滤波装置、安全保险装置以及输入整流装置,如图2所示。 噪声滤波装置主要由电容C1/C2/C3和电感L1组成,其作用是在小于1MHz的频段内,能够减少电磁干扰(EMI )。此装置也可以链接在AC交流之后,整流装置之前,其滤波效果是一样的。安全保险装置由保险丝和ZNR1组成,保险丝主要防止有危害电路的尖峰电流产生的时候迅速切断电路以保护负载;ZNR1是浪涌吸收器,对于来自输入端的静电和浪涌进行吸收,以此来保护后面的电路。输入整流装置,是将交流电转换成直流电,输入整流桥的选择:整流桥二极管的电压应力为: 考虑裕量,选用TSC GBL205(VR=600V,IFAN=1A)。

    时间:2019-07-24 关键词: 电源技术解析 变换器 电解电容

  • ±12V双向电源变换器

    ±12V双向电源变换器

    ;;; ±12V双向电源变换器电M45PE40-VMW6TG路如图3-22(a)所示,图3-22(b)为波形图。电路可将+5V直流电压变换为±12V双向直流电压。非门1、2组成多谐振荡器,其振荡频率为8kHz,占空比为50%。该信号输入给IC2的CP端,经IC2二分频,在非门3和与非门2的输出端便可得到如图3-22 (b)所示的波形,它们在不同的时间有着不同的电平关系,从而形成VT1、VT2工作状态的四个区域。在£,区,VT1和VT2均导通,在L上流过一定的电流;在£z区,VT1导通,VT2截止,由于L上的电流不能突变,£,区的电流依然维持并通过VT1和VD2流向C2,在C2上产生正电压;在t3区,VT1和VT2均导通;在t4区,VT1截止,VT2导通,t3区的电流依然维持,并通过VT2和VD1向C.充电,因为电流是反方向的,所以在C2上产生负电压。;;;;;;;; ;;; 上述过程不断地重复进行,于是在Cl和C2上便可得到±12V的电压输出。

    时间:2019-04-23 关键词: 嵌入式开发 电源 变换器 双向

  • 用于电动汽车的多重化软开关双向DC/DC变换器的研究

    用于电动汽车的多重化软开关双向DC/DC变换器的研究

    摘 要: 针对典型的半桥式双向DC/DC变换器拓扑结构特点,利用DCM模式下电感电流反向的特征,采用一种不额外添加半导体器件的软开关技术,减小开关损耗;采用多重化拓扑结构弥补DCM模式下电压、电流纹波大的缺陷;在控制方式上采用电压电流双闭环形式,将共用电压环的输出作为每个基本单元的给定电流,解决了并联结构的均流问题。关键词: 双向DC/DC变换器;软开关;非连续导电模式;双闭环;开关损耗 电动汽车在运行过程中,频繁地加速减速、起动制动,需要利用双向DC/DC变换器将电池的电压升高以获得稳定的直流母线电压。另外,在电动汽车制动时,需要通过双向DC/DC变换器将能量回馈到电池,使其效率提高。 参考文献[1]通过对比几种典型双向DC/DC变换器发现,在相同条件下半桥型双向DC/DC变换器电路元件所承受的电压电流应力较小。基本半桥型拓扑结构运用在大功率负载时,所需开关器件等级仍然较高、电感较大、体积庞大、能量密度较低。为了减小变换器体积,增大功率等级,参考文献[2-3]采用多重化半桥拓扑结构,降低了开关管功率等级,减小所用电感和电压电流纹波,但开关损耗问题仍有待解决。参考文献[4]采用一个震荡电感加二重双向DC/DC拓扑结构,运用软开关技术提高效率,但增加了一个电感元件和两个开关,导致成本增加。 为获得较高的功率密度,可将变换器设计在非连续导通模式(DCM),但其纹波较大,故采用多重化拓扑结构以弥补其缺陷,由此所需电感进一步减小[3]。另外,在DCM模式下,主开关关断的频率是其负载电流频率的两倍,开关的关断损耗增大,DCM模式使得变换器效率降低[5]。本文采用一种控制型软开关技术[6],不需要额外增加半导体器件,通过合理控制实现软开关,从而减小了开关损耗,提高了变换器效率。1 变换器拓扑结构及控制策略1.1 变换器的拓扑结构及工作原理 本文采用的三重交错式双向DC/DC变换器由三个典型半桥式双向DC/DC拓扑结构交错并联而成,其拓扑结构如图1所示。 三个基本半桥的导通时间依次互错1/3周期,且在每个周期导通时间相同,因此电感电流也依次互错1/3周期,从而减小总电流的纹波。 当正向运行,即升压运行时,下部开关Sd1、Sd2、Sd3处于斩波状态,为主开关,上部开关Su1、Su2、Su3与同臂下部开关互补,为辅助开关。当反向运行,即降压运行时,上部开关与下部开关主辅职能调换。 为了达到软开关目的,在实际运行中上下开关驱动信号加入的死区时间,利用电感电流恒流源作用,使上下开关各自并联的小电容能量在死区时间内得以交换,从而达到ZCS和ZVS。下面仅以单重半桥型双向DC/DC变换器拓扑加以说明。 图1中,iL1为电感L1的电流,规定如图1中方向为正方向;Co为滤波电容;FWDu1及FWDd1分别为开关Su1和Sd1反向并联的二极管;Cu1、Cd1为两开关并联的小电容。低压侧Vin由蓄电池或超级电容供电,高压侧Vo接电机等负载。当电机正向运行时,Sd1为斩波开关,Su1为辅助开关,能量由低压侧Vin流向高压侧Vo;当电机发生制动时,能量反向流动,上、下开关职能调换。现仅以boost工作模式加以说明。图2所示为升压模式下6个工作模态的关键波形。 模式1(T0≤t<T1) 由于变换器工作在DCM状态,电感L1较小,在T0时刻,iL1达到负向最小值iL1(T0),二极管FWDd1 ZVS导通。电感电流线性增加,此状态以开关Sd1获得导通驱动信号为止。 二极管FWDd1自然导通,开关Sd1拥有导通驱动信号,但由于电感电流iL1仍为负,开关Sd1未导通,此状态以电感电流iL1上升至零截止。 1.2 变换器的控制策略 本文采用电压外环PI调节,可稳定直流母线电压,即DC/DC变换器高压侧电压,使其不随蓄电池电压变化而变化;此外,在负载变化时,保证了直流母线电压在较快时间内得以稳定。 采用电流内环PI调节,可以将电动汽车制动刹车时直流母线侧能量以可控的方式对蓄电池组进行充电;另一方面,共用一个电压外环,保证并联各个基本变换器电应力和热应力的均匀合理分配,以实现电源系统中各基本变换器自动平衡均流[7]。本文采用双闭环控制方式,如图3所示。 为了使多重式结构变换器的每个基本单元在其他单元发生故障时仍能继续独立工作,每个基本单元变换器拥有独立的PWM发生模块。2 软开关实现条件 本文利用DCM运行下电感电流反向和互补开关,没有额外的半导体器件。变换器电感与开关的并联小电容在死区时间内相互配合,使两电容能量相互交换,以达到软开关目的。 若使变换器在boost模式与buck模式均达到软开关目的,首先应满足DCM运行基本条件;另外,在死区时间内,电感电流要具有抽取电容电能,以使两电容能量可以交换。以boost模式为例,DCM模式运行基本条件: 由式(2)、(3)得知,在两个死区时间相同情况下,只需满足反向电感电流的软开关条件,正向电感电流的软开关条件也会得到满足。 由式(3)得知,在不同负载下,电感L的平均值IL不同,因此反向电感电流峰值也不同。为使变换器在不同功率下设置的死区时间不变,且均可达到软开关目的,在电感电流平均值最大时Imax L(即满负载),得出的电感电流反向最大值I-max即为在不同功率下的最小值。若死区时间满足满负载下的软开关条件,则一定满足不同功率下软开关的条件。3 仿真验证 针对电动汽车在运行过程中驾驶员的频繁加速、减速及起动、制动等操作,为了验证上述拓扑结构的正确性,进行了仿真验证,所用参数如表1所示。 (1)变换器在t=0.025 s时,负载功率由2P/3突变为满负载P,模拟电动汽车加速运行。当t=0.15 s时,电路达到稳定状态;当t=0.025 s时,电压因负载突变;而t=0.007 5 s时,很短时间内恢复给定电压,电流也快速达到另一稳态。本文电流内环采用三个独立的PWM发生器,具有较快的动态响应。 (2)变换器升压工作时,以第三个基本单元为例,在负载功率为2P/3下主开关Sd3,辅助开关Su3,及各自并联二极管FWDd3、FWDu3的仿真波形及电感电流波形如图4所示。采用此种控制性软开关技术,使主开关、辅助开关以及两并联二极管在不同负载下其电压、电流错位,即均可达到软开关效果。采用三重交错式拓扑结构,电感电流纹波减小到原来的三分之一,有效弥补了DCM运行模式纹波大的缺陷。 本文采用多重半桥式双向DC/DC变换器拓扑结构,利用DCM模式下电感电流反向的特点,以反方向运行时主开关为辅助开关,没有额外添加半导体器件。实现了主开关的零电压开通和零电流关断,辅助开关的零电压开通、零电流关断,以及主开关与辅助开关并联二极管的零电压导通、零电流关断,提高了整体变换器效率。使得多重交错式结构有效减小了电感电流纹波。在控制方式上采用共用一个电压环,即共用一个电感电流参考值,解决了并联结构的均流问题,三个独立的电流内环加快了变换器的响应速度、提高了安全性。本文分析了此变换器的工作原理、控制策略,并对其进行了仿真实验,验证了理论分析的正确性与可行性。参考文献[1] SCHUPBACH R M,BALDA J C.Comparing DC-DC converters for power management in hybrid electric vehicles[C].IEEE International Electric Machines and Drives Conference,2003.[2] 陈明,汪光森,马伟明,等.多重化双向DC-DC变换器电流纹波分析[J].继电器,2007,35(4):66-70.[3] Xu Haiping,PENG F Z,Li Kong.Multi-phase DC-DC converter with bi-directional power flow ability for distributed generation system[C].Power Electronics Specialists Conference,2008.[4] HA D H,PARK N J,LEE K J,et al.Interleaved bidirectional DC-DC converter for automotive electric systems[C].Conference Record-IAS Annual Meeting.2008.[5] Huang Xudong,Wang Xiaoyan,FERRELL.J,et al.Parasitic ringing and design issues of high power interleaved boost converters[C].Power Electronics Specialists Conference,2002.[6] 顾亦磊,陈世杰,吕征宇,等.控制型软开关变换器的实现策略[J].中国电机工程学报,2005,25(6):55-59.[7] 徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.

    时间:2019-03-21 关键词: 电动汽车 变换器 dc 双向 技术教程

  • 基于单片机的波特率变换器设计方案

    基于单片机的波特率变换器设计方案

    在一些复杂的系统中,系统与分系统、分系统与设备等之间存在数据的传递问题,往往采用通信的方式来解决。由于分系统、没备等通信波特率的不同,特别是一些特殊波特率设备的存在,使得系统中设备间的相互通信不易实现。例如,在一个系统中,上位机接收某一设备的数据,如图1所示,设备l和设备2采用的是172.8 kbps的波特率,而上位机用VB编程,其通信波特率为115.2 kbps、128 kbps或256 kbps,等,这样设备之间就不能相互通信,给设计带来困难。为了解决上述问题,采用双单片机电路,设计了波特率变换器,将接收波特率为172.8 kbps的数据,转换成波特率为115.2 kbps的输出,从而使不同波特率设备之间的通信成为可能。1 波特率变换电路波特率变换电路如图2所示。电路采用2片单片机89C5l作为电路的核心,利用单片机的UART串行口与相关设备通信。单片机u1_L.(接波特率低的设备)与波特率为115.2 kbps的设备通信,单片机U2_H(接波特率高的设备)与波特率为172.8 kbps的设备通信。Ul_I,与U2_H的通信采用并行口方式,以加快Ul_I。与U2_H之间数据传递的速率。U1_L与U2_H的通信可以采用中断查询的方式,也可以采用握手查询的方式进行数据传递。电路采用2片75176接口驱动芯片组成一个RS-422通信接口。U3和U4组成的通信接口与115.2 kbps的设备相连,U5和U6组成的通信接口与172.8 kbps的设备相连,通信接口采用中断技术。波特率变换器工作原理如下:U1_I。从串行口收到设备的数据后,从Pl口输出数据,并通知U2_H取数,U2_H取到数据后向设备发出数据,同时通知Ul_I.已取走数据,为U1一L下一次输出数据做准备。当U2_H从串行口收到设备的数据后,查询U1_I,是否允许接收数据,如允许接收数据,U2_H从P1口输出数据,并通知Ul_L取数,Ul_L取到数据后向设备发出数据,同时通知U2_H已取走数据,为U2_H下一次输出数据做准备;如Ul_L不允许接收数据,则U2_H暂缓送数。2 波特率变换器的应用波特率变换器在应用中,根据使用情况可以分为单向传送和双向传送。两单片机之间的数据传递可以采用中断方式.也可以采用查询方式。如采用查询方式,编程时利用P2口的几位作为查询信号,实现单向或双向传送。2.1 单向传送单向传送就是通信口的数据流只向一个方向,即从Ul_L接收到的数据,从U2_H发送出去,或从U2_H接收到的数据,从Ul_L发送出去。用这种方式进行软件编程比较简单。现以U1_L只接收外部设备数据,U2_H只向外部设备发送数据,采用查询方式为例,两单片机之间数据传送的流程图如图3所示。其中Ul_L的P2.2作为向U2_H传送新数据的查询信号(U2_H的P2.5),P2.2=“0”表示有新的数据,P2.2=“1”表示没有新的数据;U2_H的P2.2作为接收U1_L数据的查询信号(U1_L的P2.5),P2.2=“O”表示可以接收新的数据,P2.2=“1”表示不能接收新的数据。如果采用中断方式,两单片机的查询信号更简单,只要Ul_L查询U2_H是否可以接收数据的信号就可以,U2_H无需查询U1_L的查询信号。2.2 双向传送双向传送就是通信口可以同时接收数据和发送数据,数据流是双向的,Ul_L和U2_H既接收数据也发送数据。这种方式软件编程比较复杂,特别是双向传送数据采用查询方式时。单片机之间的查询信号就更加复杂了。现以双向查询方式为例,两单片机之间数据传送的流程图如图4所示,U2_H的流程与U1_L一样。其中U1_L向U2_H传送数据时的查询信号与单向传送的定义一样,U2_H的P2.3作为向U1_L传送新数据的查询信号(U1_L的P2.4),P2.3=“0”表示有新的数据,P2.3=“l”表示没有新的数据;Ul_L的P2.3作为接收U2_H数据的查询信号(U2_H的P2.4),P2.3=“O”表示可以接收新的数据,P2.3=“1”表示不能接收新的数据。如果采用中断方式,查询信号可以减少,编程可以简化。2.3 应用时的注意事项两个单片机之间的握手方式如果采用中断,由于U2_H向外部发送数据比U1_L接收外部数据快,Ul_L向U2_H传送数据时,无需考虑U2_H的状态,而U2_H向U1_L传送数据时,由于U2_H接收外部数据比U1_L向外部发送数据快,U2_H必须查询Ul_L的状态,即U1_L是否处于接收U2_H数据的状态,否则,U2_H就不能向Ul_L传送数据。若作为RS_485通信接口使用,只需对图2中的电路稍做改动,增加对75176芯片的读写控制,同时两个单片机中与主通信设备相连的单片机作为主机,通过P2口的一位来协调两个单片机是接收数据还是发送数据。值得注意的是,该波特率变换器在不同的应用中会受到一定的限制,在使用时要注意下面几点:①波特率很高时,要考虑单片机串行口能否实现;②从波特率高的向波特率低的变换时,要考虑波特率低的单片机能否实现不丢数据的发送;③当双向变换时,既要考虑上述情况,还有考虑程序的大小,以及执行时间对双向传送数据的影响,计算两个单片机能否实现不丢数据的变换,在时间上要留有余量;④在查询时,要注意握手信号的关系,不要对同一数据产生重复读取,以至于数据重复;⑤波特率不同时,单片机可以选用不同的晶振频率。2.4 实例及源程序在实际使用中若碰到如图1所示的情况,需要波特率变换器将坡特率为172.8kbps的通信数据转换成波特率为115.2kbps,再向上位机传送。实际使用的电路如图2所示。在该实例中,为了防止局部时刻接收数据比发送快而丢失数据,再U2_H单片机的程序中,加入了8个数据区作为接收数据存放缓冲区。3 结论通过长时间的通信实验和实际应用,设计的波特率变换器方案可行,通信可靠,没有出现数据丢失的情况。在一些系统中,由于通信波特率特殊,在设备之间通信存在波特率不匹配时,通过波特率变换器,可以实现不同波特率设备之间的通信。通过更改单片机的晶频振率,可以满足各种波特率(在单片机允许的范围内)的转换。

    时间:2019-03-19 关键词: 设计方案 单片机 波特率 变换器 嵌入式处理器

  • 高效率超宽输入电压范围DC-DC变换器的设计方案

    高效率超宽输入电压范围DC-DC变换器的设计方案

      一个隔离DC/DC变换器的参数之一是该变换器能够正常工作的输入电压范围。对于那些应用于48V输入电信市场的工业标准砖型产品,其输入电压 范围通常是 36V~75V,或输入电压的最高值和最低值之比为2:1。但是有很多的应用期望变换器能够处理更宽的输入电压范围。比如,在一些系统应用中分布式输入电 压具有很大的瞬态和浪涌,而且持续时间很长,需要滤波器滤掉。  作为一个例子,表1显示在不同铁路系统标准中分布式电压的稳态和 瞬态范围。军用车辆设计规范也需要类似的宽输入电压范围,这样可以满足其分布式电压的变化。使用宽输入电压范围DC/DC变换器的另外一个原因是建立一个 可以被用于不同直流系统的“通用”产品,对于标称值为12V, 24V和48V的电池系统,一般需要提供三个不同的输入电压版本,作为替代,一个能够在9V到75V工作的变换器提供了单一解决方案。这种单一方案可以节 省生产成本和降低库存。    表1:几种铁路标准中输入电压范围的规范要求。   尽管人们期望有一款宽输入变换器,但存在一个主要问题:在传统产品中,模块工作的输入电压范围越宽,变换器的性能越差。一般来讲,在给定的尺寸,比如 1/4砖,变换器的效率和能够处理的功率会随输入电压范围变宽而降低。这是一种自然结果,因为在设计最高输入电压的同时,还必须处理在输入电压最低时所带 来的非常大的输入电流。对于2:1输入范围的变化器,其最大输入电压和最大输入电流的积是需要处理功率的两倍,这种结果作为一个合理的折中是可以接受的。 但是,当一个变换器设计用来处理8:1输入范围时,其最大输入电压和最大输入电流的积是需要处理功率的8倍,这种结果是非常极端的。对与变换器隔离变压器 相关的功率电路来讲是非常严重的。  由于上述的限制,在商业上没有很多DC/DC变换器能够处理很宽的输入电压范围,但少数“超 宽”4:1输入的变换器在给定的物理尺寸下典型处理不到1/2的功率,这是与只有2:1输入电压输入范围的变换器在相同尺寸下所处理的功率相比。另外,宽 输入变换器的转换效率一般比2:1输入变换器低10%-25%。  在宽输入范围变换器中减少这种损失的一种方法是将变换器的调整 功能从其隔离功能中分离出来,如图1所示。在此图中,变换器的第一级是非隔离降压变换器,同时通过改变占空比进行电压调整功能。变换器的第二级提供没有任 何电压调整的电气隔离功能,而且一般还可以根据变压器的变比进行进一步的降压。这就是SynQor作为高效DC/DC变换器的领先者如何设计其所有的产 品。    图1:SynQor两级DC/DC变换器拓扑,其中非隔离调整级在非调整隔离级之前。   这种两级设计的优势是只有第一级看到了输入电压的宽范围。当宽输入电压带来的损失必须要这个第一级承担时,但这种损失并不严重,因为第一级不需要隔离变 压器。对于含有变压器的隔离级,则无需面对宽输入电压范围。在这种两级设计中,其输入电压作为两级方案中的中间总线电压一直是不变的。这就允许隔离级被优 化为单一工作条件,而且使得隔离级非常容易实现基于同步整流的设计,这种同步整流设计可以极大地降低功耗。在隔离级效率地提升弥补在调整级发生的任何附加 损失都大有帮助。    图2:SynQor半砖新产品系列IQ64,坚固耐用,输入电压范围高达8:1。   图2显示了SynQor新系列产品IQ64系列8:1超宽输入半砖DC/DC变换器。表2显示了SynQor新系列产品的不同输入电压范围。从表中可以 看出,除了正常的2:1 输入范围,还有4:1 输入范围的产品,甚至8:1输入范围的产品。对于3.3V输出电压的最大功率等级和典型效率也显示在此表中。尽管随着输入电压范围变宽,其功率等级和效率 存在一些降低,但是并不非常明显。这就是两级拓扑方案对功率电路设计的结果。  除了能够满足不同输入电压范围的需求,SynQor工业级DC/DC变换器InQor系列是全密封设计,非常坚固,能够应用于苛刻的环境,而这种环境时常伴随着有如此挑战性技术要求的系统。    表2:SynQor新工业级产品InQor系列,其功率等级和效率是标称输入电压和输入电压范围的函数。

    时间:2019-03-12 关键词: 电源技术解析 变换器 DC-DC

  • 一种低电流纹波的低压大电流DC-DC变换器的研究[图]

    一种低电流纹波的低压大电流DC-DC变换器的研究[图]

    1 引言近年来, 随着计算机微处理器的输入电压要求越来越低, 低压大电流DC - DC 变换器的研究得到了许多研究者的重视, 各种拓扑结构层出不穷,同步整流技术、多重多相技术、磁集成技术等也都应用于这个领域。笔者提出了一种交错并联的低压大电流DC - DC 变换器, 它的一次侧采用对称半桥结构, 而二次侧采用倍流整流结构。采用这种结构可以极大地减小滤波电容上的电流纹波, 从而极大地减小了滤波电感的大小与整个DC - DC 变换器的尺寸。这种变换器运行于48 V 的输入电压和100 kHz 的开关频率的环境。  2 倍流整流的低压大电流DC - DC变换器的结构分析倍流整流低压大电流DC-DC 变换器的电路原理图如图1 所示, 一次侧采用对称半桥结构, 二次侧采用倍流整流结构, 在S1 导通时SR1 必须截止, L1 充电; 在S2 导通时SR2 必须截止, L2 充电,这样滤波电感电流就会在滤波电容上移项叠加。图2 给出了开关控制策略。图1 倍流整流的低压大电流DC- DC变换器的电路原理图图2 开关的控制策略通过以上分析可以看出, 倍流整流结构的二次侧2 个滤波电感电流在滤波电容上相互叠加, 从而使得输出电流纹波变得相当小。结构中的同步整流器均按外加信号驱动处理,使控制变得很复杂, 但在这种半桥- 倍流拓扑结构中使用简单的自驱动方式很困难, 因为, 在这种结构中, 如果直接从电路中取合适的点作为同步整流器的驱动信号, 在死区时间内当这个驱动信号为零时, 同步整流器就会截止。为了在半桥- 倍流拓扑结构中使用自驱动方式, 就必须使用到辅助绕组。以单个半桥- 倍流拓扑结构为例, 见图3 , VSEC为变压器的二次侧电压, Vgs为由辅助绕组获得的同步整流器的驱动电压, 可以看出即使在死区的时间内, 同步整流器的驱动电压也不可能为零, 保证了自驱动方式在这种拓扑结构中的应用。图3 自驱动同步整流器电路及波形图另外, 由于在大电流的情况下MOSFET 导通压降将增大, 从而产生较大的导通损耗, 为此应采用多个MOSFET 并联方法来减小损耗。3 交错并联低压大电流DC - DC 变换器3.1 电路原理图综上所述, 倍流整流低压大电流DC - DC 变换器具有很好的性能, 在此基础上引入交错并联技术, 构成一种新的结构, 称为并联低压大电流DC - DC变换器, 可以进一步减小输出电流纹波。图4 为交错并联低压大电流DC - DC 变换器的电路原理图(以最简单的2 个倍流整流交错并联为例)。图4 交错并联低压大电流DC- DC变换器的电路原理图3.2 变换器的开关控制策略交错并联低压大电流DC - DC 变换器的开关控制策略见图5。图5 交错并联低压大电流DC- DC变换器的开关控制策略3.3 交错并联低压大电流DC- DC变换器性能首先这种拓扑结构最大的优点是变压器原边的结构简化, 控制变得很简单。其次, 这种方法的实现必须采用同步整流电路, 因为交错并联电路的实现要求变压器副边上下电位轮流为正, 在一个时间段内有且只有一个为正电位, 其余都为零电位。但在这种拓扑结构中, 由于2 个变压器的原边串联在一起, 而副边是并联的, 这样如果用肖特基二极管作整流器, 那么输入电压将在2 个变压器原边上分压, 而肖特基二极管又没有选通的功能, 这样变压器二次侧的波形将是完全对称的, 上下2 个整流电路的电流完全重合, 达不到电流交错并联的目的。这样, 应用同步整流器来完成这个功能, 同时利用MOSFET 的双向导电特性, 因为同步整流管的漏源电流是分布在坐标横轴两侧的。这种结构的过程详细分析如下:1) S1 导通, S2 截止; S3 截止, S4 , S5 , S6 均导通。由于S4 , S5 , S6 的导通, 第一变压器副边绕组下端为零电位,第二变压器副边绕组上、下端均为零电位,电感L1 上电流上升, L2 , L3 , L4 上电流下降。2) S2 导通, S1 截止; S4 截止, S3 , S5 , S6 均导通。由于S3 , S5 , S6 的导通, 第一变压器副边绕组上端为零电位,第二变压器副边绕组上、下端均为零电位, 电感L2 上电流上升, L1 , L3 , L4 上电流下降。3) S1 导通, S2 截止; S5 截止, S3 , S4 , S6 均导通。由于S3 , S4 , S6 的导通, 第二变压器副边绕组下端为零电位,第一变压器副边绕组上、下端均为零电位, 电感L3 上电流上升, L1 , L2 , L4 上电流下降。4) S2 导通, S1 截止; S6 截止, S3 , S4 , S5 均导通。由于S3 , S4 , S5 的导通, 第二变压器副边绕组上端为零电位,第一变压器副边绕组上、下端均为零电位, 电感L4 上电流上升, L1 , L2 , L3 上电流下降。以上各式均忽略整流器的电压降, 且V SEC为变压器二次侧的电压值。根据以上分析可知, 应用同步整流器, 通过变压器原边串联而副边并联的方法, 可以实现这种交错并联半桥- 倍流拓扑结构。它的优点主要有以下几个方面:1) 有效地简化了拓扑结构和控制策略。2) 在频率保持不变的情况下, 如果纹波的峰- 峰值一定, 则这种结构可以有效减小滤波电感的值, 从而加快整个变换器的动态响应时间。3) 交错并联的半桥- 倍流拓扑结构与非交错并联的半桥- 倍流拓扑结构相比, 一次侧和二次侧的导通损耗相差不多, 但由于采用交错并联技术,二次侧的开关频率是原来的一半, 相应的开关损耗也是原来的一半。由于变换器的开关损耗在整个损耗统计中占很大的比例, 因此, 交错并联技术可以极大地提高变换器的效率。4 仿真分析应用Pspice 软件对电路进行仿真。电路的参数如下: 开关频率为100 kHz , 占空比为40 % ,输入电压为48 V , 滤波电感为2μH , 滤波电容为820μF , 输出电流为60 A , 输出电压为1125 V。图6 所示为滤波电感的电流波形, 从图6 可以看出, 4 个滤波电感的电流轮流充电, 如果一个滤波电感在充电, 其余3 个电感必须在放电, 在死区时间内, 4 个滤波电感都在放电。图7 和图8 所示分别为交错并联变换器与单个倍流整流变换器结构的输出电流纹波波形, 从图7中可以看出, 4 个滤波电感的电流在滤波电容上叠加, 可以把电流的纹波减小很多。图6 滤波电感电流波形图7 交错并联变换器结构的输出电流纹波波形图8 单个倍流整流变换器结构的输出电流纹波波形5 实验结果通过理论研究及仿真分析, 可以看出, 交错并联的低压大电流DC - DC 变换器具有良好的性能,在输出为1125 V/ 60 A 的情况下, 输出电流纹波可以降到很小。为了进一步说明这种拓扑结构的可行性, 用实验结果验证。实验电路见图4 , 实验参数和仿真相同, 最后得到如图9 所示的实验波形。图9 中, V gs为一次侧一个MOSFET 的门极驱动电压波形, V ds则为相应的MOSFET 的栅源电压波形,从图9 可以看出, 实验结果所得波形同图5 的理论分析结果十分吻合, 所提出的方法是可行的。其中, 变压器选用R2 KB 软磁铁氧体材料制作的GU22 磁心, 原副边的匝数分别为8 匝和1 匝; 电感选用宽恒导磁材料IJ 50h 制作的环形铁心T5 - 10 - 215 ,匝数为8 匝。图9 实验波形6 结语通过仿真及实验分析, 得出以下结论: 对于低压大电流DC - DC 变换器, 可以通过交错并联的方法, 进一步减小输出电流纹波, 效果十分明显;或者在同样输出电流纹波情况下, 可以极大地减小滤波电感值, 从而减小整个变换器的尺寸, 提高变换器的瞬态响应特性。所讨论的2 个倍流整流结构交错并联案例同样适应于多个倍流整流结构交错并联的情况。

    时间:2019-03-08 关键词: 电源技术解析 变换器 DC-DC

  • 西安交大提出有源整流器芯片新结构和延迟控制方法

    西安交大提出有源整流器芯片新结构和延迟控制方法

    在无线能量传输领域,处于能量接收端的电源芯片通常包括整流器、DC-DC变换器和LDO三级结构。提升各级结构的效率有利于提升无线能量传输电源系统的整体效率。有源整流器相比于传统的二极管整流器在低压下具有更高的效率,但是,其转换效率,尤其是其轻负载效率一直受制于结构中的连续时间比较器的较大功耗。此外,常规有源整流器采用延迟补偿结构,造成有源整流器的多重脉冲等问题,影响了整流器工作的稳定性和可靠性。 西安交通大学微电子学院耿莉教授团队提出了一种新型的基于自适应延迟控制器的有源整流器结构,去除了原有结构中功耗大的连续时间比较器,提出了自适应延迟控制方法,降低了有源整流器的功耗,同时,提高了时间调节精度。 据团队专家介绍,这种新结构采用了电流控制延迟和锁存逻辑的方式来产生功率MOS管的控制信号,从结构上避免了传统有源整流器存在的多重脉冲现象,提高了整流器的稳定性和可靠性。自适应的延迟控制通过负反馈环·,使得整流器具有较高的抵抗工艺、电压、温度波动的能力,提升了电·的³棒性。 据进一步了解,该有源整流器采用0.18μm CMOS工艺进行了流片验证,具有低于230μW的静态功耗。整流器的输出功率为10.63mW时,达到94.1%的峰值效率。其相关研究成果近日在集成电·领域的顶级期刊《固态电·学报》(IEEE Journal of Solid-State Circuits,JSSC)在线发表。耿莉教授指导的博士生薛仲明为该论文的第一作者,耿莉教授、范世全副教授为该论文的通讯作者,西安交通大学为该论文的第一且Ψ一作者单λ。 据西安交大科研处有关老师介绍耿莉教授近年来在低功耗电源管理芯片设计上的潜心研究,也取得了一些研究成果,并在IEEE JSSC、IEEE TPE、IEEE TCAS-I等国际著名期刊上相继发表高水平论文。 这些研究成果为低功耗电源管理芯片的设计提供了新方法和新思·。该工作所提出的新型的有源整流器结构具有功耗低、精度高、工艺³棒性好等优点,能够广泛地应用于消费电子、生物医疗、物联网中的无线传能系统中。 据悉,本项研究得到了国家自然科学基金和陕西省重点研发计划的支持。

    时间:2019-03-07 关键词: 变换器 西安交大 电源芯片 行业资讯

  • LDO和DC-DC变换器的区别在哪?

    说到LDO,大部分人通常会感觉比较陌生。LDO是一种低压差的线性稳压器,主要功能是弥补传统线性稳压器在某些方面的不足。例如当需要输入电压要高于输出电压时,使用传统线性稳压器很难达到这种效果,所以这时就需要LDO的帮助。而DC-DC变换器大家都比较熟悉,所以在这里就不进行过多的介绍,将着重分析两者的差异。顾名思义,直流变换器字面意思上来看就是直流到直流的转换(不同直流电源值的转换)。所以,能够符合这个定义的都可以称为直流DC-DC转换器,这其中就包括LDO。但是一般的说法是把直流到直流由开关方式实现的器件叫DC-DC转换器。LDO则包含低降压,低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。它需要的外接元件也很少,通常只需要一两个旁路电容。新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA,电压降只有100mV。LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流。另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力, 输入和输出之间的电压降不能太低,而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。由于MOSFET的导通电阻很小,因而它上面的电压降非常低。当你发现电路中的输出和输入电压比较接近时,就可以使用LDO稳压器来提高电路的整体效率。所以,在把锂离子电池电压转换为3V输出电压时,大多选用LDO稳压器。虽说电池的能量最后有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。但是如果是相反的情况,就要考虑使用DC-DC转换器模块来进行设计了。因为LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。DC-DC转换器包括升压、降压、升/降压和反相等电路。DC-DC转换器的优点是效率高、可以输出大电流、静态电流小。随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高。现如今,各种电子元器件的成本在不断降低,体积也在逐渐减少。由于出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。例如对于3V的输入电压,利用芯片上的NFET可以得到5V/2A的输出。其次,对于中小功率的应用,可以使用成本低小型封装。另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。综合来说,在升压的情况下首先选择DC-DC转换器模块是没有问题的。而在降压的情况下,成本、效率、噪声、性能都决定了是选择DC-DC转换器还是LDO。下面就仔细的对两者进行了对比。LDO与DC-DC相比首先从效率上说,DC-DC转换器的效率普遍要远高于LDO,这是其工作原理决定的。其次,DC-DC转换器有Boost、Buck、Boost/Buck(有人把Charge Pump也归为此类),而LDO只有降压型。在干扰方面,DC-DC转换器所形成的电源噪声要远远大于LDO,大家可以关注PSRR这个参数。所以当考虑到比较敏感的模拟电路时候,有可能就要牺牲效率为保证电源的纯净而选择LDO。还有,通常LDO所需要的外围器件简单,占面积小,而DC-DC转换器一般都会要求电感,二极管,大电容,有的还会要MOSFET,特别是Boost电路,需要考虑电感的最大工作电流,二极管的反向恢复时间,大电容的ESR等等,所以从外围器件的选择来说比LDO复杂,而且占面积也相应的会大很多。本篇文章对LDO这种特殊的线性稳压电源进行了介绍,并且将其与直流转换器的异同进行罗列和比较。可以说是非常适合新手的一篇文章。

    时间:2019-03-01 关键词: ldo 电源技术解析 变换器 DC-DC

  • LLC 串联谐振变换器 FSFR2100

    LLC 串联谐振变换器 FSFR2100

    传统的 LC 串联谐振开关电源|0">开关电源为了实现小型化,被迫提高其工作频率.以减小滤波电感和开关变压器的体积。但频率的提高却使开关损耗增加而效率下降,且开关噪声变大。 LLC串联谐振变换器|0">变换器主要采用电流谐振、只在开关从 ON 到 0FF 及 OFF 到 ON 期间是电压谐振,其开关波形为正弦波,因而在给开关元件加上电压时,不会流过大电流;而且利用开关元件的寄生电容实现零电压开关 (ZVS) ,可制成高频、高效及噪声极低的变换器。 传统 LC 串联谐振变换器电路如图 1 所示 ( 去掉 Lm) 。 Lr 为开关变压器漏感, Cr 为谐振电容, Tr1 和 Tr2 分别用具有微小静寂时间的 50 % N 占比驱动。由于在 h 与 Cr 的谐振频率 f0 时,输入输出增益最大为 1 倍,为了稳定输出电压,有必要提高工作频率。但在理论上。空载时须将频率提高到无限大,才能稳定工作。这是 LC 串联谐振变换器的缺点。 增加 Lm 就是 LLC 串联谐振变换器电路。与 LC 串联谐振变换器不同,在开关变压器的一次侧并联了小电感量的励磁电感 Lm , Lm 的电感量仅是漏感 Lr 的 3-8 倍;此外,变压器的磁芯留有气隙,以适应小的励磁电感。 FSFR2100 是单片 LLC 串联谐振变换器 IC ,包含了 LLC 串联谐振变换器的全部功能:内部 FET 的 VDs=600V .导通电阻 0 . 32 Ω,体二极管的 tn=120ns 。●静寂时间为固定的 350ns 。●工作频率 300kHz 以上。●可程控的轻负载周期跳跃工作。●利用控制端 (CON) 可遥控 ON / OFF 。●输入过电压保护。●过电流保护 ( 检出电压 0 . 6V) 。●热击穿过电流保护电路 ( 检出电压 0 . 9V) 。●过热保护电路。●最高、最低工作频率设定。●保证稳定输出的频率控制。 FSFR 2100 的①脚 (VDL) 为内部 FET 漏极电压端;②脚 (CON) 为控制端, 0 . 4V 以下停止工作, 0 . 6V 以上正常工作,与光电耦合器连接可实现周期跳跃工作;③脚 (RT) 为频率控制端,利用光电耦合器恒压控制.以及最高、最低频率和软启动设定;④脚 (CS) 为过电流检出端, 0 . 6V 动作, 0 . 9V 热击穿过流保护动作,需接 CR 滤波器;⑤脚 (SG) 为信号地,与 PG 端子在控制电路的地作一点连接;⑥脚 (PG) 为电源地,低位 FET 的源极;⑦脚 (LVcc) 为控制电路电源端, 25 Vmax ,启动电压 14 . 5Vtyp ,停止电压 11 . 3Vtyp ;⑧脚 (NC) 为空脚;⑨脚 (HVcc) 为高位 FET 驱动电源,通常 LVcc :由电荷泵提供,对地电压 625Vmax ;⑩脚 (VCTR) 为高、低位 FET 的连接点。 图 2 是 IC 内部框图,图 3 是应用电路。输入电压为 D(B40V-400V :输出容量 24V / 8A 、 192W : T1 的一次线圈 36 匝.电感 630 μ ( 包括励磁电感 4951xH 和漏感 135 μ H) ;两个二次线圈各 4 匝;谐振电容 22nF 。

    时间:2018-10-30 关键词: 开关电源 电源技术解析 变换器 串联 llc

  • 基于网络的设计工具

    基于网络的设计工具

    Dan Barsell 国际整流器公司设计部应用工程师 设计师已转用负载点(POL)功率系统结构以便于在高负载波动下减小功率传输损耗和维持电压的精密调节率。 许多IT 系统设计师只有很少或者没有电源设计经验,市场上又缺乏具有迅速和精确模拟模型的开发工具。因此设计师就依靠反复试验的方法从目录中选择DC-DC 变换器,或者在未知性能的情况下采用“剪贴”参考设计的方法。加上采购过程和优化实验电路板设计耗时甚多,也会导致开发延误。这些挑战导致整个设计周期的延误,损害原始设备制造商的生产力,因为对于这些厂商来说,功率管理并非强项所在,但却是不可或缺的一环。一个新产品若延误六个月才推出市场会减少产品整个生命周期中33%的利益。然而若比原计划仅仅早一个月把产品推向市场,它却可带来高达12%的额外利益。国际整流器公司(IR)创建了一个新的基于网络的方法来帮助IT 设计师开发定制DC-DC 变换器,省去了分离式功率系统固有的延迟。 新工具myPOWER 在线设计中心重新定义了功率系统设计,它能够帮助元器件供应商缩短产品面市时间达数周甚至数月,同时为最困难的应用提供最优设计。 myPOWER 在线设计中心可供免费使用,网址为mypower.irf.com。系统为高级电源提供一步步的解决方案,并使用快速(小于5 秒)和精确的(5%或更佳)在线模拟去验证设计,然后输出可定制的已验证参考设计和材料清单(BOM),以及为设计验证和系统整合提供快速器件采购。myPOWER 在两个特定方面不同于其它的基于互联网的设计工具。它可以在大约1V 输出电压和1MHz 工作频率下提供高达80A 电流的完整电路设计, 并提供了优化设计所需的极高精确度。 高效率设计工具的关键 下面的描述说明了myPOWER 应用于同步降压DC-DC 变换器的过程。IR 不久会将此相同的方法延伸到其它功率管理应用。 一个快速、有效、可定制的基于网络的设计需要符合以下条件: • 参考设计不应只适用于某一个类别,它们必须适合于应用。 • BOM 列出来的应该是实际能够购买到的元件,而不仅仅是规格说明。 • 原型设计必须可以轻易得到。 • 最后,也是最困难的是必须有高性能的模拟工具,能够快速和精确的证明构思的正确性。 参考设计 事实上基本的电源设计和拓扑结构可以很容易从书本和参考设计中找到,但问题仍然存在,那就是这些参考系统能否运作,它们是否可以针对客户的独特应用而优化。 参考设计必须非常简单以便一个新手也可以创作一个设计,但是它要有充分灵活性以作调整,并允许设计师改变输出电流和电压,以及无源器件和滤波器。 这些参考设计也必须支持有经验的设计师的需要,帮助他们利用无源器件进一步优化设计的成本、效率、输出纹波、暂态响应、输出电压和开关频率。 材料清单 许多参考设计的其中一个最大缺点是缺乏完整的材料清单。当大多数设计仅有元件的数值和描述,而没有实际的供应商产品型号,对采购部门来说很难去订购。一个完美的参考设计应列出电路板上每一个元件的数量、数值、生产商和型号。它也应当提供每一个供应商的各种型号的规格和详细说明,以方便有经验的用户选择他们喜欢的供应商和型号。 原型设计 任何功率系统设计工具最重要的是消除完成原型创作的延迟。要验证POL 转换器设计一般也有额外的时间约束,因为它一般也是电路板上其中一个最后指定的配件。然而不幸的是如果在配置、采购、小批量生产和交付(包含分配部分)等方面出现任何问题或延误都会影响系统产品的面世。 在理想情况下,一个完整的原型创作过程不会超过两个星期。但在一个典型的设计周期中电路板必须重新设计,因为制造核心部分需要20 星期和最小1000 块,或者标准的参考设计不适合独特的电源要求。 要解决这些额外的延迟可以将最终的模拟设计直接连接到供应链,然后就可以收到经过完全测试过的参考设计,并附有部件工具包以优化参考设计,满足客户的独特要求。通过使用myPOWER 在线设计中心,IR 可以在72 小时之内将设计包交付全球客户。 模拟工具 IT 应用的点负载DC-DC 功率系统越来越复杂,因此需要精确的模拟程序以减少反复试验的验证过程所浪费的时间。 实际上一些工程师,尤其是缺少时间或没有专业知识去开发模拟程序所需的精确电路模型的工程师,他们趋向于回避这些严格的计算并选择改良已有的参考设计,直接用实验电路板去验证性能参数。 工程师们宁愿花费几个小时修改电源电路而不愿花费数天时间去优化一个模型。因为工程师们要努力去达到研发阶段的整体生产力和成本目标,因此这两种浪费时间的方法都会被放弃。 有缺陷的模拟模型会导致给出的原型设计不能工作,并需要大量的重复性试验工作,这样一来就延迟了整个项目的进度。或者样品只能在某些特定条件下工作,而没有明确指出它的工作条件限制,这样就会导致将来的品质保证问题。因此,一个不需模型制造的快速和精确的模拟设计是减少确证时间的一个关键要求。模拟的精确性,也就是说模拟和实际电路测量比较而言,是极其重要的,因为现代的设计需要元器件达到额定值的80-90%之内。如果一个模拟仅有20%的精确度,工程师就不能确定其设计是否超出元件极限,或大多数供应商所指定的10-20%降额窗口范围内。 理想上来说设计师们应当追求1%的精确度。如果输入精确的数值,就能达到这一要求。然而,由于寄生参数的影响和大多数元件事实上有1-30%的容许误差(典型的电阻器:1-5%,电容器:10-20%,输出电感:20-30%),这就是说模拟精确度一般是在5%范围之内。 现在市场上的模拟设计要牺牲精确度而取得速度,或者牺牲速度而取得精确度。结果是,为了加速模拟速度,模型通常被“理想化”。例如,用一个理想的开关来代替精确的场效应管模型或是把寄生因素排除在电路设计之外。 这加速了模拟速度,但它也产生了误差,在模拟整个电路时也会夹杂这些误差。图1 所示是现今典型的基于网络模拟工具得出的结果。其结果是理想化的,得出的是有无限斜度的简单条状图形。在电路模拟阶段时模拟误差会被放大。一个复杂的电源模拟需要花费数小时才能完成。为了加速模拟,工程师把这些设计分割成较小的子电路,然后再把得出的数据结合于整个设计。如果数据没有被正确同化将会产生严重的误差。 时间步进也可导致误差。如果要精确代表类似波形,就需要更多的步进。这通常会使模拟速度更慢,但其数据结果更精确。图2 所示是采用同步降压变换器开关节点的例子。第一个波形(图2A)是用很长的时间步进模拟结果,第二个波形(图2B)是以前者百分之一的时间步进模拟的结果,这也需要多花费100 倍的时间去模拟,但是其波形和图2C 所示的实测波形更为接近。图2C 记录的是用作图2A 和图2B 模型的实际模拟功率电路模型的示波器波形。如果一个模拟器要得出有用的结果,它必须有精确的元件模型。为了创建这些模型,许多工程师花费数小时输入与电路相关的数据,运行耗时的模拟来反映实际的测量数据,然后优化模型。有些工程师为了节约时间花钱外购所需的专业模拟工作,但是前提是此模型已经存在,否则这仍旧要花费一些人的时间和努力。 在要求高精确度的同时,设计师也要求用最少的时间进行基于网络的模拟程序。因此整个网站必须仔细调整从而满足这些极端的要求。模拟的目标是时间应小于5 秒,模型和实际波形之间的精确度应当优于5%。由于这些原因,国际整流器公司采用以Berkeley SPICE 3 为基础的通用系列模拟器,并优化了每个元件模型的速度和精确度。 在SPICE 中,每个电路的模型网络表被转换成一系列的数学等式。通过减少等式数量,也可以缩短程序运行时间,而这些程序往往因为相当耗费时间而没有执行。 IR 利用MathCAD 把这些数学模型简化成几个等式,然后把这些简化了的等式放回到SPICE 模拟器。所需模拟时间大大减少,而同时保持极高的精确度。 为了进一步提高精确度,模型中加入了寄生参数。这需要反复进行硬件测试、改良网络表和使用1ns 的极小时间步长进行模拟,以提供精确度优于5%的模型。 把电路网络表的分析与改良相结合以及在模型中加入寄生元素为IR 工程师们达到所追求的目标,就是把模拟时间从3 分钟缩短至4 秒并保持5%精确度。甚至当更换元件时,模型的精确度仍能保持在±5%误差范围内,以确保模拟设计和原型测量保持一致。 原型和最终的设计 当设计完成模拟,系统就会输出一个完整的材料清单,Gerber 格式的PCB 结构图以及电路原理图。IR 也提供独特的原型设计工具组件,包括经全面组装和测试的原型参考设计,并附有模拟期间所指定的各种无源器件。这些工具包能够在72 小时之内交付,因此原型和设计证明能够马上开始。今天信息技术设计工程师需要设计比以前更小型和更高效率的功率管理电路。IC 技术在同样的晶片面积上集成更大密度的晶体管和更多的功能,随着电压越来越低,它会导致功率消耗的增加。

    时间:2018-10-30 关键词: 电源技术解析 变换器 DC-DC mypower

  • 移相全桥变换器的建模与仿真

    移相全桥变换器的建模与仿真

    由于开关电源是一个线性与非线性相结合的综合系统,给系统的动态研究和设计带来很多不便。本文主要是用状态空间平均法来进行建立模型,它是由美国加里福尼亚理工学院的R.D.MiddlebrOOk于1976年提出的。这种方法不仅简化了计算过程,使各种不同结构变换器的解析模型具有了统一的形式,而且操作性更强,工作人员仍可以用波德图(Bode Plot)或者奈奎斯特(Nyquist)定理来对系统进行系统稳定的判定。 1 建模 由于移相全桥变换器可由Buck变换器变化而来,首先根据Buck变换器的原理,采用状态空间平均法,建立Buck变换器的小信号模型。为简单起见,本文简化变换器,使其工作在理想状态,即状态转换是瞬间完成的,在任何时候都只有两种状态存在——导通或关断。选择电感电流iL和电容电压Uc为状态参量,输出电压Uo和输入电流Is为输出参量,Ui为输入参量,D为晶体管占空比。如图l所示。 1)变换器工作在CCM状态下,由图2可知,在0≤t≤DTs时间段内, 2)变换器工作在DCM状态下,由图3可知,在DTs≤t≤Ts时间段内, 二极管的导通占空比为D’=1一D,则基本的状态平均方程组为:将上面各式代入到(10)式并减去式(11)得扰动方程为 由于变压器存在漏感Lr,使得移相全桥变换器的有效占空比为Deff,它总小于原边占空比D,则有效占空比的计算如下式: 由(16)式可看出,IL、Ui、D的扰动都会使有效占空比Deff发生扰动,而这三种不同的扰动量di、du、dd的表达式分别为 从而得到移相全桥变换器的小信号等效电路模型如图4所示。 根据图4导出移相全桥变换器主电路的传递函数, 2 仿真 本文以一台实验样机的参数为指标,利用MATLAB对系统进行仿真,其参数如下: 3 结论 通过利用奈奎斯特判据先对系统开环进行仿真,如图5(a)所示,在右半平面内无极点,轨迹与实轴大约为0.678处,(0,j0)不在轨迹范围内,所以该系统开环是稳定的。通过加入单位阶跃效应构成闭环系统进行验证,如图5(b),可以看出系统是渐进稳定的。

    时间:2018-10-26 关键词: 开关电源 电源技术解析 变换器 解析模型

  • Buck变换器在射流清洗设备电源中的应用

    Buck变换器在射流清洗设备电源中的应用

    高压水射流清洗技术是近年来在国际上兴起的一门高科技清洗技术,具有清洗速度快、效率高、成本低、清洁环保、不腐蚀损伤基体、适用范围广、易于实现自动化和智能化控制等优点,可清洗形状结构复杂的零部件[1]。近年来,随着自动控制技术的不断发展,工业自动化水平日益提高。为了提高高压水射流设备的清洗效率和清洗效果,有研究人员将自动控制技术运用到射流清洗过程中。其清洗效果和清洗效率相对于传统的人工清洗有了很大的提升,但该过程对于控制系统的实时性、稳定性具有较高的要求。因而作为控制系统的驱动部分,直流电源输出的快速性、稳定性也有较高的要求。传统的驱动电源多以线性直流稳压电源为主,由于电压调整功能的器件始终工作于线性放大区,因而在应用过程中存在着功耗大、能量转换效率低、输出响应速度慢等问题。这为线性直流电源的应用带来了很大的局限性。近年来,随着电力电子功率器件的不断发展,开关电源得到了越来越广泛的应用,其相关的技术及发展现状如文献[2]所述。开关电源具有较多的优点。如内部功率损耗小、转换效率高。随着超高频功率变换技术[3]的不断发展与应用,开关电源的转换效率可以大幅度提高,其转换效率可高达90%以上,即达到文献[4]所述合理使用能源、减少能量损耗的目的。而且开关电源由于没有传统的工频变压器,散热器相对较小,因而具有体积小、重量轻的特点。开关电源不仅具有以上所说的优点,与其相应的电路的控制方法也比较多,如循环控制方法[5]、滞环控制方法[6]、移相控制方法[7]等。设计人员可以根据实际应用的要求和需要,灵活地选用各种类型的开关电源电路和控制方法。本文针对传统线性直流稳压电源与开关直流电源的以上特点,结合射流清洗设备的触摸屏驱动电源输入输出响应要求。设计了一种基于传统线性直流电源电路的开关电源电路结构,文中首先给出了相应的电路结构,并对相应的工作原理做了简要说明,其次给出了仿真结构图的搭建方法及结果分析,最后给出了所得结论。1 传统线性直流电源概述传统的线性直流电源采用的一般结构形式如图1所示,图中Ui为电网中引入的220 V工频交流电,T为变压器,U为整流器,D1为二极管,R1~R6均为电阻,C1为稳压电容,Dz为稳压管,VT1、VT2为工作在线性状态的开关管,RL为负载电阻。工作原理简述如下:工频交流电Ui,经降压变压器T变为幅值可调的交流电,然后经整流器U整流为脉动的直流电,最后经滤波、缓冲、输出反馈、稳压为负载提供直流稳压电源。在线性直流电源中开关管工作在线性放大状态,直流稳压电路的种类较多,为了不失线性直流电源的一般化,此处选取常用的带放大环节的串联型稳压电路,其中VT1为功率调整管,VT2与R3组成比较放大电路。假设变压器T的一次侧电压为U1,二次侧电压为U2,变压比为n:1,负载电压为Uo,Ui为工频电网电压,若不计及变压器一次侧损耗、变压器漏抗。则当空载时,负载获得的平均电压最大为:实际设计时,往往根据负载的情况确定电容C1的值。2 引入Buck变换器的直流稳压电源2.1 Buck变换器的结构及工作原理Buck变换器原理图如图2所示,其中Ui为直流电源,V为IGBT(绝缘栅双极晶体管),D为二极管,L为电感,C为电容,R、RL均为电阻。其工作原理简述如下:在某一时刻,驱动信号控制开关管V导通,电源Ui向负载RL供电,负载电压Uo=Ui,负载电流io按指数曲线上升。当开关管V关断时,负载电流经二极管D续流,负载电压Uo近似为0,负载电流呈指数曲线下降。若所取电感L值较大,则负载电流连续且输出脉动较小[8]。假设V的一个通断周期为T,导通时间为ton,关断时间为toff,导通占空比为α,则负载电压的平均值:由式(3)可知,输出到负载的电压平均值Uo最大为Ui,减小占空比α,Uo随之减小。2.2 引入Buck变换器的直流稳压电源由于传统线性直流电源存在的上述问题,本文将Buck变换器引入其中,同时去除了前置的交流变压器,将线性直流电源变换为体积小、重量轻的开关电源。其电路原理图如图3所示,其中Ui为电网引入的220 V工频交流电,U为整流器,C1为滤波电容,C2为稳压电容,C3为缓冲电容,V1、V2为IGBT开关管,VD1、VD2、VD3均为二极管,L1、L2为电感,R1、RL为电阻。其工作原理简述如下:220 V工频交流电,经整流器U整流得到纹波较大的直流电,经滤波电容C1滤波,然后经稳压装置稳压形成较为稳定的直流电。其输出到负载的功率,可由后置的Buck变换器进行调节,通过调节主开关管V1的占空比,即可得到输出功率合适的直流电。图中V2、VD1、L1、C3构成辅助电路,其作用是实现主开关管的零电压关断与开通。假设V1的导通比为α,负载电压为Uo,电容C1两端的电压为Uc1,Ui为电网电压的有效值,若不计及电路中电感的感抗,则当空载时,负载获得的电压最大为:由上述分析不难看出,含Buck变换器的直流电源比线性直流电源更容易进行调节,通过控制开关管的导通比可以满足不同直流输出的要求。而线性直流电源的输出受负载的大小影响较大,而较难实现不同直流电源实时输出的要求。在高压水射流的应用中,对于系统响应的实时性有较高的要求,在不同的应用环境下负载往往存在较大的变化。因而,通过以上理论分析可以看出,含Buck变换器的直流电源能够更好的适应高压水射流的应用需求,下面通过仿真实验分析加以说明。3 两种电源的MATLAB仿真与分析3.1 建立电源的仿真结构图在MATLAB的Simulink环境下,根据图1、图3设计的电路图搭建仿真结构图,并根据负载要求设计相应的元件参数。为了更好地反映引入Buck变换器后的电路特点,在搭建图3的仿真结构图时,并未引入专门的控制器,而是选取了常规的工频触发脉冲来控制开关管的通断,应当注意的是,在含有电力电子器件的电路或系统仿真时,仿真算法一般选用刚性积分算法,如ode23tb、ode15s等,这样可以得到较快的仿真速度[9]。以下仿真算法选用ode15s。3.2 仿真结果与分析3.2.1 仿真参数选取与输出响应曲线以射流清洗设备的触摸屏驱动电源输出要求为例进行比较,其输出要求:直流电源电压Uo=20.4~26.4 V,最大输出功率Po=7 W。在图1所示的电路图中主要参数选取如下:交流输入Ui的参数:Ui=220 V,f=50 Hz,φ=0°(φ为初相角)。变压器T的参数:变压比为1:1。电阻R1=330 Ω,R2=1 kΩ,R3=R4=R5=R6=RL=100 Ω,电容C1=2 000 μF。按上述主要参数设定,仿真结果如图4所示。在图3所示的电路图中主要参数选取为:IGBT工作频率取为工频,电感L1=L2=0.001 H,C1=500 μF,C2=100 μF,C3=2 000 μF。为对两种电源输出响应进行比较与分析,开关频率取为工频,其他参数的选取与图4所示仿真框图一致。按上述参数设定,仿真结果如图5所示。同等条件下,若负载突变,如取负载RL=1 000 Ω,则根据上述已搭建好的仿真框图,仿真结果如图6、图7所示。线性直流电源输出响应为Uo=47 V,Io=0.047 A。含Buck变换器直流电源的输出响应为Uo=23 V,Io=0.023 A。即在负载变化较大时,线性直流电源的输出需要再次做较大的调整方可满足输出要求。由图6不难看出,线性直流电源的响应速度也有所下降。3.2.2 响应曲线的分析与比较由上述仿真图形图4、图5不难看出:两种直流电源在负载较小时,均能满足所需的输出要求,当两种电源的输出电压同为Uo=23 V,输出电流为Io=0.023 A时,输出功率均为Po=5.29 W。由仿真图形图6、图7可以看出当负载较大时,含buck变换器的直流电源优势较为明显,通过仿真数据对比可以发现两种电源有以下输出特点:在输出相同直流电压或电流时,含Buck变换器的直流电源输出响应时间为0.007 s,远小于线性直流电源的0.5 s,即在线性直流电源中引入Buck变换器后,电源的输出响应速度明显增大,这对于对输出响应实时性要求较高的高压水射流驱动电源来说,具有较强的适应性。同时,由仿真图形对比可以看出上述线性直流电源的输出响应纹波还比较大,若想获得纹波较小的直流稳压电源,则需加入相应的调压装置。而开关管在工频工作时,含Buck变换器的直流电源在同等条件下,输出电压、电流波形相对稳定。值得注意的是,由于水射流触摸屏所需的电源输出功率较小,因而线性直流电源的稳压装置中需要相应的电阻来减小电压波动。这就造成了电源自身的损耗增大,不仅使功率转换效率降低,还会导致电源发热量增加,需要更大的散热装置。而对于含Buck变换器的直流电源,在开关管工作在工频时,开关损耗几乎可以忽略不计。在高频时,可以通过辅助电路实现零电压关断、开通,因而在功率转换电路中的损耗较小,电源的发热量也比较小,即功率转换效率更高。当然,在图5中还可以看出在0.008 5 s时,输出响应存在着微小的电压降落,实际应用中还需要加入相应的反馈控制器,或者电压降落补偿器加以调节,形成闭环控制回路,以保证输出响应的持续稳定。4 结论本文从高压水射流设备的实际需求出发,结合开关电源的优点,设计了含Buck变换器的直流稳压电源主电路结构,并以水射流设备触摸屏的驱动要求为例进行仿真说明。通过图形对比可以发现,本文所设计的含Buck变换器的直流电源具有输出响应速度快、功率转换损耗低、输出波形稳定的特点。在对于输出响应要求较高的电源中,往往为开关管设置专门的控制器,采用各种各样的先进控制方法,如预测控制、自适应控制、模糊PID控制、专家系统、神经网络控制等。通过PWM技术与这些控制方法的有效配合,可以很大程度上提高开关频率(在一些电子工业发达和先进的国家,可以做到兆赫级)以提高直流电源的可靠性,增大输出功率可调范围,实现开关电源的轻量化、小型化。

    时间:2018-10-24 关键词: 电源 电源技术解析 变换器 射流

  • 漫谈电源︱一百个人对“电源”有一百种不同的理解

    漫谈电源︱一百个人对“电源”有一百种不同的理解

    每个人心中都有一个“电源”的样子。我妈以为电源就是家里的电灯泡。我爸以为电源是手机上的电池板。艾默生的朋友们心中的电源可能就是AC/DC变换器。“电源”这个词有点笼统了。出差住在旅馆里,找不到220V的交流插座,你可能会说这个旅馆里不提供“电源”。在这个语境下,“电源”是指可以用在某个供电设备的输入端的“交流输入电源”。 出差在外,你发现自己的笔记本电脑没有带“电源适配器”,你也会习惯说,带了电脑,但没带“电源”。如果有人问你的职业是什么,你说是做电源的,对方一下子可能就觉得你的职业很一般,不是什么高科技。但电源在你心中却是高科技,因为你在做的是一款高端电源,高端到国内还没有人能够做出来,而问你的人,他脑子里的“电源”只是墙上的220V交流电。你们俩不在一个频道上。电源似乎太过普通,因为它显得无处不在。泛义上说,只要能提供电能的设备、设施都是电源。 狭义上说,做电源的人心中的电源只是开关电源。我要谈的是开关电源。我没有搜索查找开关电源的官方定义。在我的理解中,开关电源就是通过开关管的开通和关断来实现电能的变换。电能的变换则包括:1,AC/DC。将交流变换为直流,通常是将来自电网的220V、两相交流电或380V、三相交流电转换为直流电。小功率AC/DC的交流输入是220V,大功率的交流输入是380V。根据应用行业、场合不同,又被称为AC/DC变换器,整流器,一次电源,通信电源,电源适配器,照明电源等。2,DC/DC。将直流变换为直流,譬如将高压、小电流转换为低压、大电流,根据应用行业、场合不同,可能称为DC/DC变换器,二次电源,模块电源,板上电源,等。3,DC/AC。将直流变换为交流,根据应用行业、场合不同,可能称为UPS,逆变器,并网逆变器,电机控制器,等。4,AC/AC。 将交流变换为交流,通常的产品形式是变频器,用于电机控制方面。上述四种电能的转换,细分出众多的行业!在AC/DC,DC/DC这两个方向对应的行业市场,业内人士称之为“开关电源”,具体的行业有比较高端的一次电源(也叫通信电源,但通信电源的含义似乎更广),一般特指给电信机房供电的48V电源,二次电源,客户定制电源,电力电源,计算机电源,笔记本电脑等各种电器设备的电源适配器,手机充电器电源,充电桩电源,车载充电机(OBC,on-board charger),车载DC/DC变换器,照明电源(又可分为LED电源,电子镇流器,HID电源),等。 而对应于DC/AC,AC/AC的行业市场,人们一般就说是做UPS的,做光伏的(按光伏电池板直流电转换为交流电),做储能的,做变频器的,做电机控制器的。可以想象,上述四种电能转换背后是多么大的商业市场哦!(按语:漫谈电源系列只写给非科班做电力电子的外行朋友的消遣阅读。专业人士不要浪费时间哦。 ) 本系列更多内容:当年的华为电气,折射我的电源情节电源是所有电子产品的心脏电源,离开了电源模块就不是那个电源了所有电子产品60%的故障率来自电源

    时间:2018-10-08 关键词: 开关电源 电源技术解析 变换器 AC/DC 电机控制器 漫谈电源

  • 移相控制全桥ZVS-PWM变换器的分析与设计

    移相控制全桥ZVS-PWM变换器的分析与设计

    上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。1 电路原理和各工作模态分析1.1 电路原理图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。S1和S3构成超前臂,S2和S4构成滞后臂。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;(3)忽略变压器绕组及线路中的寄生电阻;(4)滤波电感足够大。1.2 各工作模态分析(1)原边电流正半周功率输出过程。在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。电容C2和C3被输入电源充电。变压器原边电压为Vin,功率由变压器原边传送到负载。在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。(2)(t1一t1′):超前臂在死区时间内的谐振过程。加到S1上的驱动脉冲变为低电平,S1由导通变为截止。电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。(3)(t1′一t3):原边电流止半周箝位续流过程。S3在驱动脉冲变为高电平后实现了零电压导通,由于D3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。(4)(t3-t4):S4关断后滞后臂谐振过程,t3时加到S4的驱动脉冲电压变为低电平,S4由导通变为截止,原边电流失去主要通道。C4和C2开始充放电,与谐振电感Lr串联谐振。D2导通续流,为S2的零电压导通作好准备。原边电流以最大变化率从正峰值急速下降。(5)(t4一t5):电感储能回送电网期。t4时刻D2已导通续流,下冲的电流经D2返回到电源EC,补偿了电网在全桥电路上的功耗。滞后臂死区时间应该在该时间段内结束。原边电流下冲到零点。(6)(t5一t6):原边电流下冲过零后开始负向增大。S2和S3都已导通,形成新的电流回路,开始新的功率输出过程。但副边两整流二极管正是同时导通和急剧变换的过程,副边电压被箝位在低电平,出现占空比丢失过程。因此滞后臂死区时间设计是关键。各时段工作模态等放电路如图3所示,图3中未画出变压器副边电路。2 关键参数设计2.1 死区时间设计该变换器一个周期内有两个关键的死区时间,这两个死区时间的设计会影响到主开关管的电压应力限制和ZVS的实现。为了保证每个主开关管上电压应力为输入电压的一半,S1要比S3提早关断tdeadF1,S4要比S2提早关断tdead2。如果4个开关管的输出结电容COSS1~COSS4是一样的,从理论上讲只要tdead>0就可以了。但实际上4个开关管的输出结电容不可能完全一致,同时为了保证可靠,此区时间的设置应该满足如下的条件:S1上的电压到达Vin/2,也就是D1已经导通;同样,S4上的电压到达Vin/2,也就是D4已经导通,虽然4个开关管的输出结电容会有差异,但是在用上述方法设计时,可以把COSS1~COSS4看作是器件手册里给定的参数。假定都是COSS,要满足上述条件,死区时间的设计应满足如下不等式。 S2和S4的零电压是由激磁电感上的激磁电流在tdead2时间段对S3的结电容充电,同时埘S2和S4的结电容放电来实现的。实际上,死区时间不可能设计得很大。在原边电流上冲过零点之前,结束tdead2让S4开通,以实现主动功率丌关管的零电压开通。若tdead2太长,原边电流过零反向流动之后,将难以实现零电压开通。因此滞后臂的ZVS条件可表示为由此可见,根据上面的设计方法,两个死区时间的设计表达式是相同的。由于式中:n为变压器的变比;Lm为变压器初级电感量;fs为开关频率。将式(3)代入式(1)和式(2),可以得到两个死区时间的统一设计式2.2 谐振参数的设计谐振参数的设计是谐振变换器设计中非常重要的一环,该谐振参数的设汁可以按下面推荐的方法来设计。首先根据变换器输入输出电压来计算出变压器的变比n,其计算公式如下。式中:VOmin为输出直流电压:VD为输出整流二极管的通态压降;VIf为输出滤波电感上的直流压降;Dsecmax为副边占空比。根据期望的谐振电容的最大应力VCmax,来设计谐振电容的大小,其计算公式如下。式中:Tmax为最大开关周期。再根据LC振荡频率fs来设计谐振电感Ls的大小,其计算公式如下。Ls的选择也涉及到很多问题,取大些可有效地抑制原边电流急剧变化引起的寄生振荡,降低开关损耗;但过大义延长了占空比丢失时间,使整机的效率明显降低。如取小些,负载电流最大时仍能控制移相稳定,提高电源效率,但过小,虽然占空比丢失最小,但增大开关损耗,加剧了开关管的温升,降低了电源的可靠性。3 实验结果根据以上方法设计和制作了200W移相全桥谐振ZVS变换器实验样机,其主要参数如下:输入直流电压Vin为280~550V; 输出直流电压Vo为24V; 输出电流Io为O"8.33A; 开关频率fs为200kHz; 4个主开关管为IRFPG40; 驱动控制芯片为UC3875; MOSFET驱动芯片采用了MIC4420; 输出整流二极管为MUR3020; 输出滤波电感Lf为19.8μH; 输出滤波电容Cf为1800μF; 谐振电感Lr为28μH。图4示出了电路的脉冲驱动波形和主开管两端所测脉冲波形。4 结语本文在移相全桥ZVS电路拓扑基础之上,根据等效电路模捌,分析了谐振电路在各时序工作模态下的电路原理。变换器的两个死区时间也合理设计来保证开关管的开关应力,同时满足各个开关管的ZVS实现条件。谐振参数的设计可以按推荐的方法次序来设计。发展谐振技术可以提高开关频率、降低开关损耗、减少开关装置的体积和重量。因此更通用的谐振变换拓扑结构、谐振元件的集成化、谐振拄制技术将是今后发展的主要方向。

    时间:2018-10-05 关键词: 电源技术解析 变换器 zvs-pwm 全桥

  • 无损箝位电路在单端正激电源中的应用

    无损箝位电路在单端正激电源中的应用

    1 引 言 在各种隔离式DC/DC变换器中,单端正激式变换器是其中最简单且适合大电流输出的一类,因而正激式变换成为低压大电流功率变换器的首选拓扑结构。但因其高频开关变压器磁通工作在磁滞回线的一侧,必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。同时由于工作在高频状态下,开关变压器漏感、分布电容等寄生参数的影响不能忽略,在开关转换瞬时,电抗元件的能量充放致使功率器件承受很大的热和电应力,并可导致开关管的电压过冲,这不仅意味着设计人员必须选用昂贵的高耐压功率开关管,同时也给电源的可靠性带来潜在威胁。为此常常还需设置各种缓冲吸收电路,但这降低了变换器的工作效率。 为了解决单端正激式开关电源中的磁复位与漏感储能问题,传统的解决方案有以下几种: (1)、采用辅助绕组复位电路; (2)、采用RCD箝位复位电路; (3)、采用有源箝位复位电路。 其中方案1要求辅助绕组与初级绕组必须紧耦合,实际上因漏感的存在电路中仍需外加有损吸收网络,以释放其储能;方案2是一种有损复位箝位方式,因其损耗的大小正比于电路的开关频率,(和方案1中外加有损吸收网络一样)这不仅降低了电源本身的效率,也限制了电源设计频率的提高;方案3中需要附加一复位开关管与相关控制电路,增加了电路复杂性的同时,也带来了附加电路损耗与总成本的上升。 本文介绍一种新型无损箝位电路,无须额外附加辅助开关管,电路简单,可有效降低功率管的电压应力,箝位效果优异,且有利于电源工作效率的提高。 2 工作原理 新型无损箝位电路(图1)与上述方案1(图2)中采用辅助绕组的传统方法相类似,不同之处是增加一个箝位电容C2,但功率主回路上无需外加有损吸收网络。传统的方法是在变压器中附加一个去磁绕组N3,它与二极管D3串联后接到电源输入正极,N3起到去磁复位作用,功率管S漏源间并联的RC网络,用于吸收变压器的初级漏感储能,防止产生过电压尖峰,保护功率管S免被击穿,见图2所示。图1中的箝位电路由辅助箝位绕组N3、箝位二极管D3、箝位电容C2组成。辅助箝位绕组N3的与初级绕组N1相同,目的是为了实现当功率开关管S漏源间电压VS上升到2VI时,加在初级绕组N1上的电压等于VI,因N1、N3匝数相等,箝位绕组N3的电压也必然是VI,此时D3恰好正偏导通。 下面结合图1与图3具体分析新型无损箝位电路的工作原理。 1) T0时刻为初始状态,设功率开关管S处于关断状态,此时(B点电压)VS等于VI,箝位电容C2通过初级绕组N1、箝位绕组N3被充电至VI,电容极性为左负右正。 2)在T1~T2期间,功率管S导通,由于箝位绕组与初级绕组电压相同,参照图1所示的同名端可知,VA为-VI,二极管D3反向偏置截止。在此期间,变换器实现功率的变换,能量从初级传到次级。 3)在T2时刻,功率管S关断,变压器中的漏感与磁化储能给功率管等寄生分布电容充电,(B点电压)VS最终上升到2VI,A点电位也从- VI 上升为+VI ,若此时B点电位进一步上升,二极管D3将正向偏置导通,功率管S漏源间的电压VS通过电容C2和二极管D3得到有效箝位。 4)在T2~T3期间,反射在初级的负载电流Io下降,其下降的速率由初级与次级间的漏感决定,该电流通过箝位电容C2、箝位二极管D3回流至电源,流过电容C2的电流引起其端电压上升(设其增量为dVS),导致B点电位变化为2VI+dVS。 5)在T3时刻,由于出现输出二极管D1的反向恢复,反射到的初级电流Io出现负值,箝位二极管D3停止导通,因功率管S的漏源间存在输出电容Cp,(B点电位)VS出现下降直到输出二极管D1反向反射电流小于初级磁化电流并在T4时刻等于零为止。 6)在T4~T5期间,正在减少的正向磁化电流将引起B点电位VS再次向2VI上升,直到箝位二极管D3再导通,将VS箝位在比2VI稍高的电位上。 7)在T5时刻,初级磁化电流减为零,箝位电容C2通过初级绕组N1、箝位绕组N3向电源VI放电,回送电容储能,VS跌至VI。 8)下一时刻重复以上过程。 3 关键电路参数设计 (1)箝位电容计算 从上文分析可知,箝位电容C2的取值决定了功率管漏源间电压VS超出VI值的多少,超出的电压dVS近似计算方法见式 (1): dVS =0.5(Io/Nps)(T2-T3)/C (1) 式中 Nps是初次级匝比,Io是负载电流。 因VS的上升时间与T2-T3间隔相比甚小,可忽略不计,故 dT= T2-T3=LS(Io/ Nps)/VI (2) 式中是LS相对于初级绕组的初次级间漏感联解(1)、(2)式可得: dVS =0.5(Io/Nps)(LS Io/Nps)/(VI×C)=0.5LS(Io/Nps)2/(VI×C)(3) (2)箝位二极管设计选择 二极管D3的峰值电流定额必须大于Io/Nps,同时其平均电流定额IAV至少必须等于: IAV=0.5(Io/Nps)(dT/T)(4) 式中T是开关周期 二极管的电压定额必须超过2VI (3)箝位绕组匝数计算 绕组匝数N3越多,电源允许的最大占空比越小,功率开关管S上的电压应力越低,但占空比小,开关变压器的利用率低。综合考虑最大占空比和开关管的电压应力,一般选择箝位绕组匝数和初级绕组匝数相同,即 N3=N1 (5) 4 应用实例 设计了一应用于输入为220Vac(187Vac~242Vac)、输出为20V/8A的正激变换高频开关电源,工作频率是200kHz,最大占空比为0.45,采用新型无损箝位电路,铜线的趋肤深度为Δ=0.148mm。按照上述设计方法,设计的电源变压器有关参数如下: 磁芯规格ETD34,磁芯材料为3F3, Philips; 初级绕组28匝;复位绕组28匝;次级绕组9匝。 设计出的变压器的初级励磁电感值实测为Lm=748.40μH,次级电感值实测为Ls=64.7μH,初级漏感电感值实测约为63μH,箝位电容C=4700Pf,箝位二极管选用MUR4100。 利用示波器测试其在输入220VAC、输出20V/8A条件下,功率开关管漏源极电压波形如下图4所示,测试结果表明过压尖峰得到了有效抑制,实现了无源无损箝位的目的。 5 结 语 本文介绍了一种无损箝位电路在单端正激电源中的应用,着重分析了工作原理,并给出关键电路参数的设计。用一种峰值电流模式控制芯片UC1825设计的某型电源,已配套应用于军用、民用产品,取得了良好的性能。实验结果表明非常有效地抑制了过压尖峰,实现了无源无损箝位。这种新型电路,拓扑简单可靠,可移植于如单端正激、单端反激、SEPIC、CUK以及ZETA等拓扑电路中,应用前景广阔。

    时间:2018-10-03 关键词: 开关电源 电源技术解析 DC/DC 变换器 无损箝位电路

  • 交错并联的低压大电流DC - DC 变换器设计

    中心议题:交错并联的低压大电流DC - DC 变换器设计解决方案:倍流整流的低压大电流DC - DC变换器的结构分析交错并联低压大电流DC - DC 变换器设计本文通过n 个倍流整流结构交错并联方式用以进一步减小纹波电流。给出了电路的开关信号波形和仿真模型, 并使用Pspice 仿真软件对该模型进行仿真, 取得满意效果。最后通过实验验证。这种结构特别适用于通信设备、计算机、宇航等领域的电源。1 引言近年来, 随着计算机微处理器的输入电压要求越来越低, 低压大电流DC - DC 变换器的研究得到了许多研究者的重视, 各种拓扑结构层出不穷,同步整流技术、多重多相技术、磁集成技术等也都应用于这个领域。笔者提出了一种交错并联的低压大电流DC - DC 变换器, 它的一次侧采用对称半桥结构, 而二次侧采用倍流整流结构。采用这种结构可以极大地减小滤波电容上的电流纹波, 从而极大地减小了滤波电感的大小与整个DC - DC 变换器的尺寸。这种变换器运行于48 V 的输入电压和100 kHz 的开关频率的环境。2 倍流整流的低压大电流DC - DC变换器的结构分析倍流整流低压大电流DC-DC 变换器的电路原理图如图1 所示, 一次侧采用对称半桥结构, 二次侧采用倍流整流结构, 在S1 导通时SR1 必须截止, L1 充电; 在S2 导通时SR2 必须截止, L2 充电,这样滤波电感电流就会在滤波电容上移项叠加。图2 给出了开关控制策略。图1 倍流整流的低压大电流DC- DC变换器的电路原理图图2 开关的控制策略通过以上分析可以看出, 倍流整流结构的二次侧2 个滤波电感电流在滤波电容上相互叠加, 从而使得输出电流纹波变得相当小。结构中的同步整流器均按外加信号驱动处理,使控制变得很复杂, 但在这种半桥- 倍流拓扑结构中使用简单的自驱动方式很困难, 因为, 在这种结构中, 如果直接从电路中取合适的点作为同步整流器的驱动信号, 在死区时间内当这个驱动信号为零时, 同步整流器就会截止。为了在半桥- 倍流拓扑结构中使用自驱动方式, 就必须使用到辅助绕组。以单个半桥- 倍流拓扑结构为例, 见图3 , VSEC为变压器的二次侧电压, Vgs为由辅助绕组获得的同步整流器的驱动电压, 可以看出即使在死区的时间内, 同步整流器的驱动电压也不可能为零, 保证了自驱动方式在这种拓扑结构中的应用。图3 自驱动同步整流器电路及波形图另外, 由于在大电流的情况下MOSFET 导通压降将增大, 从而产生较大的导通损耗, 为此应采用多个MOSFET 并联方法来减小损耗。3 交错并联低压大电流DC - DC 变换器3.1 电路原理图综上所述, 倍流整流低压大电流DC - DC 变换器具有很好的性能, 在此基础上引入交错并联技术, 构成一种新的结构, 称为并联低压大电流DC - DC变换器, 可以进一步减小输出电流纹波。图4 为交错并联低压大电流DC - DC 变换器的电路原理图(以最简单的2 个倍流整流交错并联为例)。图4 交错并联低压大电流DC- DC变换器的电路原理图3.2 变换器的开关控制策略交错并联低压大电流DC - DC 变换器的开关控制策略见图5。图5 交错并联低压大电流DC- DC变换器的开关控制策略3.3 交错并联低压大电流DC- DC变换器性能首先这种拓扑结构最大的优点是变压器原边的结构简化, 控制变得很简单。其次, 这种方法的实现必须采用同步整流电路, 因为交错并联电路的实现要求变压器副边上下电位轮流为正, 在一个时间段内有且只有一个为正电位, 其余都为零电位。但在这种拓扑结构中, 由于2 个变压器的原边串联在一起, 而副边是并联的, 这样如果用肖特基二极管作整流器, 那么输入电压将在2 个变压器原边上分压, 而肖特基二极管又没有选通的功能, 这样变压器二次侧的波形将是完全对称的, 上下2 个整流电路的电流完全重合, 达不到电流交错并联的目的。这样, 应用同步整流器来完成这个功能, 同时利用MOSFET 的双向导电特性, 因为同步整流管的漏源电流是分布在坐标横轴两侧的。这种结构的过程详细分析如下:1) S1 导通, S2 截止; S3 截止, S4 , S5 , S6 均导通。由于S4 , S5 , S6 的导通, 第一变压器副边绕组下端为零电位,第二变压器副边绕组上、下端均为零电位,电感L1 上电流上升, L2 , L3 , L4 上电流下降。2) S2 导通, S1 截止; S4 截止, S3 , S5 , S6 均导通。由于S3 , S5 , S6 的导通, 第一变压器副边绕组上端为零电位,第二变压器副边绕组上、下端均为零电位, 电感L2 上电流上升, L1 , L3 , L4 上电流下降。3) S1 导通, S2 截止; S5 截止, S3 , S4 , S6 均导通。由于S3 , S4 , S6 的导通, 第二变压器副边绕组下端为零电位,第一变压器副边绕组上、下端均为零电位, 电感L3 上电流上升, L1 , L2 , L4 上电流下降。4) S2 导通, S1 截止; S6 截止, S3 , S4 , S5 均导通。由于S3 , S4 , S5 的导通, 第二变压器副边绕组上端为零电位,第一变压器副边绕组上、下端均为零电位, 电感L4 上电流上升, L1 , L2 , L3 上电流下降。以上各式均忽略整流器的电压降, 且V SEC为变压器二次侧的电压值。根据以上分析可知, 应用同步整流器, 通过变压器原边串联而副边并联的方法, 可以实现这种交错并联半桥- 倍流拓扑结构。它的优点主要有以下几个方面:1) 有效地简化了拓扑结构和控制策略。2) 在频率保持不变的情况下, 如果纹波的峰- 峰值一定, 则这种结构可以有效减小滤波电感的值, 从而加快整个变换器的动态响应时间。3) 交错并联的半桥- 倍流拓扑结构与非交错并联的半桥- 倍流拓扑结构相比, 一次侧和二次侧的导通损耗相差不多, 但由于采用交错并联技术,二次侧的开关频率是原来的一半, 相应的开关损耗也是原来的一半。由于变换器的开关损耗在整个损耗统计中占很大的比例, 因此, 交错并联技术可以极大地提高变换器的效率。4 仿真分析应用Pspice 软件对电路进行仿真。电路的参数如下: 开关频率为100 kHz , 占空比为40 % ,输入电压为48 V , 滤波电感为2μH , 滤波电容为820μF , 输出电流为60 A , 输出电压为1125 V。图6 所示为滤波电感的电流波形, 从图6 可以看出, 4 个滤波电感的电流轮流充电, 如果一个滤波电感在充电, 其余3 个电感必须在放电, 在死区时间内, 4 个滤波电感都在放电。图7 和图8 所示分别为交错并联变换器与单个倍流整流变换器结构的输出电流纹波波形, 从图7中可以看出, 4 个滤波电感的电流在滤波电容上叠加, 可以把电流的纹波减小很多。图6 滤波电感电流波形图7 交错并联变换器结构的输出电流纹波波形图8 单个倍流整流变换器结构的输出电流纹波波形5 实验结果通过理论研究及仿真分析, 可以看出, 交错并联的低压大电流DC - DC 变换器具有良好的性能,在输出为1125 V/ 60 A 的情况下, 输出电流纹波可以降到很小。为了进一步说明这种拓扑结构的可行性, 用实验结果验证。实验电路见图4 , 实验参数和仿真相同, 最后得到如图9 所示的实验波形。图9 中, V gs为一次侧一个MOSFET 的门极驱动电压波形, V ds则为相应的MOSFET 的栅源电压波形,从图9 可以看出, 实验结果所得波形同图5 的理论分析结果十分吻合, 所提出的方法是可行的。其中, 变压器选用R2 KB 软磁铁氧体材料制作的GU22 磁心, 原副边的匝数分别为8 匝和1 匝; 电感选用宽恒导磁材料IJ 50h 制作的环形铁心T5 - 10 - 215 ,匝数为8 匝。图9 实验波形6 结语通过仿真及实验分析, 得出以下结论: 对于低压大电流DC - DC 变换器, 可以通过交错并联的方法, 进一步减小输出电流纹波, 效果十分明显;或者在同样输出电流纹波情况下, 可以极大地减小滤波电感值, 从而减小整个变换器的尺寸, 提高变换器的瞬态响应特性。所讨论的2 个倍流整流结构交错并联案例同样适应于多个倍流整流结构交错并联的情况。

    时间:2018-10-02 关键词: 电流 低压 变换器 dc

  • 抑制电子设备中电磁干扰的产生来源

    抑制电子设备中电磁干扰的产生来源

    电磁干扰广泛存在于各类电子电气设备中,各种电子电气设备在工作时或多或少都会向外发射电磁波,这种电磁波会对整个设备正常工作造成干扰。在电子产品设计中由于对电磁兼容性的考虑不足,致使一些电气和电子产品不合格,因此作者就该问题总结了一些应注意的要点。 地线连接 模拟和数字电路拥有独立的电源和地线通路,尽量加宽这两部分电路的电源与地线,或采用分开的电源层与接地层,以便减小电源与地线回路的阻抗,减小任何可能在电源与地线回路中的干扰电压。 单独工作的PCB的模拟地和数字地可在系统接地点附近单点汇接,如电源电压一致,模拟和数字电路的电源在电源入口单点汇接,如电源电压不一致,在两电源较近处并-1~2μf的电容,给两电源问的信号返回电流提供通路。 理想的地线是一个零阻抗,零电位的物理实体,它不仅是信号的参考点,而且电流流过时不会产生电压降。在实际的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。据此可根据地线中干扰形成机理可归结为以下两点,第一,减小低阻抗和电源馈线阻抗。第二,正确选择接地方式和阻隔地环路,按接地方式来分有悬浮地、单点接地、多点接地、混合接地。如果敏感线的干扰主要来自外部空间或系统外壳,此时可采用悬浮地的方式加以解决,但是悬浮地设备容易产生静电积累,当电荷达到一定程度后,会产生静电放电,所以悬浮地不宜用于一般的电子设备。 PCB元器件布局要求 电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合: (1)低电子信号通道不能靠近高电平信号通道和无滤波的电源线,包括能产生瞬态过程的电路。 (2)高、中、低速逻辑电路在PCB上要用不同区域。 (3)安排电路时要使得信号线长度最小。 (4)保证相邻板之间、同一板相邻层面之间、同一层面相邻布线之间不能有过长的平行信号线。 (5)电磁干扰(EMI)滤波器要尽可能靠近EMI源,并放在同一块线路板上。 (6)DC/DC变换器、开关元件和整流器应尽可能靠近变压器放置,以使其导线长度最小。 (7)尽可能靠近整流二极管放置调压元件和滤波电容器。 (8)印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。 (9)对噪声敏感的布线不要与大电流,高速开关线平行。 多层板设计 在多层板设计中电源平面应靠近接地平面,并且安排在接地平面之下。这样可以利用两金属平板问的电容作电源的平滑电容,同时接地平面还对电源平面上分布的辐射电流起到屏蔽作用;为了产生通量对消作用布线层应安排与整块金属平面相邻;在中间层的印制线条形成平面波导,在表面形成微带线,两者传输特性不同;时钟电路和高频电路是主要的干扰和辐射源,一定要单独安排、远离敏感电路;所有的具有一定电压的印制板都会向空间辐射电磁能量,为减小这个效应,印制板的物理尺寸都应该比最靠近的接地板的物理尺寸小20H,其中H是两个印制板面的间距。按照一般典型印制板尺寸,20H一般为3mm左右, 为避免发生两条印制线间距比较小时所引起的电磁串扰,应保持任何线条间距不小于2倍的印制线条宽度,即不小于2W,w为印制线路的宽度。 设置去耦电容 好的高频去耦电容可以去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和吸收该集成电路开门关门瞬间的充放电能:另一方面旁路掉该器件的高频噪声。 抑制线间的电磁耦合 减小干扰源和敏感电路的环路面积。最好的办法是使用双绞线和屏蔽线,让信号线与接地线(或载流回路)扭绞在一起,以便使信号与接地线(或载流回路)之间的距离最近;增大线间的距离,使得干扰源与受感应的线路之间的互感尽可能地小;如有可能,使得干扰源的线路与受感应的线路呈直角(或接近直角)布线,这样可大大降低两线路间的耦合; 其他一些降低噪声与电磁干扰的方法 (1)用地线将时钟区圈起来,时钟线尽量短。 (2)尽量为继电器等提供某种形式的阻尼。 (3)使用满足系统要求的最低频率时钟。 (4)时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。 (5)I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射。 (6)闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。 (7)印制板尽量使用45度折线而不用90度折线布线以减小高频信号对外的发射与耦合。 (8)时钟、总线、片选信号要远离I/O线和接插件。 (9)模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。 对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。 (10)石英晶体下面以及对噪声敏感的器件下面不要走线。 结论 在PCB设计中要处分考虑到各种干扰所产生的影响,完整的设计能够有效拟制电磁干扰,缩短产品设计周期,提高系统稳定性和可靠性。

    时间:2018-09-27 关键词: PCB 电源技术解析 变换器 dc/dc 电磁干扰

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客