• 雅特力在车用电子领域再度突破,AT32 MCU大量应用于ADAS环视系统

    雅特力在车用电子领域再度突破,AT32 MCU大量应用于ADAS环视系统

    随着城市化进程的迅猛发展,人民生活水平的日益提高,城市机动车数量飞速增长,道路交通安全问题也日益突出,这里面有很多时候是由于驾驶人员的安全意识、违规驾驶、路况、疲劳驾驶等原因,这种情况下如果有产品能够提醒驾驶员,则有助于降低交通事故发生的概率。 安全驾驶时代,ADAS先火。ADAS(Advanced Driver Assistance Systems)是利用传感器收集车辆周围数据,进行物体的辨识、侦测与追踪等,能够让驾驶者在最快时间察觉潜在危险,提高安全性的主动安全技术。作为汽车从传统功能车向智能车升级的一项过渡技术,ADAS近两年开始在量产车上广泛搭载,成为越来越多新车的“标配”。 (企业供图) (企业供图) 受惠于汽车应用趋势的需求上升,全球汽车电子MCU市场规模近年来也有显著成长。汽车电子面对当代全球化节能、安全和智能化的挑战,各项行车应用,包括ADAS、自动驾驶汽车、车载智能通讯、车联网等技术迅速发展,每次发展的背后都有汽车半导体的创新,每一个汽车电子的创新都要通过MCU的运算控制功能来实现。 在汽车MCU领域,一直以来由于国外一些大厂起步较早,在技术和市场上都占据优势。不过近年来,随着新兴市场需求及国产化的推动,MCU市场上逐渐涌现出一批新的中国“芯”力量,国内越来越多的MCU厂商在汽车电子应用上发力,并逐渐取得显著进展。比如雅特力AT32F403A与AT32F413系列MCU,已成功打入国内前三大汽车车厂,并顺利量产铺开至全球终端使用者。 汽车电子MCU分为8-bit、16-bit与32-bit MCU等3类,ADAS对MCU的实时性、可靠性、容错处理能力及接口能力要求较高,目前以32-bit MCU为主流。雅特力AT32F403A与AT32F413系列均搭载32位ARM® Cortex®-M4内核,支持DSP指令集且整合浮点单元(FPU)。藉由AT32高达240MHz的高主频高计算力,224KB大尺寸SRAM,双CAN总线,以及宽广的工作温度(-40~105℃)范围等优势,将设备节点独立且模块化,为ADAS汽车环视系统带来了大幅功能提升,既能达到ADAS车载在速度和性能上的要求,又能保证系统的可靠性和安全性,十分符合汽车电子应用。 (企业供图) 了解更多产品信息 雅特力全系列MCU采用55nm先进工艺,搭载32位ARM Cortex-M4内核,导入自主开发的sLib(Security Library)安全库,支持二次开发,支持更宽的芯片工作温度范围(-40°~105°)。AT32F413系列MCU获得国内前三大汽车厂商采用并量产;自带USB OTG接口的AT32F415系列MCU,拓展了超值USB应用的新纪元;240MHz高速CPU的AT32F403A系列,带来无与伦比的效能与丰富外设体验;同为240MHz高速CPU的AT32F407系列,集成兼容IEEE-802.3 10/100Mbps以太网口控制器并适用于物联网应用;推出的极致性价比AT32F421系列MCU,主频高达120MHz,最高可支持64KB闪存存储器(Flash)及16KB随机存取存储器(SRAM),发售价媲美Cortex®-M0价格,是目前业界极具性价比优势的MCU产品;以及年底即将推出的AT32F435和AT32F437系列MCU,创造了M4业界最高CPU主频288MHz运算效能。

    时间:2020-12-01 关键词: 雅特力 汽车电子

  • 你清楚智慧医疗体系架构吗?智慧医疗关键技术点有哪些?

    你清楚智慧医疗体系架构吗?智慧医疗关键技术点有哪些?

    智慧医疗是未来的重点构建行目之一,因为智慧医疗关乎到了大家的健康。为增进大家对智慧医疗的了解,本文将基于两点介绍智慧医疗:1.智慧医疗体系架构,2.智慧医疗依赖的关键技术。如果你对智慧医疗具有兴趣,不妨继续往下阅读哦。 一、智慧医疗体系架构 1、应用服务平台 智慧医疗卫生应用服务平台主要由智慧医疗公众访问平台构成,通过居民健康自助门户搭建一个以用户为中心的一体化居民健康服务体系,对居民的健康状况,疾病发生发展和康复的全过程实现监测与评估,从而提供健康咨询和自我健康管理等服务。还可通过手机等移动终端设备获取个人电子健康档案/电子病历,实现日常的医疗咨询以及健康和用药提醒等。 2、应用支撑云平台 1)服务平台层 服务平台层主要包括智慧云服务平台和智慧云数据中心。智慧云服务平台是医疗行业的一体化平台,以服务的方式完成医疗卫生机构的数据采集、交换、整合,通过提供统一的基础服务实现以“居民健康档案为核心,以电子病历为基础,慢性病防治为重点,决策分析为保证”的智慧云服务,实现医疗机构的互联互通,建立智慧医疗数据中心; 智慧云数据中心是在统一的核心数据框架建立的前提之下,基于国家标准进行建设的,能够完成医疗机构相关信息的汇聚整合,支撑居民健康信息的共享。同时,通过对海量医疗数据的挖掘、分析,辅助管理者进行有效决策。 2)基础支撑体系 基础支撑体系主要由运行支撑平台和基础设备组成。运行支撑平台处于承上启下的位置由两大部分组成;一是基础中间件,提供资源虚拟化中间件、应用服务中间件、数据库中间件: 二是运行支撑服务,其通过向下实现对基础设施的有机整合,提供云计算和云存储功能,解决分散资源的集中管理以及集中资源的分散服务问题,有效支撑各类感知资源和数据实现面向服务的按需聚合应用,支撑高效能海量数据的分析处理。基础设备层主要包括服务器、存储设备、交换机等。 3、基础设施平台 基础设施平台主要由智慧感知层和医疗卫生专网组成。其中,智慧医疗卫生感知层涉及不同种类的传感器及传感网关,实现对医疗卫生对象的识别与医疗卫生资源的采集。医疗卫生网络主要采取运营商统筹、专线接入以及Internet经VPN接入等三种接入方式。同时,在充分考虑与智慧城市其他领域网络的融合性、共享性和安全性等问题的情况下,实现整个智慧城市网络的传输与统一管 理。 4、标准规范体系 标准规范体系是智慈医疗建设的基础工作,也是进行信息交换与共享的基本前提。在遵循“统一规范、统一代码、统一接口“的原则下进行智慧医疗建设,通过规范的业务梳理和标准化的数据定义,要求系统建设必须严格遵守既定的标准和技术路线,从而实现多部门(单位)、多系统、多技术、以及异构平台环境下的信息互联互通,确保整个系统的成熟性、拓展性和适应性,规避系统建设的风险。主要包括:智慧医疗卫生标准体系、电子健康档案以及电子病历数据标准与信息交换标准、智慧医疗卫生系统相关机构管理规定、居民电子健康档案管理规定、医疗卫生机构信息系统介入标准、医疗资源信息共享标准、卫生管理信息共享标准、标准规范体系管理等建设内容。 5、安全保障体系 智慧医疗主要从六个方面建设安全防护体系,包括物理安全、网络安全、主机安全、应用安全、数据安全和安全管理,为智慧医疗卫生系统安全防护提供有力技术支持。通过采用多层次、多方面的技术手段和方法,实现全面的防护、检测、响应等安全保障措施,确保智慧医疗体系整体具备安全防护、监控管理、测试评估、应急响应等能力 二、智慧医疗关键技术 1、物联网技术 国际电信联盟(ITU )把RFID技术、传感器技术、纳米技术、智能嵌入技术视为物联网发展过程中的关键技术网。在医疗卫生领域,物联网的主要应用技术在于物资管理可视化技术、医疗信息数字化技术、医疗过程数字化技术三个方面。例如,借助于医疗物联网技术实现即时监测和自动数据采集以及远程医疗监护; 借助RFID标识码,利用移动设备管理系统,在无线网络条件下直接进入系统实时完成设备标识、定位、管理、监控,实现大型医疗设备的充分利用和高度共享,大幅度降低医疗成本; 同时,运用物联网技术可以实现患者、血液以及医护管理等的信息智能化。 2、云计算技术 云计算是网格计算、分布式计算、网络存储、虚拟化等传统计算机和网络技术发展融合的产物,也是一种新兴的共享基础架构“。医疗行业的云计算中,病人的电子医疗记录或检验信息都存储在中央服务器中,病人的信息和相关资料可以全球存取, 医护人员从因特网激活的设备上实时获取资料。它的超大规模、虚拟化、多用户、高可靠性、 高可扩展性改变了医疗卫生行业信息化方式,极大的降低了医疗行业信息系统建设成本,对医疗机构改善患者个性化服务质量提供强有力的支撑,实现智慧医疗以患者为中心的理念和更深入的智能化。 3、移动计算技术 移动计算技术是指移动终端通过无线通信与其他移动终端或固定计算设备进行有目的信息交互5。移动计算帮助完成对医疗机构内部网络传感器获得的信息进行语义理解、推理和决策,达到无论何时何地,只要需要,就可以通过某种设备访问所需要的信息,实现智能控制。移动计算为远地移动对象的检测与预警、数据的快速传送提供支撑,为医护人员的急救赢得时间。 4、数据融合技术 数据融合技术是指充分利用不同时间与空间的多传感器信息,采用计算机对按时序获得的若干观测信息,在一定准则下加以自动分析、综合、支配和使用,获得对被测对象的一致性解释与描述,以完成所需的决策和评估任务而进行的信息处理技术同。以医学图像为例,在临床诊断、治疗、手术导航中,将各种模式的图像进行配准和融合,提供互补的医学信息; 实现功能图像与形态图像的融合,精准功能障碍区的解剖位置和实现功能/结构关系的评估与研究。对源自多传感器的不同时刻的目标信息或同一时刻的多目标信息综合处理,协调优化,大大提高医疗系统的智能化与信息化水平。 以上便是此次小编带来的“智慧医疗”相关内容,通过本文,希望大家对智慧医疗的体系架构以及智慧医疗的关键技术具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-01 关键词: 智慧医疗 指数 体系架构

  • 什么是智慧医疗?智慧医疗产业链+需求分析

    什么是智慧医疗?智慧医疗产业链+需求分析

    智慧医疗是如今的热门发展之一,随着社会、技术进步,智慧医疗正逐渐发展。对于智慧医疗,可能大家并非熟悉。为增进大家对智慧医疗的认识,本文将对智慧医疗产业链予以分析,并对智慧医疗需求予以介绍。如果你对智慧医疗具有兴趣,不妨继续往下阅读哦。 一、前言 智慧医疗作为新兴起的专有医疗名词,是指利用最先进物联网技术,打造健康档案区域医疗信息平台,实现患者与医务人员、医疗设备之间的互动,逐步达到信息化。智慧医疗主要由三部分组成,分别为智慧医院系统、区域卫生系统、以及家庭健康系统。 二、智慧医疗产业链 智慧医疗,简单的来说,就是用物联网技术,打造一个存储用户健康档案的医疗信息平台,实现患者与医务人员、医疗机构、医疗设备之间的互动。最终的状态是全面的实时化、智能化、自动化的动态服务。如下图所示: (一)医院方 1、医疗器械设备:目前主要是指智能化的医疗器械设备。 2、医疗信息化:即医疗服务的数字化、网络化、信息化,是指通过计算机科学和现代网络通信技术及数据库技术,为各医院之间以及医院所属各部门之间提供病人信息和管理信息的收集、存储、处理、提取和数据交换。 3、远程医疗:着移动通信、物联网、云计算、视联网等新技术的发展,众多的智能健康医疗产品逐渐面世,远程医疗也处于第二阶段向第三阶段迈进的过渡时期。 (二)患者方 1、可穿戴设备:穿戴设备正被用在不同的场景中帮助帕金森症、糖尿病、心脏病、高血压和其他疾病患者管理疾病,这项技术降低了住院率和就诊率,是智慧医疗领域的一项重大技术。 2、移动医疗APP:基于移动终端的医疗类应用软件,主要为患者提供寻医问诊、预约挂号、购买医药产品以及查询专业信息等服务。 (三)第三方:医保控费 医保控费环节相对独立于医院端与患者端。医保控费业务旨在用信息化的手段实现医保支出的智能管控,保证医保基金的合理使用与高效运营。 中投顾问在《2016-2020年中国智慧医疗行业深度调研及投资前景预测报告》中的分析思路是,在智慧医疗产业链剖析的基础上,对于上下游产业现阶段市场状况都做了相应的解读,以便更深入透析整个智慧医疗市场,挖掘更具有价值的投资机会。 三、智慧医疗需求 由于国内公共医疗管理系统的不完善,医疗成本高、渠道少、覆盖面低等问题困扰着大众民生。尤其以“效率较低的医疗体系、质量欠佳的医疗服务、看病难且贵的就医现状”为代表的医疗问题为社会关注的主要焦点。大医院人满为患,社区医院无人问津,病人就诊手续繁琐等等问题都是由于医疗信息不畅,医疗资源两极化,医疗监督机制不全等原因导致,这些问题已经成为影响社会和谐发展的重要因素。所以我们需要建立一套智慧的医疗信息网络平台体系,使患者用较短的等疗时间、支付基本的医疗费用,就可以享受安全、便利、优质的诊疗服务。从根本上解决“看病难、看病贵”等问题,真正做到“人人健康,健康人人”。 以上便是此次小编带来的“智慧医疗”相关内容,通过本文,希望大家对智慧医疗产业链、智慧医疗需求具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-01 关键词: 产业链 智慧医疗 指数

  • 智慧交通、智能交通有啥区别?智慧交通有哪些?

    智慧交通、智能交通有啥区别?智慧交通有哪些?

    智慧交通是目前的发展热点之一,对于智慧交通,大家也都有所了解。为增进大家对智慧交通的认识,本文将对智慧交通和智能交通的区别予以介绍,并对智慧交通类型加以讲解。如果你对智慧交通具有兴趣,不妨继续往下阅读哦。 一、智能交通、智慧交通区别 智慧交通与智能交通都是信息技术、传感技术、通信技术等多种技术在交通领域应用的产物,二者在建设内容、关键技术、应用方向等方面拥有共同点。 智能交通主要侧重于各类交通应用的信息化;智慧交通中融入了物联网、云计算等高新IT技术来汇集交通信息;会大量使用数据模型、数据挖掘等数据处理技术;基于实时交通数据,提供实时交通数据下的交通信息服务;强调的是:系统性,实时性,信息交流的交互性以及服务的广泛性。 (一)智能交通 智能交通是一个基于现代电子信息技术面向交通运输的服务系统。它的突出特点是以信息的收集、处理、发布、交换、分析、利用为主线,为交通参与者提供多样性的服务。具有以下两个特点:一是着眼于交通信息的广泛应用与服务;二是着眼于提高既有交通设施的运行效率。 (二)智慧交通 智慧交通是以智慧的理念,辩证的思维,使用现代信息技术为手段,全面提升交通管理和服务水平。智慧交通运用智慧的观点来解决交通问题,秉承以人为本、服务大众的理念,使用先进的物联网、云计算技术等高新技术有效地集成运用于整个交通运输管理体系。智慧交通是在数字交通和智能交通的基础上发展起来的更高级阶段的交通模式,是一种先进的交通发展模式的变革。 二、智慧交通有哪些 (1)道路交通监控 监控中心可以实时观察各节点的交通情况,在常态下,减少了交警巡逻出勤的辛劳,降低管理成本,异常情况下,可以接警后第一时间调取现场事件图像,为应急处置做充分的准备。 (2)电子警察、卡口 电子警察是为了规范交叉口、路段的交通安全驾驶秩序,规避事故的一种措施,卡口的意义,更多的是在于路线、片区的安全管理,总体上,电子警察、卡口的作用体现在城市安全管理上,规范社会秩序。 (3)交通信号控制 信号灯控制严格意义上来讲早于智慧交通系统的出现,如今,交叉口信号控制已经越来越成为城市道路交叉点的标准配置,交通信号控制在城市中的作用,规范机动车、行人交通秩序,保障交叉口的安全。 (4)交通信号控制 通过收集实时的路网数据,处理成状态信息,用于车载导航路况的提供及路线的选择。在偶发性拥堵下,这种信息提供有助于驾驶员选择新的路径,避开拥堵,但是,常发性拥堵以及多选择路径同时拥堵下,效果不显著。总体上,交通信息采集和诱导,作用主要体现在为出行者交通提供参考,辅助交通路径的选择,为管理者积累城市交通数据,为规划、管理提供决策支持。 (5)停车诱导 诱导驾驶员寻找到合理的停车位,提高停车服务水平,同时,也能起到避免空驶,降低碳排放的效果。 (6)综合交通信息平台 综合交通信息平台,属于城市信息的一个分支,主要汇聚交通类的各种信息,汇聚后进行处理,应用。因此,综合交通信息平台在城市中的作用,体现为为城市发展,为管理提供智囊,用数据说话,才是最有力的。 (7)智慧公共交通 即公共交通的智慧化,包括公交车GPS定位实时掌握公交车辆在途信息,公交优化调度,合理配车,公交站台实时车辆达到信息发布,网络及其他智慧终端的公交换乘查询等信息服务。 (8)不停车收费ETC ETC在提升高速公路通行能力,改善收费口拥堵以及节能减排等方面的效益日益凸显。 (9)车联网 车联网目前还没有真正的系统跟进,主要是汽车生产商在通信技术上开发和应用。随着其发展和应用,对城市的作用体现在车与车间的沟通更为顺畅,为交通信息的获取和共享提供了更广阔的空间。 (10)被动安全 被动安全技术或者被动安全系统,是通过外围设施的辅助控制,来达到保护行人、驾驶人的交通安全。常见的有通过车内疲劳驾驶识别报警、车外防撞设施设置、安全避险提示等手段。其作用,很明显,体现在降低安全安全事故。 以上便是此次小编带来的“智慧交通”相关内容,通过本文,希望大家对智慧交通、智能交通的区别以及智慧交通的类型具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-01 关键词: 智能交通 智慧交通 指数

  • 高可靠性领域如何选取处理器系统和ADC/DAC?

    高可靠性领域如何选取处理器系统和ADC/DAC?

    芯片和元器件处在不同环境之下,对参数要求均各有差异。消费级产品侧重于性价比,工业级产品侧重于性能,汽车级产品侧重于安全。 那么“飞上天”的芯片又该侧重什么?对于航空航天级芯片来说,性能和性价比并不是第一考虑要素,可靠性才是首要考虑因素。 极端环境下,芯片遭受着“单粒子效应”和“宇宙射线辐射”的双重摧残,更不要说“上天入地”的极端环境,因此能够达到航空航天要求的高可靠性领域的芯片公司都非等闲之辈。 制造航空航天级芯片产品的公司一般都是专注高可靠性领域研究和生产的,除了航空航天以外,军工、国防、医疗也会使用到这种高可靠性产品。 超高可靠性领域因其追求核心是高可靠性,在能耗、结温、寿命、抗辐射、抗干扰等方面是显著超前的,极度考验着公司长期以来的技术积累。但传统来说,超高可靠性产品是无法被普通产品替代的,加之技术过于超前,故而长期以来是“小众型”产品 不过近期“天问一号”探测器、“嫦娥五号”探测器、6G试验卫星、北斗卫等引发关注,越来越多人开始关注这方面芯片。并且随着成本、尺寸、重量、功耗不断优化,很多领域也开始使用超高可靠性产品。 半导体行业就有这样一家企业,长期以来定位在超高可靠性,很少被人提及,但一直以来占据不可替代的市场。这家公司便是Teledyne e2v(译名“特励达e2v”,下文简称“e2v”),这家公司的高可靠性领域包括成像、射频电源、半导体器件三种,近期e2v邀请21ic中国电子网记者进行专访,共商高可靠性半导体器件。 高可靠性是e2v处理器的核心 据Teledyne e2v亚太地区(中国)应用工程师Byron Gao介绍,e2v在处理器上主要与NXP合作,经过e2v的封测将产品推向高可靠性市场。众所周知,NXP产品主要面向的是工业级,因此二者并不冲突。NXP已与e2v合作了三十多年(此前为Freescale),e2v已建立了高性能处理器的专业知识体系,并可获得和原始制造商相同的工具、产品测试向量和测试程序。 在产品上,拥有T系列、P系列、LAYERSCAPE和POWERQUICC四类不同架构组合产品,可靠、成熟的平台可以缩短上市时间,可以满足航空航天、国防军事和工业中关键应用。 在参数上,拥有15年以上的生命周期,能够承受-55℃至125℃的高温和低温,可以针对特定客户需求和功耗、时钟、温度要求创建定制解决方案,并且符合AS9100认证。 在软件上,拥有最强的航空电子、国防和空间领域最强的软件生态系统支持,支持Linux、各种RTOS、VxWorks的NXP处理器,拥有丰富的驱动程序、工具和编程环境。 值得一提的是,产品不存在出口管制的忧患。“因为是纯法国产品,包括设计和生产环节均在法国工厂中进行,所以不会受到贸易进出口影响,可以帮助客户减少后顾之忧”,Byron Gao如是说。 当然,高可靠性还是e2v的主要卖点之一。就在最近,e2v宣布,其广受欢迎的LS1046空间处理器现已通过严格的总辐射剂量(TID)测试,可达100krad。这进一步完善了以往暴露于重离子高达60MeV.cm²/mg以上的环境中获得的单粒子锁定(SEL)和单粒子翻转(SEU)结果。 参数上,LS1046空间处理器基于NXP处理器技术,以高达1.8GHz的频率运行,拥有4个64位Arm Cortex-A72处理核心,内置包含8位纠错码(ECC)的64位DDR4 SDRAM存储器控制器,以及在其内核之间共享2MByte L2高速缓存,采用780球栅阵列BGA封装,并配备多种嵌入式接口,包括10Gbit以太网、PCI Express(PCIe)3.0、SPI、I2C、多个UART等。 LS1046高可靠性处理器符合美国宇航局一级要求,可集成在面向空间的单板计算机(SBC)中,一般用于卫星成像相关任务,如处理、调节和图像数据压缩,以及超低延迟通信和机载决策(利用AI演算法)等。 高可靠性基础上的SWaP优化 Byron Gao表示,高可靠性领域处理器的核心竞争力就是提高超越标准的性能指标,这一领域的算力和执行效率正在飞速提升,除了增加系统安全的余量,e2v也正优化SWaP(尺寸、重量和功耗)。 处理器是系统中重要的器件,会产生大部分的功耗,而散热系统需要使用散热器,这就影响了系统的尺寸和重量,所以一切的源头都指向了功耗降低。e2v主要使用了三种方案降低功耗: 1、降低静态功耗 据介绍,e2v对功耗有着独特的见解,这得益于与NXP的三十余年的合作。影响处理器功耗有两个关键要素,其一是静态功耗,即IC所有内部外设所需功耗,这一功耗与器件性能和运行代码无关;其二是动态功耗,即计算能力所需功耗,这一功耗对于多核处理器和不同瞬时计算负载在功耗上可能有很大差异。 处理器拥有三个特性:器件静态功耗差异显著;在低温环境静态功耗可能接近0,但在125℃时可能占总功耗的40%甚至更多;动态功耗由用户的使用情况决定,不同器件、不同温度和不同的批次对其影响不大。 温度升高静态功耗成倍增加,增加散热器降低结温可以优化功耗,但反之会增加设备尺寸和重量。简言之,这就需要在功耗、尺寸和重量上进行权衡和测试分析,最终以满足客户需求。 举个例子来说,T1042在规格书上功耗高达8.3W(1.2GHz时钟、Tj为125℃),但是实际上这款产品可以通过优化静态功耗达到4.5W,如果不是因为功耗降低,客户一开始就不会选用T1042。 2、定制封装 修改或者重新设计器件封装可以降低结温从而降低功耗,亦可减少冷却系统尺寸和重量;也可加强器件的震动防护,简化冷却系统和处理器的传热接口;选择使用或不使用封装盖可以进一步改善散热性能。 e2v在此方面则拥有丰富的重封装半导体器件的专业知识和经验,e2v还可帮助客户对封装重新植球,改变焊接流程,以满足一些宇航客户的特定需求(如采用不含锡铅合金的材料以防止在宇航应用中出现锡须)。 最近e2v做了一项为T1040处理器加上封装盖的可行性研究。e2v也估算了散热指标的变化。由于增加了封装盖,节到板的热阻大约是4.66℃/W的一半,比标准封装下降了9℃/W。而节到顶部的热阻却从少于0.1℃/W增加到0.85℃/W。 3、扩展节温 其实很多情况下,最高工作温度都是有余量的,有着大于125℃的余量。但与此同时的后果就是功耗显著提升,这种高节温(Tj)显著适用于短时间动态功耗迅速爆发的应用,当然这种爆发需求的应用散热设计也拥有一定要求。 e2v主要是从性能、可靠性、功耗和封装承受高温能力四个角度上权衡,判断是否需扩展特定应用的器件的高温限制、调整电气参数或更换封装材料,最终平衡功耗的安全性能。 笔者认为,e2v在高可靠性处理器产品上不仅拥有卓著的生命周期和可靠性,在功耗、尺寸和重量上也拥有着一定的权衡和思考。在此方面,e2v主要通过权衡散热器、封装和节温,进行全面功耗降低。这也说明,高可靠性领域的选型上除了可靠性这一参数,也逐渐拥有新的要求。 超前设计的高可靠性DAC/ADC 提到高速ADC/DAC,很多人的第一反应都是市场占有率极高的主流产品,鲜有知道Teledyne e2v的。Byron Gao为记者解释表示,与前者定位不同,e2v主要研究的方向是高可靠性市场,与主流市场并不冲突,是两种定位,市场需求也正在发生转变。 换言之,e2v本身定位就是高可靠性市场,致力于更超前和更高性能的产品,体现在器件上就是更高的采样率。 从另一方面来说,e2v的数据传输是基于开源的,与主流产品的标准协议不同,开源协议对整个产业链来说是至关重要的,特别是中国厂商。 事实上,整个电子科技环境正在发生变化,新兴的技术对可靠性的考验与日俱增。国内很多产品也正在逐渐从工业级产品转向高可靠性产品,不过碍于很多厂商在此方面技术并不成熟而难于展开,而e2v则刚好在这个领域非常成熟也非常专业。 从产品上来说,e2v的两款产品在技术上也非常超前: 1、世界首个26 GHz的直接微波合成DAC EV12DD700数模转换器是市场第一个可支持Ka频段(26GHz以上)操作的产品,这意味着带有先进数字功能如快速跳频(FFH)和波束形成等的射频系统将得以实现。 除此之外,也集成了许多复杂的功能,如直接数字合成(DDS),加上通过一个内置的32位数控振荡器(NCO)实现数字上变频(DUC)。这有助于提高吞吐量,而不会对IC的资源造成过度压力。 目前来说,EV12DD700双通道设备的beta测试版样品已批量出货给符合条件的客户。根据e2v的介绍,这款产品将应用在雷达、卫星通信、地面网络基础设施等。 2、P到Ka波段直接采样的ADC EV12PS640微波模数转换器是配套EV12DD700一并发布的,这款ADC能够提供超出目前市场上任何产品范围的参数性能,支持11G采样率,可实现超高频(SHF)直接采样,并一直延伸到Ka频段(26GHz及以上)。 这款产品采用的是直接微波采样,e2v解释直接微波采样可以消除对频率转换的需求,这意味着将大大降低信号失真的风险;其次,提供软件定义通用性,贯穿多个频段,最高可达Ka频段。通过直接微波采样方法,可以显著简化数据转换硬件。 高可靠性产品能用在航天、国防以外领域吗? “目前e2v在中国的宣传只停留在技术、产品和demo展示上,从认知和反馈上国内对e2v的认知很少。实际上,高可靠性并不只是用在可靠性上,定义很广,很多其他领域都是可以用的”,亚太区公关部经理Yuki Chan如是说。 “其实在中国的合作上,Teledyne e2v已与航天五院的卫星、探测器等展开了合作。e2v也非常希望能够与中国产业链更多的企业合作,助力中国产业发展。” 事实上,很多人对于可靠性的概念一直有着误区,认为产品故障就是产品不可靠。实际上,高可靠性领域主要是针对特定环境和特定环境下实现规定功能的能力。e2v产品拥有非常成熟的平台,可以实现很多其他特定环境的可靠性要求。 笔者认为,e2v的高可靠性产品可以扩展到许多应用场景之中,特别是中国产业链中。原因一是高可靠性本身具的安全性和长寿命,从另一方面来说可以减少二次成本,实际上有利于成本化集约;二是高可靠性产品大多技术超前,用户可以用高性能产品实现更多功能;三是e2v的产品基于开源协议,对于中国产业来说开源协议更加适合目前发展;四是纯法国技术和法国生产,没有进出口压力。 反观Teledyne e2v的历史,2016年Teledyne以6.27亿英镑(约合7.89亿美元)现金收购e2v,是Teledyne历年来的最大笔收购。两家公司都是以高可靠性产品著称,并且两家公司双方产品重叠很小,两者的互补让高可靠性产品线更加全面。 高可靠性领域正在逐步向其他领域扩张,Teledyne e2v是中国发展非常值得选择的产品。

    时间:2020-11-30 关键词: 处理器 DAC ADC

  • CIS:摄像头繁荣的背后推手

    CIS:摄像头繁荣的背后推手

    提到科技,身处半导体行业的我们往往会想到电子工业的主要驱动力:互补金属氧化物半导体(CMOS)逻辑和存储器。绝大多数电子产品的生产制造都会使用到泛林集团的设备,然而,要想打造有实用价值的系统,我们往往还需要借助很多其他的特种技术,其中包括很多涉及到人机互动的技术,例如: • 用于发送和接收无线信号的射频(RF)电路; • 各种光学器件,例如显示器和光子元件。 备受关注的摄像头 未来,随着高级驾驶辅助系统(ADAS)和自动驾驶的发展,汽车将广泛配备更多不同类型的摄像头(除了雷达和/或激光雷达之外)。为了消除盲区并让驾驶员和自动驾驶系统更好地了解周围情况,最终车身四周很可能遍布摄像头。 某些CIS器件用于记录可见光线,其他一些则属于红外(IR)或近红外(NIR)相机元件,记录可见光的设备可提供识别周围环境和物体的视频流。而红外CIS就包括最近越来越流行的面部识别相机,它们可以利用结构光在黑暗条件下识别人脸。 打造最好的CIS芯片 为解决这个问题,较新的CIS设备都改成从背面接收光线,这样就可以避开上述障碍物。但较厚的晶圆会打散和吸收部分光线,所以,采用这种方法意味着晶片的背面必须足够薄,才能最大限度地捕获光子。随着芯片集成度的提高,人们也开始以堆叠方式将图像传感器与存储器和其他逻辑元件封装在一起。在改成从背面接收光线后,可以将CIS芯片的前部与其他晶圆结合,而不会影响到对光的感测。 然而,要做到这一点,还需要用到许多先进的技术以真正实现最高效的光线捕捉,其中最突出的两个技术实例就是深槽隔离技术(DTI)和硅穿孔(TSV)。 TSV则是晶片堆叠所需的基础性技术。所有金属连接线和传统焊盘都是布置在晶片的正面,所以将两个芯片的正面放在一起时,芯片间可以实现互通信号。然而,芯片的背面并不布置任何线路,如果要将一个芯片的背面与另一个芯片的任意一面相连,必须要用某种方法将前一个芯片上的信号从其正面传递到背面才能实现信号互通。TSV就是从硅衬底钻通的金属导电通道。 DTI和TSV都属于精度和细度要求较高的先进工艺,而实现此类工艺正是泛林集团的专长。随着CIS市场的增长,实现此类技术所需设备的需求预计将大幅提升。尽管CIS和其他特种技术受到的关注不能与主流技术相比,但我们在未来几年将看到它们在系统应用中相同的重要性。

    时间:2020-11-30 关键词: 半导体 AI 泛林集团

  • 集成电路有哪些封装形式?怎么看集成电路图?

    集成电路有哪些封装形式?怎么看集成电路图?

    集成在电子专业是不可不谈的话题,对于集成电路,电子专业的朋友比普通人具有更多理解。为增进大家对集成电路,本文将对集成电路的封装形式、集成电路符号以及集成电路电路图的看图方法予以介绍。如果你对集成、集成电路具有兴趣,不妨继续往下阅读哦。 一、集成电路封装形式 1、SOP小外形封装 SOP,也可以叫做SOL和DFP,是一种很常见的元器件形式。同时也是表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L字形)。封装材料分塑料和陶瓷两种。始于70年代末期。 SOP封装的应用范围很广,除了用于存储器LSI外,还输入输出端子不超过10-40的领域里,SOP都是普及最广泛的表面贴装封装。后来,为了适应生产的需要,也逐渐派生出SOJ、SSOP、TSSOP、SOIC等一些小外形封装。 2、PGA插针网格阵列封装 PGA芯片封装形式常见于微处理器的封装,一般是将集成电路(IC)包装在瓷片内,瓷片的底部是排列成方形的插针,这些插针就可以插入获焊接到电路板上对应的插座中,非常适合于需要频繁插波的应用场合。对于同样管脚的芯片,PGA封装通常要比过去常见的双列直插封装需用面积更小。 PGA封装具有插拨操作更方便,可靠性高及可适应更高的频率的特点,早期的奔腾芯片、InTel系列CPU中的80486和PenTIum、PenTIumPro均采用这种封装形式。 3、BGA球栅阵列封装 BGA封装是从插PGA插针网格阵列改良而来,是一种将某个表面以格状排列的方式覆满引脚的封装法,在运作时即可将电子讯号从集成电路上传导至其所在的印刷电路板。在BGA封装下,在封装底部处引脚是由锡球所取代,这些锡球可以手动或透过自动化机器配置,并透过助焊剂将它们定位。 BGA封装能提供比其他如双列直插封装或四侧引脚扁平封装所容纳更多的接脚,整个装置的地步表面可作为接脚使用,比起周围限定的封装类型还能具有更短的平均导线长度,以具备更加的高速效能。 4、DIP双列直插式封装 所谓DIP双列直插式封装,是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路IC均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 二、集成电路电路符号和应用电路识图方法 1.集成电路电路符号解说 集成电路的电路符号比较复杂,变化比较多,如图9-2所示是集成电路的几种电路符号。 集成电路的电路符号所表达的具体含义很少(这一点不同于其他电子元器件的电路符号),通常只能表达这种集成电路有几根引脚,至于各个引脚的作用、集成电路的功能是什么等,电路符号中均不能表示出来。 如下图所示是实用电路中的集成电路的电路符号,电路中A1是集成电路,从电路符号中可以知道它有5根引脚。 2.集成电路应用电路图功能解说 集成电路应用电路图具有下列一些功能: (1)表达了集成电路各引脚外电路结构、元器件参数等,从而表示了某一集成电路的完整工作情况。在有些集成电路应用电路中,画出了集成电路的内电路方框图,这对分析集成电路应用电路是相当方便的,但这种表示方式不多。 (2)集成电路应用电路有典型应用电路和实用电路两种,前者在集成电路手册中可以查到,后者出现在实用电路中,这两种电路相差不大,根据这一特点,在没有实际应用电路时可以用典型应用电路图作为参考,这一方法在修理中常常采用。 (3)一般情况集成电路应用电路表达了一个完整的单元电路或一个电路系统,但有些情况下一个完整的电路系统要用到两个或更多的集成电路。 3.集成电路应用电路特点解说 集成电路应用电路图具有下列一些特点: (1)大部分应用电路不画出内电路方框图,这刑识图不利,尤其对初学者。对初学者而言,分析集成电路的应用电路比分析分立元器件的电路更为困难,这是对集成电路的内部电路不了解的原缘。实际上识图也好、修理也好,集成电路比分立元器件电路更为方便。 (2)对集成电路应用电路而言,大致了解集成电路的内部电路并详细了解各引脚的作用,对识图来说会比较方便。同类型的集成电路应用电路具有规律性,在掌握了它们的共性后,可以很容易地分析许多同功能型号不同的集成电路应用电路。 4.集成电路应用电路识图方法和注意事项解说 分析集成电路应用电路的方法和注意事项主要有下列几点: (1)了解各引脚的作用是识图的关键。了解各引脚的作用可以查阅有关集成电路应用手册。知道了各引脚作用之后,分析各引脚外电路工作原理和元器件作用就很容易。例如,知道①脚是输入引脚,那么与①脚所串联的电容是输入端耦合电路,与①脚相连的电路是输入电路。 (2)了解集成电路各引脚作用的三种方法。一是查阅有关资料;二是根据集成电路的内电路方框图分析;三是根据集成电路应用电路中各引脚外电路的特征进行分析。对第三种方法要求有比较好的电路分析基础。 (3)电路分析步骡。如表9-6所示是集成电路应用电路分析步骤解说。 以上便是此次小编带来的“集成”相关内容,通过本文,希望大家对集成电路的封装形式、集成电路电路图的看法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-30 关键词: 集成电路 集成 指数

  • 集成电路有什么特点?集成电路需要哪些原材料?

    集成电路有什么特点?集成电路需要哪些原材料?

    集成电路是这个时代的重要发展产物之一,电子专业的朋友对于集成电路更是十分熟悉。为增加大家对集成电路的认识,本文将对集成电路、集成电路的特点、集成电路的分类以及集成电路的原材料进行一一介绍。如果你对集成、集成电路具有兴趣,不妨和小编共同往下阅读哦。 一、什么是集成电路 集成电路是相对于分立元件而言的,把设计好的电子电路整个制作在一片硅材料上就是集成电路,一个芯片集成了成千上万的三极管,使得电子产品微型化,同时功耗降低,可靠性提高,成本降低,功能强大。 集成电路大体上分为数字集成电路、模拟集成电路、混合集成电路,销售对象主要是电子整机厂,行业前景没得说,日新月异,永无止境。只是你是外行,要入行必须恶补相关知识,还要积累经验,很不容易,建议你选择自己熟悉的行业。 二、集成电路的特点 (1)体积小、质量轻、功能全。 (2)可靠性高、寿命长、安装方便。 (3)频率特性好、速度快。 (4)专用性强。 (5)集成电路需要外接一些辅助元件才能正常工作。 三、集成电路的分类 (一)按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路和数字集成电路两大类。模拟集成电路用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如VCD、DVD重放的音频信号和视频信号)。 (二)按制作工艺分类 集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。膜集成电路又分类厚膜集成电路和薄膜集成电路。 (三)按集成度高低分类 集成电路按集成度高低的不同可分为小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路。 (四)按导电类型不同分类 集成电路按导电类型可分为双极型集成电路和单极型集成电路。双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。 (五)按用途分类 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。 四、集成电路的原材料 1、硅,这是目前最主要的集成电路材料,绝大部分的IC是采用这种材料制成; 2、锗硅,目前最流行的化合物材料之一,GHz的混合信号电路很多采用这种材料; 3、GaAs,最广泛采用的二代半导体,主要用于射频领域,包括射频控制器件和射频功率器件; 4、SiC,InP,所谓的三代半导体,前者在射频功率领域,后者在超高速数字领域,都属于下一代半导体材料。 以上便是此次小编带来的“集成”相关内容,通过本文,希望大家对集成电路、集成电路特点、集成电路分类和集成电路原材料具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-30 关键词: 集成电路 集成 指数

  • 什么是集成电路?集成电路有哪些分类?

    什么是集成电路?集成电路有哪些分类?

    集成是发展的趋势之一,对于集成,更多体现在电路方面。在这篇文章中,为增加大家对集成电路的认识,本文将对集成电路、集成电路的分类进行介绍。如果你对集成电路以及它的相关内容具有兴趣,不妨和小编一起往下阅读哦。 一、集成电路简介 半导体是指常温下导电能力介于导体和绝缘体之间的材料,常见的半导体材料有硅、锗、砷化镓等。按照其制造技术,半导体市场由集成电路、光电器件、分立器件和传感器四大类产品构成。由于集成电路占半导体产品总体销售额的绝大多数,一般将集成电路产品粗略等同于半导体产品。 集成电路是一种微型电子器件或部件。采用一定的工艺将电路设计中需要实现的晶体管、二极管、电阻、电容、电感等元器件采用金属导线互联后将其制作在一小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。所有元器件在结构上已组成一个整体,电路体积大大减小,引出线和焊点的数量也大为减少,从而使电子元件的体积更加微小、功耗降低、可靠性提高、成本降低、便于大规模生产,为电子信息、通信、消费电子等行业的快速发展奠定了基础。集成电路英文为Integrated Circuit,也被称为IC。 集成电路产品根据其设计及应用,可分为微处理器、存储器、逻辑器件、模拟器件。半导体产品,集成电路分类说明如图所示。 二、集成电路分类 (一)按功能结构分类集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如VCD、DVD重放的音频信号和视频信号)。 (二)按制作工艺分类集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。膜集成电路又分类厚膜集成电路和薄膜集成电路。 (三)按集成度高低分类集成电路按集成度高低的不同可分为小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路和巨大规模集成电路。 (四)按导电类型不同分类集成电路按导电类型可分为双极型集成电路和单极型集成电路,他们都是数字集成电路。双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。 (五)按用途分类集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。 1.电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。 2.音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。 3.影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。 4.录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。 (六)按应用领域分集成电路按应用领域可分为标准通用集成电路和专用集成电路。 (七)按外形分集成电路按外形可分为圆形(金属外壳晶体管封装型,一般适合用于大功率)、扁平型(稳定性好,体积小)和双列直插型。 以上便是此次小编带来的“集成”相关内容,通过本文,希望大家对集成电路、集成电路的分类具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-30 关键词: 集成电路 集成 指数

  • 医疗设备中,FPGA扮演什么角色?

    医疗设备中,FPGA扮演什么角色?

    FPGA(现场可编辑门阵列)作为赛灵思(Xilinx)的一项重要发明,以其可编程和灵活性著称。起初,FPGA只是用来仿真ASIC,再进行掩码处理和批量制造使用。不过ASIC相比FPGA来说明显在定制化上要求过高,流片量过小情况下成本反而更高,因此两者毫不冲突地“各司其职”。而后,随着加速器的出现和算力提升,目前已成为与GPU齐名的并行计算器件。 如今,FPGA已进发数据中心领域,相比CPU和GPU,FPGA所需器件更少,功耗也更优。赛灵思依靠其“数据中心优先”、“加速核心市场发展”、“驱动自适应计算”的三大战略加持下,使其ACAP平台和Alveo加速卡在数据中心市场极具竞争力。 除此之外,赛灵思曾为笔者展示过其云服务商领域的“一体化SmartNIC平台”、消费领域的“FPGA TCON”方案、工业领域的Zynq SoC系列方案。 实际上,根据赛灵思透露,医疗领域已占据赛灵思营收非常重要的比重,并且一直在11%-15%的速度增长。那么赛灵思是依靠什么FPGA产品占据的医疗市场,FPGA器件在医疗设备中扮演什么角色? 日前,赛灵思为记者介绍了近期在医疗科学和医疗设备方面的成果,21ic中国电子网记者受邀参加此次采访。 FPGA器件能用在什么地方 信息显示,全球人均医疗支出每年都在增长,随着人口老龄化加剧,消费者对医疗条件和医疗成本都有着极高的预期。另一方面,随着疫情的爆发,市场对病情的及早发现和诊断的快速分析有了更高的要求,这就需要医疗器械成本的进一步降低和算力的提升。 FPGA器件自身拥有可编程特性,借助这种优势,可避免ASIC器件前期高昂的一次性工程费用,消除最低订单数量和多芯片迭代风险和损失。医疗行业本身是与科技发展联系最为紧密的行业之一,伴随FPGA器件的不断迭代升级,更多新设备出现,引领了新的治疗方法、治疗途径、治疗理念的改变。 赛灵思医疗科学全球业务市场负责人Subh Bhattacharya 根据Subh Bhattacharya的介绍,赛灵思的FPGA器件在医疗领域的应用主要分为三类:临床、医疗成像和诊断分析。 01、临床环境 临床设备数量大种类多,因此需要灵活性极强的FPGA。需要注意的是,部分设备直接影响患者生命安全,对启动速度、安全稳定性、时延要求极高;部分设备在便携性上则有一定要求,对功耗、小尺寸有很大需求。 根据Subh的介绍,在临床方面,赛灵思的Zynq UltraScale+ MPSoC(下文简称为“ZU+ MPSoC”)是一个高度集成的平台,集成多个处理器,拥有可编程逻辑,此外还集成了信息安全和功能安全功能。Subh强调,这个技术平台的强大功能和性能非常适合在临床环境应用之中,包括从云端到边缘。 Subh为记者展示了几个利用该平台解决临床环境的实例: 其一是赛灵思与Spline.AI和AWS(亚马逊云服务)合作开发的医疗AI,利用ZU+MPSoC的ZCU104平台作为边缘设备,实现的高精度低时延的医疗X射线分型深度学习模型和参考设计。该方案可独立自主根据Chest X-Ray预测疾病,也可预测COVID-19和肺炎,也可开发定制模型供临床使用。另外,ZCU104支持开源语言PYNQ语言下开发,也可借助AWS IoT Greengrass实现进一步的扩展和部署。该方案发挥了ZU+ MPSoC的高性能和扩展性,赋予了低成本医疗设备高精度的诊断。 其二是赛灵思为奥林巴斯内窥镜核心技术提供支持。该方案发挥了ZU+ MPSoC在启动速度、功耗和低时延的特性。 其三是赛灵思为Clarius超便携高性能超声波系统。该方案发挥了ZU+ MPSoC片上双ARM处理器和FPGA的小尺寸封装特性,实现了超便携。 究其历史,Zynq SoC是赛灵思在2011年推出的全球首款集成ARM内核的产品,彼时该平台称为“可扩展的处理器平台”,主要是为了将市场扩展到嵌入式应用之中。此前FPGA多用作辅助芯片,自从引入更多功能的集成SoC平台之后,ARM GPU、数据安全处理器、功能安全处理器都被集成在单芯片之中。Subh表示,经过这样的转型之后,赛灵思从每年5%-6%的收入增长,实现了到14%-15%的收入增长,2.5倍的增长率全要归功于这样的技术平台。 除此之外,Subh还为记者展示ZU+ MPSoC在医疗安全上的解决方案。“目前,全球安装的医疗物联网设备超过1亿台,到2020年将增长到1.61亿台。医界高管认为 59%隐私问题, 55%老旧系统集成和54%安全问题,是阻碍当今医疗机构采用物联网的三大障碍。” Subh表示,赛灵思可以利用可编程平台,不断适应新的安全防护措施,这种升级囊括了软件和硬件。最终体现在SoC上的,就是认证与加密启动、安全启动、测量启动、安全应用通信、基于云的监测等功能。 02、医疗成像 大型医疗成像设备使用FPGA器件已经是基本操作,Subh为记者介绍,在医疗成像方面,主要包括CT、超声、X射线、PET、MRI扫描仪等。 对于医疗成像,Zynq UltraScale+ MPSoC同样适用。Subh表示,除此之外还有Versal ACAP,这个系列可以理解为下一代的MPSoC,Versal ACAP在成像领域具有非常大优势。 Versal ACAP除了拥有ARM多处理器集成、可编程逻辑、DSP以外,还加入了AI引擎,即SIMD、VLIW这样的单元,可以支持很多类似操作的平行处理。 Subh为记者展示了超声波图像重构与计算机辅助诊断的方案,利用赛灵思的软硬件支持,能够降低功耗和热度范围、降低解决方案成本、延长设备使用寿命、低时延边缘推断,虽然市场非常复杂,赛灵思的技术也能够大大提高生产力。 03、诊断分析 Subh表示,除了SoC和FPGA,赛灵思还提供即插即用的Alveo加速卡,正因这是一种PCle的解决方案,因此可以大大降低开发时长。根据介绍,Alveo加速卡适用于任何通用PC,既可以加速CPU的普通任务,也可以加速其他的GPU的任务,最终实现高吞吐量和超低时延。其独特的算力和灵活应变能力,可以大大加速很多的医疗应用。 联影医疗(United Imaging)是一家中国公司,这家公司在使用Alveo U200加速卡替代传统GPU时发现,Alveo的技术成本更低、功耗更低,并且无需牺牲任何性能或是开发进度。 FPGA vs. CPU&GPU 医疗设备中使用CPU或者GPU产品的方案也屡见不见,为何FPGA拥有如此卓著效果,甚至有着替代CPU和GPU的“魔力”?实际上,CPU和GPU都属于冯诺依曼结构,FPGA能够突破结构上的限制因此拥有极强的能效。 具体来说,CPU和GPU需要使用SIMD(单指令流多数据流)来执行存储器、译码器、运算器、分支跳转处理逻辑等,FPGA则在烧写时已经确定每个逻辑单元的功能,因此不需要指令;另外,CPU和GPU在内存使用中是共享的,因此就需要访问仲裁,执行单元间的私有缓存使得部件间要保持缓存一致性,同样在烧写过程中FPGA已明确通信要求,因此无需共享内存进行通信。 得益于此,FPGA拥有极强的浮点乘法运算能力,而且对比同样是浮点运算的GPU延迟更低。这是因为,FPGA同时拥有了流水线并行和数据并行,而GPU只有数据并行。 从算力上来说,赛灵思还将FPGA器件转变为了SoC进行加速和自适应。赛灵思在加速上通过标量引擎实现,包括ARM、应用处理器和实时处理器,而自适应引擎的核心便是可编程逻辑器件FPGA,另外还配备智能引擎,目前配备的是DSP。特别是,在Versal ACAP的平台上还会将会有AI引擎进行支持,进一步进行加速和自适应。 “在医疗领域,诸如内窥镜这种应用,手术中患者拥有一个共同的要求,就是时延非常低,甚至需要实时来完成。从摄像头捕捉图像,经过管线处理,再到显示屏可能不到20微妙的时间。CPU和GPU达不到FPGA如此低的时延,因此这就是FPGA相比CPU和GPU的最大优势”,Subh继续为记者介绍,从功耗、成本和集成上,赛灵思SoC的FPGA也拥有更好的优势。 “很多领域,诸如视觉化,GPU使用很多年了,FPGA并不是做不到,不过我们还是会专注在优势的领域,即在封闭空间内做数据移动,而非断断续续的内存上传的情境”,Subh坦言。 不同层面分析FPGA在医疗的应用 能够在医疗领域,兼顾拥有业界领先的AI时延与性能,生命周期延长、高质量、高可靠性、高安全性,实时、确定性控制与接口的仅赛灵思一家。 赛灵思除了提供FPGA和 SoC这样的硬件器件及平台以外,还专门为降低FPGA 开发门槛满足广泛市场应用需求量身定制了Vitis AI统一软件平台。之前笔者也曾多次介绍这款软件平台,算法工程师无需硬件设计经验,也可直接应用算法的实现。 赛灵思的医疗解决方案帮助了Illumina对重症新生儿做基因组分析,为ICU患者和重症患者加速推进eyetech的基于眼球追踪的沟通平板电脑,与迈瑞合作以抗击新冠疫情。FPGA就是在不经意间为声名增添了一份敬畏。 笔者认为,赛灵思的FPGA器件从高性能加速和自适应两方面着手,成为了其在市场立足的最大竞争力。一方面,FPGA、ARM、应用处理器、实时处理器、DSP、AI引擎利用片上系统(SoC)和软件进行高度集成,既增强了算力也增强了应用的扩展性;另一方面,FPGA本身拥有的低延时性,对于时延要求极高的医疗领域可以说是“天生一对”。 从市场上来分析,随着疫情的爆发,医疗设备市场需求持续增加,其中不乏大型数据分析和便携性要求极高的设备,这刚好吻合了FPGA SoC的特点。另一方面,医疗水平的提升和市场马太效应之下,更具能效和低功耗优势的FPGA产品需求量持续增加。 从软件上分析,赛灵思的Vitis平台适用于不同人群,包括熟练掌握HDL语言的硬件工程师,熟练掌握各大编程语言的软件工程师,也适用于熟练掌握TensorFlow、Caffe、PyTorch的算法工程师。利用这种灵活性,可以让许多有创意的初创公司有了施展拳脚的可能。 通过赛灵思的介绍,可以说无论是大型设备还是便携设备,FPGA都有其一席之地。 未来赛灵思医疗创新之路该如何发展?Subh表示,在医疗产品上赛灵思将不断提高集成度并降低封装尺寸,另一方面,将会不断发展异构计算提高效率和性能。

    时间:2020-11-26 关键词: Xilinx FPGA 赛灵思

  • 大佬带你走进充电器的世界,无线充电器对手机有害吗?有何注意事项?

    大佬带你走进充电器的世界,无线充电器对手机有害吗?有何注意事项?

    充电器的使用使得诸多电子设备可正常运行,缺少充电器,我们的生活在一定程度上将受到困扰。为增进大家对充电器的认识,本文将对无线充电器相关内容予以介绍,主要在于分析无线充电器是否对手机有所损害以及阐述无线充电器的使用注意事项。如果你对充电器具有兴趣,不妨继续往下阅读哦。 一、无线充电器对手机是否有害 无线充电器在正常情况下是不会伤害手机的,无线充电现在的工作频率都做在1M以下,所以对手机的信号不会有影响。无线充电对手机电池寿命也是没有影响,和有线充电基本一样,不过速率方面低一些,但是无线充电器电能转化率还是很高,更加节省的能耗。无线充电器,主要采用的是电感耦合技术,因为耦合技术,主要通过的是线圈的磁场产生电流,电池内部成分本身不能构成磁场,所以在通电过程中就不会损害到电池的内部结构。目前市面上大部分手机都符合了QI无线充电标准,内置了无线接收器,它都有个额定的电压和电流,所以无线充电器对手机是没有影响的。 二、无线充电器使用注意事项 1、充电插头请选用原装的或有3C认证的产品 作为电器产品,推荐使用原厂生产的插头,一来是因为专门为你的手机研发,充电速度有保证,二来,安全性有保证。另外,和原装插头参数一致的其他3C产品也可以放心使用,3C认证产品对使用安全从设计到生产都有要求,安全是有保障的。因为使用劣质的充电器导致爆炸、伤人的事情不胜枚举,在此就不多说了。 2、充电线是否选对 充电线也是同理,最好选用原装的充电线,充电线里面的线芯材料,线径,还有充电接口金属接触片的材质,大小都会决定能承载的电流大小。经解剖,劣质充电线线径明显小于国家规定值,而且内无绝缘保护薄膜包裹。如果选用劣质的充电线,一是绝缘性能差,承载的电流小,轻则使充电速度变慢,严重的损伤电池,甚至引起触电、引发火灾等事故。 3、第一次充电不宜时间过长 第一次充电不需要什么必须充满12小时,这是老式电池需要做的事情,现在的电池基本上是锂电池或者是聚合物锂电池,第一次充电也只需要像平时充电一样就可以了! 4、充电的次数 有一种说法:每块手机电池都有固定的充电次数,如果充电次数太多,会加快电池老化劳损程度!其实这是错误的,锂电池的充电次数指的是完全充放电,所以随用随充是最好的。 5、新手机需要激活? 新手机需要把手机中的电全部用光,再进行充电,而且需要反复操作3-4次才可以,这被称之为激活。以前的手机都需要这么做,但现在的锂电池已经不需要了。 6、边充电边玩 按技术标准规定以及企业规范的控制,手机与无线充电器www.ymp-hk.cn配合使用时应该是安全的,正常情况下充电时接打电话都没有问题。但市场充斥很多劣质充电器,这种充电器无法满足安全要求,容易出现软击穿等危险,所以提醒使用者,不要买太便宜的充电器,最好选购3C认证充电器,认准充电器上的安全标识3C。所以,使用三无产品,边充电边玩手机就需要警惕了,劣质充电器,容易死屛,而且如果出现意外问题,有可能会致命! 7、过度充电 电池安全测试实验中,会在充满电的情况下继续充电7小时,并且输出电压增加到标准电压的1.06倍,加之电池本身也具有保护电路,所以不会产生危险,也不会爆炸。但假若用的劣质电池呢,那就难说了,三星手机爆炸事件就说明了这点。所以呢,最好是充满电后就及时拔掉充电器。 8、充电不戴套 为了保护我们根本离不开的手机,很多人都选择给手机戴套!但是大家不知道锂电池是很怕热的,充电时会发热,所以最好摘掉手机套充电。 以上便是此次小编带来的“充电器”相关内容,通过本文,希望大家对无线充电器的使用注意事项具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-26 关键词: 充电器 无线充电器 指数

  • 无线充电器有何特点?无线充电器有哪些类型?

    无线充电器有何特点?无线充电器有哪些类型?

    充电器的使用异常广泛,各类电子产品均需使用充电器。为增进大家对充电器的认识,本文将对无线充电器、无线充电器的种类、无线充电器的特点和无线充电器原理予以介绍。如果你对充电器抑或是无线充电器具有兴趣,不妨继续往下阅读哦。 一、什么是无线充电器 无线充电器是指不用传统的充电电源线连接到需要充电的终端设备上的充电器,采用了最新的无线充电技术,通过使用线圈之间产生的磁场,神奇的传输电能,电感耦合技术将会成为连接充电基站和设备的桥梁。 二、无线充电器特点 1、从理论来说,无线充电技术对人体安全无害处,无线充电使用的共振原理是磁场共振,只在以同一频率共振的线圈之间传输,而其他装置无法接受波段,另外,无线充电技术使用的磁场本身就是对人体无害的。但无线充电技术毕竟是新型的充电技术,以迈源科技的无线充电器来说,很多人都会担忧无线充电技术会像当初Wi-Fi和手机天线杆刚出现一样,其实技术本身是无害的。 2、无线充电技术利用磁共振在充电器与设备之间的电场和磁场中传输电能,线圈和电容器则在充电器与设备之间形成共振。 3、这一系统可以在未来得到广泛应用,例如针对电动汽车的充电区以及针对电脑芯片的电量传输。采用这项技术研制的充电系统所需要的充电时间只有当前的一百五十分之一。 4、转化率一直是很多人担心的问题,麻省理工学院通过研究表明,无线充电技术的损耗比起有线充电技术来说更低。无线充电转化率比起有线要高几个百分点。高转化,也是无线充电器得以在全球进行应用的关键因素。但无线充电技术也受到距离的限制,未来发展,必然需要解决远距离传送对于波段和磁场范围的精准定位问题。 5、核心芯片是无线充电技术在产品应用的难点之一。精准辐射范围控制,磁场频率大小,其它控制等都是由芯片实现。 三、无线充电器工作原理 无线充电系统主要采用电磁感应原理,通过线圈进行能量耦合实现能量的传递。如图所示,系统工作时输入端将交流市电经全桥整流电路变换成直流电,或用24V直流电端直接为系统供电。 经过电源管理模块后输出的直流电通过2M有源晶振逆变转换成高频交流电供给初级绕组。通过2个电感线圈耦合能量,次级线圈输出的电流经接受转换电路变化成直流电为电池充电。 变化的磁场会产生变化的电场,变化的电场会产生变化的磁场,其大小均与它们的变化率有关系,而正弦函数的变化率是另外一个正弦函数,所以电磁波能够传播出去,而感应电压的产生与磁通量的变化相关,所以线圈内部变化的磁场产生感应电压,从而完成充电过程。 手机无线充是比较新颖的充电方式,其原理其实很简单,就是将普通的变压器主次级分开来达到无线的目的。当然,无线充的工作频率比较高,甚至可以抛弃铁心直接线圈之间就可以达到能量传递的作用。 四、无线充电器有哪几种 1、桌面无线充电器 (1)没有线的缠绕,简洁美观,看起来舒服,生活品质更高; (2)不用经常插拔,即放即充,方便快捷,让你的手机永不缺电; (3)不用担心三星和苹果接头不兼容的问题,支持Qi等标准的无线充电器都能充电; (4)不存在充电接听电话触电的风险,完全规避了安全问题,可以随时接听电话; (5)让电池工作的寿命更长,由于即放即充,让电池用不缺电,电池寿命更长。 (6)不需要有线接口,很多产品可以做成全封闭防水产品。 2、车载无线充电器 随着生活水平的提高,人们都开始有了自己的小车了,然而当我们开车出门时都会遇到一些问题,于是我们就可以借一些其它产品来让我们更加方便,车载无线充电器是我们开车出门保护安全必备的一个物品。 3、便携无线充电器 4、镶嵌无线充电器 车载无线充电器和镶嵌无线充电器对于出行的有车一族是个不错的选择,除了可以给自己的手机充电外,对于手机的固定和接打电话是个方便的。 桌面无线充电器和便携无线充电器对于居家或外出旅行的朋友,是个不错的选择。解决了传统数据线不断插拔扣坏USB的频率也解决了传统充电器数据线丢失的频率。 以上便是此次小编带来的“充电器”相关内容,通过本文,希望大家对无线充电器、无线充电器特点、无线充电器原理以及无线充电器种类具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-26 关键词: 充电器 无线充电器 指数

  • 车载充电器有哪些使用注意事项?如何选购车载充电器?

    车载充电器有哪些使用注意事项?如何选购车载充电器?

    充电器是大家每天都会使用的电子器件,因此大家对充电器都较为了解。充电器按照类型可以划分为有线充电器和无线充电器,依据充电器作用对象不同,充电器又可划分为诸多类型。为增进大家对充电器的认识,本文将对车载充电器予以介绍,主要内容在于探讨车载充电器使用注意事项以及如何选购车载充电器。如果你对充电器相关内容具有兴趣,不妨继续往下阅读哦。 一、车载充电器危害 车载充电器的原理就是把12伏的电压转换到5伏后来为手机充电,由于车充的价格限制,电路设计有许多缺陷,电路的保护功能也几乎没有,如工作时降压和限流出现故障,就会导致12伏电压直接进入手机,手机必死无疑。还是建议使用车载逆变器升为220伏,再用原装或高端的充电器充电,这样即安全对手机电池也好。在车上面插车充的地方,输出电压都是12v-24v之间的电压。如果车载充电器质量不是很差的话,是不会影响手机充电的,但建议不要经常使用。 二、如何选购车载充电器 1、认准大品牌。因为车载充电器行业的准入门槛比较低,市场上充斥着不少参差不齐的车充产品,所以买的时候尽量别选没听说过的牌子,大品牌产品质量更有保证,都会具备过压、过流、过热、短路保护等功能,用起来更安全放心。 2、看材质和设计。常见的材质有塑料(必须是阻燃材质)和金属两种,虽然并没有什么高下之分,但金属车充往往在设计上有更高的水准,比如会用到CNC、抛光、镭雕、电镀等工艺,所以整体颜值要高出一个档次,手感也好很多,当然价格也明显会贵一些。 3、快充必不可少。现在的手机支持快充的越来越多,虽然车载充电器只是满足碎片化的充电需求,速度也是越快越好,如果充电太慢,手机导航的时候充入的电量甚至还不够消耗的电量。是否支持快充主要看它的输出参数,5V/1A、5V/2.1A、5V/2.4A都很常见了,主要是看它是否支持QC3.0等快充协议。有的车载充电器两个USB口都支持快充,有的只有一个支持快充,可以按需进行选择。 三、车载充电器使用注意事项 1.在使用车载充电器时尤其要注意在使用过程中不要将车载充电器随意扔放、落地、敲打或震动充电器,且当夏季车辆长期停滞且车内温度超过45℃的时候不要使用充电器,这样都会严重损坏车载充电器内部的电路板。 2.要记住切勿在汽车启动前插入车充,以免车辆启动时的电压损害车充。 3.车主在使用的时候,千万不要用烈性化学制品、清洗剂、强洗涤剂清洗充电器。因为这样会严重损坏车载充电器的功能。 4.车辆熄火后应该将车载充电器拔下放置。尽管80%的车辆都是车辆拔掉钥匙后点烟器停止供电,但也有一部分汽车的点烟器是持续供电。 5.最后,车载充电器作为电子产品之一,车主在使用过程中,要注意不要因为不小心进水或者长时间不用时暴露在潮湿的空气中,这样都会对其内部的电子元件造成不同程度的腐蚀或氧化。 以上便是此次小编带来的“充电器”相关内容,通过本文,希望大家对车载充电器具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-26 关键词: 充电器 指数 车载充电器

  • 无线通讯技术有哪些?无线通讯技术如何在物联网得以应用?

    无线通讯技术有哪些?无线通讯技术如何在物联网得以应用?

    无线通讯的重要性不言而喻,对于无线通讯技术,我们每天都在应用。为增进大家对无线通讯的认识,本文将对10大无线通讯技术予以介绍,并谈谈这些无线通讯技术是如何助力物联网的成长的。如果你对无线通讯的认识,不妨继续往下阅读哦。 在实现物联网的通讯技术里面,蓝牙、zigbee、Wi-Fi、GPRS、NFC等是应用最为广泛的无线技术。除了这些,还有很多无线技术,它们在各自适合的场景里默默耕耘,扮演着不可或缺的角色。本文笔者将通过常见的十大无线通讯技术优劣及应用场景,带大家认识真正的物联网通讯技术。 1、蓝牙的技术特点 蓝牙是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换,蓝牙可连接多个设备,克服了数据同步的难题。蓝牙技术最初由电信巨头爱立信公司于1994年创制。如今蓝牙由蓝牙技术联盟管理,蓝牙技术联盟在全球拥有超过25,000家成员公司,它们分布在电信、计算机、网络、和消费电子等多重领域。 蓝牙技术的特点包括采用跳频技术,抗信号衰落;快跳频和短分组技术能减少同频干扰,保证传输的可靠性;前向纠错编码技术可减少远距离传输时的随机噪声影响;用FM调制方式降低设备的复杂性等。其中蓝牙核心规格是提供两个或以上的微微网连接以形成分布式网络,让特定的设备在这些微微网中自动同时地分别扮演主和从的角色。蓝牙主设备最多可与一个微网中的七个设备通讯,设备之间可通过协议转换角色,从设备也可转换为主设备。 2、ZigBee的技术特点 与蓝牙技术不同,ZigBee技术是一种短距离、低功耗、便宜的无线通信技术,它是一种低速短距离传输的无线网络协议。这一名称来源于蜜蜂的八字舞,由于蜜蜂是靠飞翔和“嗡嗡”(zig)地抖动翅膀(bee)的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。 ZigBee的特点是近距离、低复杂度、自组织、低功耗、低数据速率,ZigBee协议从下到上分别为物理层、媒体访问控制层、传输层、网络层、应用层等,其中物理层和媒体访问控制层遵循IEEE 802.15.4标准的规定。ZigBee技术适合用于自动控制和远程控制领域,可以嵌入各种设备。 3、Wi-Fi的技术特点 Wi-Fi在我们的生活中非常常见,一线城市的几乎所有公共场所均设有无线网络,这是由于它的低成本和传输特性决定的。Wi-Fi是一种允许电子设备连接到一个无线局域网的技术,通常使用2.4G UHF或5G SHF ISM 射频频段,连接到无线局域网通常是有密码保护的;但也可是开放的,这样就允许任何在WLAN范围内的设备可以连接上。 由于无线网络的频段在世界范围内是无需任何电信运营执照的,因此WLAN无线设备提供了一个世界范围内可以使用的,费用极其低廉且数据带宽极高的无线空中接口。用户可以在Wi-Fi覆盖区域内快速浏览网页,随时随地接听拨打电话,有了Wi-Fi功能我们打长途电话、浏览网页、收发电子邮件、音乐下载、数码照片传递等,再无需担心速度慢和花费高的问题。 无线网络在掌上设备上应用越来越广泛,而智能手机就是其中一份子。与早前应用于手机上的蓝牙技术不同,Wi-Fi具有更大的覆盖范围和更高的传输速率,因此Wi-Fi手机成为了2010年移动通信业界的时尚潮流。 4、LiFi的技术特点 LiFi也叫可见光无线通信,它是一种利用可见光波谱进行数据传输的全新无线传输技术,由英国爱丁堡大学电子通信学院移动通信系主席、德国物理学家哈拉尔德?哈斯教授发明。LiFi是运用已铺设好的设备,通过在灯泡上植入一个微小的芯片形成类似于WiFi热点的设备,使终端随时能接入网络。 该技术最大的特点是通过改变房间照明光线的闪烁频率进行数据传输,只要在室内开启电灯,无需WiFi也便可接入互联网,未来在智能家居中有着广泛的应用前景。 5、GPRS的技术特点 GPRS我们可以说非常熟悉了,它是GSM移动电话用户可用的一种移动数据业务,属于第二代移动通信中的数据传输技术。GPRS可说是GSM的延续,GPRS和以往连续在频道传输的方式不同,是以封包式来传输,因此使用者所负担的费用是以其传输资料单位计算,并非使用其整个频道,理论上较为便宜。 GPRS是介于2G和3G之间的技术,也被称为2.5G,它为实现从GSM向3G的平滑过渡奠定了基础。随着移动通信技术发展,3G、4G、5G技术均被研发出来,GPRS也逐渐被这些技术所取代。 6、Z-Wave的技术特点 Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术,由丹麦公司Zensys所一手主导的无线组网规格。工作频带为908.42MHz(美国)~868.42MHz(欧洲),采用FSK(BFSK/GFSK)调制方式,数据传输速率为9.6 kbps,适合于窄宽带应用场合。 随着通信距离的增大,设备的复杂度、功耗以及系统成本都在增加,相对于现有的各种无线通信技术,Z-Wave技术将是最低功耗和最低成本的技术,有力地推动着低速率无线个人区域网。 7、射频433的技术特点 射频433也叫无线收发模组,采用射频技术,由全数字科技生产的单IC 射频前段与ATMEL的AVR单片机组成,可高速传输数据信号的微型收发信机,无线传输的数据进行打包﹑检错﹑纠错处理。射频433技术的应用范围包括无线POS机、PDA等无线智能终端、安防、机房设备无线监控、门禁系统。交通、气象、环境数据采集、智能小区、楼宇自动化、PLC、物流追踪、仓库巡检等领域。 8、NFC的技术特点 NFC是一种新兴的技术,使用了NFC技术的设备可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(RFID)及互连互通技术整合演变而来,通过在单一芯片上集成感应式读卡器、感应式卡片和点对点通信的功能,利用移动终端实现移动支付、门禁、身份识别等应用。 近场通信技术实现了电子支付、身份认证、票务、数据交换、防伪、广告等多种功能,它改变了用户使用移动电话的方式,使用户的消费行为逐步走向电子化。 9、UWB 的技术特点 UWB是一种无载波通信技术,利用纳秒至微秒级的非正弦波窄脉冲传输数据。UWB在早期被用来应用在近距离高速数据传输,近年来国外开始利用其亚纳秒级超窄脉冲来做近距离精确室内定位。 与蓝牙和WLAN等带宽相对较窄的传统无线系统不同,UWB能在宽频上发送一系列非常窄的低功率脉冲。较宽的频谱、较低的功率、脉冲化数据,意味着UWB引起的干扰小于传统的窄带无线解决方案,并能够在室内无线环境中提供与有线相媲美的性能。 10、Modbus的技术特点 Modbus是一种串行通信协议,是Modicon公司(现在叫施耐德电气)于1979年为使用可编程逻辑控制器通信而发表。Modbus已经成为工业领域通信协议的业界标准,并且现在是工业电子设备之间常用的连接方式。Modbus协议是一个master/slave架构的协议。有一个master节点,其它使用Modbus协议参与通信的节点是slave节点,每一个slave设备都有一个唯一的地址。在串行和MB+网络中,只有被指定为主节点的节点可以启动一个命令。 有许多modems和网关支持Modbus协议,因为Modbus协议很简单而且容易复制,它们当中一些为这个协议特别设计的,不过设计者需要克服一些包括高延迟和时序的问题。 以上便是此次小编带来的“无线通讯”相关内容,通过本文,希望大家对上面提到的10大无线通讯技术以及这些技术如何帮助物联网发展的具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-25 关键词: 无线通讯 物联网 指数

  • 你了解无线通讯吗?智能无线通讯应用介绍

    你了解无线通讯吗?智能无线通讯应用介绍

    无线通讯是当今重要的通讯手段,缺少无线通讯,我们的通信设备将无法使用。对于无线通讯,大家可能具备一定了解,但对于无线通讯的深层知识,大家却未必知晓。为增进大家对无线通讯的认识,本文将对智能无线通讯系统予以介绍,主要在于讲解智能无线通讯的应用案例。如果你对无线通讯具有兴趣,不妨继续往下阅读哦。 智能无线通讯要求自动操作,即不需要使用者按任何按钮,系统可以自己检测或发送信号,100%独立,在不同的环境下可以自学习和自适应,在有噪音的环境下可以排除噪音正常的工作。 上述智能无线通讯系统有很多的要求,第一个要求是体积小、成本低,解决方案用一个智能的单片机来实现,单片机由数字和模拟前端组合成一个芯片;第二个要求是经济的双向通讯,基站命令用125KHz低频发送,高频响应,用低频发送成本逐渐降低;第三个要求是通讯距离在2米以上,其应答器有高度的输入灵敏度,在3毫伏左右;工作在有噪声的环境下,因为在一般环境下有很多的噪音干扰,所以在设计系统的时候要求有高度的灵敏度非常重要;此外就是消除天线的方向性,因为控制信号不可能一直从一个方向发来,特别是随身携带的单元,发送的方向不可能控制,所以在应答器板上使用三个方向的天线XYZ,不管信号从哪个方面来都可以接收到;再者是对电池寿命的要求,因为有一些电池是用来作汽车里面胎压检测系统的,不可能每6个月打开换电池,所以采用唤醒滤波器以减少电流使用;最后是数据的安全性要求,发送信号加密,收到信号时再解密,使用加密解密的算法有很多,Microchip用Keylock算法。 图1所示是一个智能被动无匙门禁系统,图示系统和普遍使用的系统有相似的地方也有完全不同的地方,左边基站由一个单片机和高频的发送器和低频发送器与接收器组成,基站发出125KHz的低频命令,当右面的智能接收器收到信号时会处理信号,信号达到一定的要求使用高频或低频作为响应。智能的接收器有3个接收方向XYZ,不管信号从哪个方向送来都可以接收到这个信号,而且使用者不需要任何的按钮。这样的智能接收器可以自动的接收信号、发送信号和处理信号。 图2所示是PKE应答器原理图,图中的PIC16F639是由PIC16F636和MCP2030构成,其中MCP2032是模拟前端,PIC16F636是另外一个单片机,使用PIC16F636和模拟前端组合在一起主要是因为PIC16F636有Keylock加密解密的功能,如果使用者不需加密解密功能则可以使用2030模拟前端和其他的单片机组合。 在汽车系统应用中有很多智能应答器的使用,如智能车辆出入系统、引擎防盗锁系统(如图3所示)和胎压监测系统(TPMS)。 智能PKE应答器不仅适用在汽车里面,也可以应用在其它地方,如车库开门关门、公共停车场,很多汽车如果有智能应答器,汽车靠近停车场时门会自动打开。 胎压检测系统(如图4所示)的显示组主要由三个单位组成:一个在轮胎里面,图中左下角由智能单片机、胎压传感器和高频发送器组成;右角上方是基站,主要由一个单片机和一个高频的接收器组成;右方下角是低频触发器,一般放在靠近轮胎很近的车身部分,使用时每3或4秒低频触发器会发出一个启动命令给轮胎单位,轮胎里面的智能单片机收到的信号达到要求时,会告诉胎压传感器去测量轮胎的温度和胎压,然后再由高频发送器把胎压的数据发给基站。 使用唤醒滤波器的目的主要是减少工作电流,从而可以延长电池的寿命。一般情况下,数字部分一直保持在睡眠状态,以达到最低的电流使用。而模拟前端不停地寻找输入信号,只有在达到预定的波形也即输入信号达到要求时,模拟前端才会去唤醒滤波器。 图5所示为一个具有无电池和后备电池的应答器电路,有些情况下,如果电池接触不好系统会没有电,可以用磁场来短暂的给供电,这样应答器在没有电池的情况下照样可以工作。 系统工作要求是,在应答器方面需要有低频的电线,高频发送器,以及一些系统可选后备电子的电路,此外还要有一个智能的单片机和单片机的部件;基站系统要求有低频发送器、高频接收器、天线、单片机和单片机的固件部分。 双向通讯距离有一些参数,应答器需要天线调谐及Q,天线定位使用三维天线,接收灵敏度,输出信号的调制深度;基站需要输出功率和接收的灵敏度。 天线设计低频普遍是采用125KHz,现在使用LC谐振电路;天线类型使用空心线圈或者铁氧体的磁心,LC的谐振频率和基站的载波频率相同,范围被动标签在1米左右,主动标签在5米左右。高频率从315MHz到960MHz,最常见的是315MHz和433MHz,使用偶极电线刻在PCB上,范围相对高得多,被动标签大概在5米左右,主动标签在100米左右。 图6所示为一个磁通量和天线感应电压关系的公式,这里主要是说明在判断感应电压的时候看到很多的因素:比如线圈的匝数、接触器线圈表面积、频率、接收电线和发送天线的角度都会影响到天线感应的电压。 图7所示为一个天线感应电压和距离的关系,大图上显示了基站和接收器靠的很近的时候,信号的电压是200V,小图则显示了距离到3米的时候,电压的信号只有达到5毫伏峰值,可以看出信号输入的灵敏度在这里是非常关键的。 我们可以作一下总结,一个智能无线通讯系统需要可靠的自动操作,具体包括智能的双向通讯、低系统成本、低频输入高灵敏度(这一点比较关键),低功耗以及安全的数据加密和解密,结论是用一个智能的单片机构建系统可以达到所有要求,因此可以作为一个可靠的解决方案。 以上便是此次小编带来的“无线通讯”相关内容,通过本文,希望大家对智能无线通讯应用案例具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-11-25 关键词: 无线通讯 指数 智能无线通讯

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章