当前位置:首页 > 直流
  • 输入多半是交流电源(例如市电)或是直流电源的开关电源

    输入多半是交流电源(例如市电)或是直流电源的开关电源

    现在的电子产品在生活中处处可见,为我们的社会带来便利,那么你知道其中有一款叫开关电源吗?开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。理想上,开关电源本身是不会消耗电能的。 电压稳压是透过调整晶体管导通及断路的时间来达到。相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。 若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。 开关电源的组成部分 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。 1、主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。 输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。 逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2、控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3、检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4、辅助电源 实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 目前工程师在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类。开关电源正在走向大众化,微型化。开关电源将逐步取代变压器在生活中的所有应用,低功率微型开关电源的应用要首先体现在,数显表、智能电表、手机充电器等方面。 现阶段国家在大力推广智能电网建设,对电能表的要求大幅提高,开关电源将逐步取代变压器在电能表上面的应用。以上就是开关电源的一些相关介绍,以及它的优势所在的地方,同时也需要大家不断完善。

    时间:2020-10-29 关键词: 电源 开关电源 直流

  • 能为负载提供稳定直流电源的直流稳压电源,你了解吗?

    能为负载提供稳定直流电源的直流稳压电源,你了解吗?

    生活中的电源多种多样,那么你之地直流稳压电源吗?它有什么特点?以及它的工作原理是什么?能为负载提供稳定直流电源的电子装置。直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。直流稳压电源随着电子设备向高精度、高稳定性和高可靠性的方向发展,对电子设备的供电电源提出了高的要求。 直流稳压电源的组成部分功能及作用 常用的小功率半导体直流稳压电源系统由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如图9—1所示为其原理框图和各部分输出波形。 直流稳压电源的组成部分功能及作用: (1)电源变压器 为用电设备提供所需数值的交流电压。电网提供的交流电压一般为220v(或380v),而次级线圈电压u2较低,可以降低对整流、滤波和稳压电路中所用元件的耐压要求,所以需要利用变压器将电网电压变换成所需数值的交变电压。 (2)整流电路 把交流电变换成直流电。利用具有单向导电性能的元件(如二极管、品闸管),将变压器输出的正、负交替变化的正弦交流电压u2整流变换成单向脉动的直流电压D3。 (3)滤波电路 把整流后脉动较大的直流电变换成平滑的直流电。通常利用电容电感等储能元件来滤除单向脉动电压u3中的谐波成分。 (4)稳压电路 克服电网电压或负载电流变化时所引起的输出电压的变化,保持输出电压的稳定。 直流稳压电源的主要用途 1)电解电容器老练,钽电容赋能 2)直流电机检测,老化;电动车电机检测、老化 3)电阻器、继电器、马达、晶体管等电子元件老化,例行试验 4)实验室,电子设备,自动测试设备 5)电子检验设备、生产流水线设备、通讯设备电解、电镀、电化学设备。以上就是直流稳压电源的组成的相关介绍,希望能给大家一定的参考,同时也需要大家不断积累经验,这样才能设计出更好的产品。

    时间:2020-10-29 关键词: 稳压电源 直流稳压电源 直流

  • 关于常用设备中的大功率开关电源的结构以及元器件名称

    关于常用设备中的大功率开关电源的结构以及元器件名称

    什么是大功率开关电源?大功率开关电源就是用通过电路控制开关管进行高速的导通与截止。将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压。1、交流电源输入经整流滤波成直流; 2、通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; 3、开关变压器次级感应出高频电压,经整流滤波供给负载; 4、输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的、 5、交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; 6、在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; 7、开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; 8、一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 大功率开关电源基本组成 大功率电源大至由主功率电路、PWM控制电路、单片机控制电路、辅助电源四大部份组成。 主功率电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。 逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 PWM控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 单片机控制电路 单片机使用ADC对输出电压电流采样,并通过DAC输出控制输出电压电流的变化,并对整个电源运行状态进行监控,并负责与电脑连续。 辅助电源 实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片),单片机工作供电。 以上就是大功率开关电源解析,需要电子工程师在设计使用过程中多积累经验,这样才能更好的设计研发大功率开关电源,为大功率开关电源的发展加快进程。

    时间:2020-10-29 关键词: 大功率开关电源 开关电源 直流

  • 你能区分直流电源和交流电源吗?

    你能区分直流电源和交流电源吗?

    什么是直流电源和交流电源?它们有什么不同?随着电子产品的不断发展,现如今的发电设备所用的都是交流电这种类型,而在我们平日里的家庭供电也采用的是这种类型的供电系统,但是我们平时使用的一些电器,像电脑这一些却是变成直流电才能够提供给我们使用的,直流电和交流电有着相同也有着不同,下面就给大家介绍一下两者的特点。 首先,我们来了解一下这两者有什么区别。直流的话是指方向,大小都是稳定的,恒定电流是直流电的一种,是大小和方向都不变的直流电,不随着时间发生改变,而另外一种就是指这两个方面都会跟着时间变化,我们平时的供电系统是会做周期性变化的。而他们都有着各自的优缺点,因为这一些,所以他们适合应用的地方才都不一样,恒定电流是指大小(电压高低)和方向(正负极)都不随时间(相对范围内)而变化,比如干电池,脉动直流电是指方向(正负极)不变,但大小随时间变化。 直流电源,他的方向不会随着时间而发生改变,所以比较稳定,现在电子设备中必须要有的一个功能特点,就是一定要有良好的稳定性,而在这里我们就要用到这一种,所以需要用到别的东西,在这两者之间发生一定的转变,并且它产生的磁场是比较稳定的,所以经常被用于一些比较重要的控制系统,例如变电站,移动通讯基站等等这一类的。 交流电源则是指大小和方向随时间作周期性变化的一种电流。它可以通过变压器进行改变,但是另外一种却不能实现在一点,所以在长距离的电能输送中,我们是采用会变化的那一种类型的,主要是因为电缆都非常的长,这样会让它的电阻非常的大,发生很大的能量损耗,所以一定要加大输出的电压,这样就能减少损耗。交流电是用交流发电机发出的,在发电过程中,多对磁极是按一定的角度均匀分布在一个圆周上,使得发电过程中,各个线圈就切割磁力线,由于具有多对磁极,每对磁极产生的磁力线被切割产生的电压、电流都是按弦规律变化的,所以能够不断的产生稳定的电流。最后,在终端又可以通过变压器将高电压转化成比较合适的电压,正是这样,我们才会在大规模远距离上面都采用高压交流输电模式。 直流电源概述 直流电源,是维持电路中形成稳恒电压电流的装置。如干电池、蓄电池、直流发电机等。 直流电源有正、负两个电极,正极的电位高,负极的电位低,当两个电极与电路连通后,能够使电路两端之间维持恒定的电位差,从而在外电路中形成由正极到负极的电流。直流电源是一种能量转换装置,它把其他形式的能量转换为电能供给电路,以维持电流的稳恒流动。 交流电源概述 交流电源是现代词,是一个专有名词,指的是插头与插座指用来接上用来将市电提供的交流电,使家用电器与可携式小型设备通电可使用的装置。 家用交流电源插头与插座指用来接上用来将市电提供的交流电,使家用电器与可携式小型设备通电可使用的装置。 电源插头有棒状或铜板状突出的公接头,以物理方式插入有插槽或凹洞的母接头型的电源插座。插头上一般都有火线(孔洞较短)、中性线接头(孔洞较长),部分还有接地接头(中央圆孔)。有多种插头并未特别区分火线与中性线,而也有些接头会有多个火线。这些接头可能镀上了铜、锡、镍。 电源插座是有插槽或凹洞的母接头,用来让有棒状或铜板状突出的电源插头插入,以将电力经插头传导到电器。一般插座都设计成非同一规格的插头就无法插入,部分插座上会有棒状突出,搭配插头上的凹洞。以上就是直流电源和交流电源解析,希望能给大家帮助。

    时间:2020-10-25 关键词: 交流 电源 直流

  • LED照明分类以及AC-DCLED照明解决方案

    LED照明分类以及AC-DCLED照明解决方案

    随着LED技术的发展,LED的应用已经从传统的小功率便携产品背光拓展至中大功率的室内照明、室外照明及手电筒等应用。根据驱动电源的不同,LED照明通常可以划分为交流-直流(AC-DC)LED照明、直流-直流(DC-DC)LED照明电源以及电池供电的LED手电筒等不同类型,LED灯具及其功率也各不相同,如3WPAR16、3&TImes;2WPAR20、10W/15WPAR30、15W/22WPAR38、1WG13、3WGU10、1WMR11、3WMR16、3W/9W/15W嵌灯、1W-3W阅读灯等。 1 AC-DCLED照明解决方案 在交流线路电压与LED之间没有物理电气连接的隔离应用中,常见的拓扑结构有反激(Flyback)及双电感加单电容(LLC)半桥谐振。不同拓扑结构适合于不同的功率范围或是用于满足特别的设计要求。例如,反激拓扑结构是小于100W的中低功率应用的标准选择,而LLC半桥拓扑结构是大功率和高能效的首选方案。     图1:不同功率范围的隔离型拓扑结构 AC-DCLED照明应用中,小功率的LED应用通常以恒流(CC)来驱动,而恒压(CV)功能是在输出开路的情况下作为保护功能。大功率的LED应用可能需要在电路中增加功率因数校正(PFC),其中的AC-DC转换与LED驱动两部分电路既可能采用整体式(integral)配置,即两者融合在一起,均位于照明灯具内,也可以采用分布式(distributed)配置,如图2,从而简化安全考虑,并增加系统灵活性。     图2:大功率LED驱动的分布式(distributed)配置结构 从应用的具体功率范围来看,AC-DCLED照明的电源方案应用主要包括: -1W-8W:G13/GU10/PAR16/PAR20照明 -8W-25W:PAR30/PAR38照明 -50W-300W:区域照明 1)1W-8WAC-DCLED照明应用 这类应用要求的输入电压为90至264Vac,能效达80%,同时提供短路保护、过压保护等保护特性,并提供350mA、700mA恒流,应用领域包括G13、GU10、PAR16、PAR20及嵌灯(downlight)等。 这类应用中可以采用安森美半导体的NCP1015自供电单片开关稳压器。这颗器件集成了固定频率(65/100/130kHz)电流模式控制器和700V的高压MOSFET,提供构建强固的低成本电源所需的全部特性,如软启动、频率抖动、短路保护、跳周期、最大峰值电流设定点及动态自供电功能(无需辅助绕组)等。图3显示的是NCP1015在隔离型1W-8W范围AC-DCLED照明应用的电路示意图。值得一提的是,NCP1015同样可用于非隔离型(电路中不含高频变压器)1W-8W范围的AC-DCLED照明应用,电路中可以采用抽头(tapped)电感来提高MOSFET工作的占空比,并改善系统能效及电路性能。     图3:LED驱动应用电路示电图(输入电压为85至264 Vac)

    时间:2020-08-04 关键词: LED 直流

  • Asterion系列程控直流电源新产品,你了解吗?

    Asterion系列程控直流电源新产品,你了解吗?

    什么是Asterion系列程控直流电源新产品?你知道吗?AMETEK程控电源事业部发布了Sorensen品牌Asterion系列程控直流电源的31个新型号产品。 Sorensen 品牌 Asterion系列程控直流电源现有43个型号,单机输出功率覆盖1.7kW到10kW,电压覆盖40V到400V,电流最高可达250A。Asterion系列程控直流电源适用于测试当今复杂电子产品,如国防军工设备,航空航天电子设备,通讯设备,汽车零部件及其他商用电子产品。Asterion系列程控直流电源可用于自动化测试,过程控制,研究开发应用,且可同时满足工程师对节约空间的需求。 具有多种输出特性的高功率密度电源 Asterion系列程控直流电源具有行业领先的功率密度,1U机架高度的产品可提供最高5kW的输出功率,2U机架高度的产品可提供最高10kW的输出功率。其中,28个型号产品具有矩形功率输出特性,15个型号产品具有自动量程输出特性。与矩形功率输出特性的电源相比,自动量程类型的电源扩展了电流和电压的输出范围,能够满足更广泛的测试需求。 最多可并联五台电源以满足更高电流需求 当需要使用大电流时,可以最多并联五台Asterion系列程控直流电源以实现最高1250A的电流输出。该电源具有内置智能的自平衡功能,并联时作为主机的电源最多可控制4台从机电源。 快速瞬态响应,低噪声和高效率 Asterion系列程控直流电源具有多种高级特性。快速瞬态响应,其中40V-100V型号产品的瞬态响应指标为1ms,其他400V以内的型号产品的瞬态响应指标为2ms;低噪声,对于一些1.7kW和3.4kW的型号品牌,其噪声低至7mVRMS;高效率,1.7 kW型号电源最低效率为89%,3.4kW、5kW和10kW的型号产品的最低效率为91%,由此可实现测试中的散热量最小化。 支持多国语言的触摸显示屏 Asterion系列程控直流电源使用触摸屏实现手动操作、测试开发、测试监控和故障排除。用户可以通过该触摸屏快速实现输出参数设定、数据测量、系统配置和系统设定。支持多国语言的触摸屏帮助世界各地的工程师轻松地使用母语工作,语言类型包括: 汉语、英语、德语、法语、西班牙语、俄语、日语和韩语。 客户可以通过触摸屏或编码器来实现设备的功能选择和参数输入。Asterion系列程控直流电源采用了创新的动态速率变化算法来实现控制功能,不必单独调整分辨率设置即可实现对小参数变化的精确控制和对全局范围的快速扫描。 图形化用户界面软件- Virtual Panels Asterion系列程控直流电源通过图形化用户界面软件 - Asterion Virtual panels实现便捷的远程编程和控制。Asterion Virtual panels 软件直观友好,可定制化,为测试提供最大的灵活性。其还支持商用和军用航电规范标准的测试选件,测试参数是一个数据文件,工程师可任意修改测试参数来满足特定要求。此外,Asterion Virtual panels 软件具有报告生成功能,该功能可创建包含测试参数和通过/失败标准的word格式报告。 对于自动化测试,工程师可以使用标配的LAN LXI、USB或RS-232接口与电源进行通讯。可选配的接口包括GPIB和EtherCAT接口。EtherCAT接口允许设备与可编程逻辑控制器直接接口,主要用于工业和过程控制应用。 指令兼容可简化上一代产品的升级 Asterion系列程控直流电源可替代上一代XG1500、XG1700、XFR、DCS、DLM系列电源,且可兼容上一代电源的指令。因此,测试工程师可以直接使用性能更加优异的Asterion系列程控直流电源,不必编写全新的测试代码。指令兼容节省了大量的测试开发时间和成本,保护了现有测试程序的投资。 所有Asterion系列程控直流电源符合美国和国际标准,设备经过CSA认证,CE认证,符合RoHS标准要求。产品具有五年的标准保修期。AMETEK 为全球客户提供最值得信赖的交直流电源、负载和仿真测试系统,以上就是Asterion系列程控直流电源新产品解析,希望能给大家帮助。

    时间:2020-06-01 关键词: ametek 电源 直流

  • 直流和交流充电对电动汽车有什么好处或者坏处

    直流和交流充电对电动汽车有什么好处或者坏处

    (文章来源:侃聊车吧) 对于直流和交流充电,对于电动汽车有哪些好处或伤害这个问题,是广大电动汽车用户普遍关心的问题。目前市场上电动汽车使用的充电桩的种类和方式来说有直流和交流充电两种,直流充电是通过直流充电桩来对于车辆的电量进行补充,根据直流充电来说的话,输出的电压和电流调整范围大,可以实现快充的要求。现阶段直流充电的功率以40kW和60kW居多,还有更高。 从优点上面来说的话,可以在一定的时间里面快速充满80%左右的电量,节约了充电等待的时间等,从缺点上面来说的话,以电动汽车的电池组三元锂电池来说,电池的耐高温性就差一些,在进行大电流、不恒压的快充时,容易引起电池组的某节电池过热,长期导致热失效。同时由于大电流对于锂电池内部的电极来说,过热会使得析锂过程导致锂离子减少,最终会导致电池容量下降,进而对电池寿命产生影响。 而交流充电,就是我们说的家用电充电,从充电的角度上而言属于慢充,从充电的速度上面来说是要慢于直流充电的,交流充电的优点也就是慢充,而保证每节电芯都能尽量达到满电状态。这个就好比,车在路上行驶安装规定的速度进行开车一样,而对于电池慢充来说,就相当于你需要多少,我给你多少,并且是适量的,当然从使用的寿命上面来说的话,对于延长电池寿命也有一定帮助。 从成本上面来说的话使用成本低,毕竟是峰谷电充电,从缺点上面来说充电时间慢,综合来说的话,如果是说在条件允许的话,尽量使用慢充,对延长车辆寿命会有帮助。      

    时间:2020-05-15 关键词: 电动汽车 交流电 直流

  • Asterion系列程控直流电源新产品解析

    Asterion系列程控直流电源新产品解析

    AMETEK程控电源事业部发布了Sorensen品牌Asterion系列程控直流电源的31个新型号产品。Sorensen 品牌 Asterion系列程控直流电源现有43个型号,单机输出功率覆盖1.7kW到10kW,电压覆盖40V到400V,电流最高可达250A。Asterion系列程控直流电源适用于测试当今复杂电子产品,如国防军工设备,航空航天电子设备,通讯设备,汽车零部件及其他商用电子产品。Asterion系列程控直流电源可用于自动化测试,过程控制,研究开发应用,且可同时满足工程师对节约空间的需求。 具有多种输出特性的高功率密度电源 Asterion系列程控直流电源具有行业领先的功率密度,1U机架高度的产品可提供最高5kW的输出功率,2U机架高度的产品可提供最高10kW的输出功率。其中,28个型号产品具有矩形功率输出特性,15个型号产品具有自动量程输出特性。与矩形功率输出特性的电源相比,自动量程类型的电源扩展了电流和电压的输出范围,能够满足更广泛的测试需求。 最多可并联五台电源以满足更高电流需求 当需要使用大电流时,可以最多并联五台Asterion系列程控直流电源以实现最高1250A的电流输出。该电源具有内置智能的自平衡功能,并联时作为主机的电源最多可控制4台从机电源。 快速瞬态响应,低噪声和高效率 Asterion系列程控直流电源具有多种高级特性。快速瞬态响应,其中40V-100V型号产品的瞬态响应指标为1ms,其他400V以内的型号产品的瞬态响应指标为2ms;低噪声,对于一些1.7kW和3.4kW的型号品牌,其噪声低至7mVRMS;高效率,1.7 kW型号电源最低效率为89%,3.4kW、5kW和10kW的型号产品的最低效率为91%,由此可实现测试中的散热量最小化。 支持多国语言的触摸显示屏 Asterion系列程控直流电源使用触摸屏实现手动操作、测试开发、测试监控和故障排除。用户可以通过该触摸屏快速实现输出参数设定、数据测量、系统配置和系统设定。支持多国语言的触摸屏帮助世界各地的工程师轻松地使用母语工作,语言类型包括: 汉语、英语、德语、法语、西班牙语、俄语、日语和韩语。 客户可以通过触摸屏或编码器来实现设备的功能选择和参数输入。Asterion系列程控直流电源采用了创新的动态速率变化算法来实现控制功能,不必单独调整分辨率设置即可实现对小参数变化的精确控制和对全局范围的快速扫描。 图形化用户界面软件- Virtual Panels Asterion系列程控直流电源通过图形化用户界面软件 - Asterion Virtual panels实现便捷的远程编程和控制。Asterion Virtual panels 软件直观友好,可定制化,为测试提供最大的灵活性。其还支持商用和军用航电规范标准的测试选件,测试参数是一个数据文件,工程师可任意修改测试参数来满足特定要求。此外,Asterion Virtual panels 软件具有报告生成功能,该功能可创建包含测试参数和通过/失败标准的word格式报告。 对于自动化测试,工程师可以使用标配的LAN LXI、USB或RS-232接口与电源进行通讯。可选配的接口包括GPIB和EtherCAT接口。EtherCAT接口允许设备与可编程逻辑控制器直接接口,主要用于工业和过程控制应用。 指令兼容可简化上一代产品的升级 Asterion系列程控直流电源可替代上一代XG1500、XG1700、XFR、DCS、DLM系列电源,且可兼容上一代电源的指令。因此,测试工程师可以直接使用性能更加优异的Asterion系列程控直流电源,不必编写全新的测试代码。指令兼容节省了大量的测试开发时间和成本,保护了现有测试程序的投资。 所有Asterion系列程控直流电源符合美国和国际标准,设备经过CSA认证,CE认证,符合RoHS标准要求。产品具有五年的标准保修期。AMETEK 为全球客户提供最值得信赖的交直流电源、负载和仿真测试系统,以上就是AMETEK发布Sorensen品牌Asterion系列程控直流电源新产品,相信对于大家在选择的时候有参考意义。

    时间:2020-03-26 关键词: ametek 电源 直流

  • 开关电源受限的一些注意事项

    开关电源受限的一些注意事项

    生活中处处可见开关电源,为我们的电子产品提供电源管理。开关电源的设计问题一直是大家备受关注的话题。工程师们不断创新技术,改良工艺。由于开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。 开关电源的电磁干扰分析 首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。 1 内部干扰源 ● 开关电路 开关电路主要由开关管和高频变压器组成。开关管及其散热片与外壳和电源内部的引线间存在分布电容,它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。开关管负载为高频变压器初级线圈,是感性负载。当原来导通的开关管关断时,高频变压器的漏感产生了反电势E=-Ldi/dt,其值与集电极的电流变化率成正比,与漏感成正比,迭加在关断电压上,形成关断电压尖峰,从而形成传导干扰。 ● 整流电路的整流二极管 输出整流二极管截止时有一个反向电流,其恢复到零点的时间与结电容等因素有关。它会在变压器漏感和其他分布参数的影响下产生很大的电流变化di/dt,产生较强的高频干扰,频率可达几十兆赫兹。 ● 杂散参数 由于工作在较高频率,开关电源中的低频元器件特性会发生变化,由此产生噪声。在高频时,杂散参数对耦合通道的特性影响很大,而分布电容成为电磁干扰的通道。 2 外部干扰源 外部干扰源可以分为电源干扰和雷电干扰,而电源干扰以“共模”和“差模”方式存在。同时,由于交流电网直接连到整流桥和滤波电路上,在半个周期内,只有输入电压的峰值时间才有输入电流,导致电源的输入功率因数很低(大约为0.6)。而且,该电流含有大量电流谐波分量,会对电网产生谐波“污染”。 开关电源的EMC设计 产生电磁干扰有3个必要条件:干扰源、传输介质、敏感设备,EMC设计的目的就是破坏这3个条件中的一个。针对于此,主要采取的方法有:电路措施、EMI滤波、屏蔽、印制电路板抗干扰设计等。 1 降低开关损耗和开关噪声的软开关技术 软开关是在硬开关基础上发展起来的一种基于谐振技术或利用控制技术实现的在零电压/电流状态下的先进开关技术。 软开关的实现方法是:在原电路中增加小电感、电容等谐振元件,在开关过程前后引入谐振,消除电压、电流的重叠。图2给出了一种使用软开关技术的基本开关单元。 2 减小干扰源干扰能量的缓冲电路 在开关控制电源的输入部分加入缓冲电路,其由线性阻抗稳定网络组成,用于消除电力线干扰、电快速瞬变、电涌、电压高低变化和电力线谐波等潜在的干扰。缓冲电路器件参数为R1=500Ω,C=6nF,L=36mH,R=150Ω。 3 切断干扰噪声传播路径的EMI滤波 在开关电源输入和输出电路中加装EMI滤波器,是抑制传导发射的一个很有效方法。其参数主要有:放电电阻、插入损耗、Cx电容、Cy电容和电感值。其中,插入损耗是滤波器性能的一个关键参数。在考虑机械性能、环境、成本等前提下,应该尽量使插入损耗大一些。用共模、差模干扰的测量结果与标准限值,加上适当的裕量可得到滤波器的插入损耗IL。 ILCM(dB)=Vcm(dB)-Vlimt(dB)-3(dB)+M(dB) (1) ILDM(dB)=VDM(dB)-Vlimt(dB)-3(dB)+M(dB) (2) 式中,3dB表示在分离共模、差模传导干扰的测试过程中测试结果比实际值大3dB; M(dB)表示设计裕量,一般取6dB;Vlimit(dB)为相关标准如CISPR,FCC等规定的传导干扰限值。 图4是220V/50Hz交流输入的开关电源交流侧EMI滤波器的电路。Cy=3300pF,L1、L2=0.7mH,它们构成共模滤波电路,抑制0.5~30MHz的共模干扰信号。Cx=0.1μF,L3、L4=200~500μH,采用金属粉压磁芯,与L1/L2、Cx构成L-N端口间低通滤波器,用于抑制电源线上存在的0.15~ 0.5MHz差模干扰信号。R用于消除可能在滤波器中出现的静电积累。 图5是开关电源的直流输出侧滤波电路,它由共模扼流圈L1、L2,扼流圈L3和电容C1、C2组成。为了防止磁芯在较大的磁场强度下饱和而使扼流圈失去作用,磁芯必须采用高频特性好且饱和磁场强度大的恒μ磁芯。 4 用屏蔽来抑制辐射及感应干扰 开关电源干扰频谱集中在30MHz以下的频段,直径r<λ/2π,主要是近场性质的电磁场,且属低阻抗场。可用导电良好的材料对电场屏蔽,而用导磁率高的材料对磁场屏蔽。此外,还要对变压器、电感器、功率器件等采取有效的屏蔽措施。屏蔽外壳上的通风孔最好为圆形,在满足通风的条件下,孔的数量可以多,每个孔的尺寸要尽可能小。接缝处要焊接,以保证电磁的连续性。屏蔽外壳的引入、引出线处要采取滤波措施。对于电场屏蔽,屏蔽外壳一定要接地。对于磁场屏蔽,屏蔽外壳不需接地。 5 合理的PCB布局及布线 敏感线路主要是指控制电路和直接与干扰测量设备相连的线路。要降低干扰水平,最简单的方法就是增大干扰源与敏感线路的间距。但由于受电源尺寸的限制,单纯的增大间距并非解决问题的最佳途径,更为合理的方法是根据干扰电场的分布情况将敏感线路放在干扰较弱的地方。以上就是开关电源的一些技术解析。

    时间:2020-03-24 关键词: 整流 开关电源 直流

  • 怎样计算电磁转矩?

    怎样计算电磁转矩?

    直流电机的电磁转矩是由每极气隙磁通和电枢电流共同作用产生的。 直流电动机堵转转矩计算公式TK=9.55KeIK。 直流电机转矩公式:T=CTΦIa,其中CT为转矩常数,Φ为每极主磁通,Ia为电枢电流。 直流发电机和直流电动机的电磁转矩在性质上的介绍: 1、电动机和发电机的电磁转矩都是由电枢电流在磁场中受到电磁力产生的;2、电动机的电磁转矩方向与转动方向相同,它是驱动力矩,电动机通过它将电能转换为机械能;3、发电机的电磁转矩方向与转动方向相反,它是制动力矩,发电机通过它将机械能转换为电能。 直流发电机和直流电动机的电磁转矩的产生及作用: 1、直流电动机,外加电源之后,励磁线圈会在电机内产生一个磁场,电枢通电以后,就形成带电导体。带电导体在磁场中,就会受到力的作用从而产生运动,这个促使电枢运动的力矩,就是电磁力矩(这个力矩是驱动电枢运动的)。当电枢开始运动之后,就又形成导体切割磁力线,从而导体内部会产生(感应出)电势,这个电势我们称为感应电动势。外电势与感应电势关系为:U=E+IR,U为外电势,E是内电势(感应电势),I是电机电流,R是电机电阻。 2、直流发电机,这个情况稍稍复杂一点。有的发电机是自励磁(要求有剩磁),有的是外加励磁电源。无论是哪种情况,都要求有磁的存在,当电枢运动在磁场中切割磁力线的时候,就会产生一个电势,这个电势就是感应电势。跟电动机同样的道理,同时存在着一个电磁力矩,只是这个力矩是阻止电枢运动的,与外部拖动电枢运动的装置的力矩相平衡。同样,外电势与感应电势关系为:E=U+IR,U为外电势,E是内电势(感应电势),I是电机电流,R是电机电阻。 异步电机 定子和转子的磁场相互作用使电机转动。 因为转子的转速必须低于旋转磁场才能对转子导线形成磁力线切割,所以转子的转速要低于定子的旋转磁场转速,所以称异步电机。 三相异步电动机的转矩公式为:     电磁转矩的计算 可以知道T∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为T2 ,电压下降使电磁转矩T下降很多;由于T2 不变,所以T小于T2 平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩T又回升,直到与T2相等为止。这时电动机转速又趋于新的稳定值。 同步电机 同步发电机电磁转矩与磁场的强度和绕组里的电流大小有关。磁场越强,电磁转矩越大;电流越大,电磁转矩也越大。 M=CmφI 其中:M---同步发电机的电磁转矩;Cm---同步发电机的转矩常数;φ---同步发电机的磁通;I---同步发电机的电流。 另外,也可用功率表示转矩的公式:M=P/ω 其中:M---同步发电机的电磁转矩;P--- 同步发电机的输出功率; ω---同步发电机的旋转角速度。 电磁转矩的大小与转子电流和磁通量的乘积成正比: Tm=KTI2Φmcosθ2 (1-4) 式中,KT为转矩常数;I2为转子电流;Φm为每极的磁通量;θ2为转子电流的功率因数。

    时间:2019-11-16 关键词: 电磁 电源资讯 直流

  • 如何驱动一个直流电机?直流电机驱动电路大全

    如何驱动一个直流电机?直流电机驱动电路大全

    大家都知道直流电机有可以精确控制的优点,但是功耗大,效率低,力矩小。如果选用大功率步进电机,为了降低功耗,可以采取PWM恒流控制的方法。 直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。 直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。     直流电机的基本构成 直流电机由定子和转子两部分组成,其间有一定的气隙。福利:在电子发烧友网公众号回复资料,免费领取一份模电资料集 直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。 直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。 换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。     直流电机的组成结构 直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 定子 (1)主磁极 主磁极的作用是产生气隙磁场。主磁极由主磁极铁心和励磁绕组两部分组成铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。整个主磁极用螺钉固定在机座上, (2)换向极 换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成。换向极绕组用绝缘导线绕制而成,套在换向极铁心上,换向极的数目与主磁极相等。 (3)机座 电机定子的外壳称为机座。机座的作用有两个: 一是用来固定主磁极、换向极和端盖,并起整个电机的支撑和固定作用; 二是机座本身也是磁路的一部分,借以构成磁极之间磁的通路,磁通通过的部分称为磁轭。为保证机座具有足够的机械强度和良好的导磁性能,一般为铸钢件或由钢板焊接而成。 (4)电刷装置 电刷装置是用来引入或引出直流电压和直流电流的。电刷装置由电刷、刷握、刷杆和刷杆座等组成。电刷放在刷握内,用弹簧压紧,使电刷与换向器之间有良好的滑动接触,刷握固定在刷杆上,刷杆装在圆环形的刷杆座上,相互之间必须绝缘。刷杆座装在端盖或轴承内盖上,圆周位置可以调整,调好以后加以固定。 转子 (1)电枢铁心 电枢铁心是主磁路的主要部分,同时用以嵌放电枢绕组。一般电枢铁心采用由0.5mm厚的硅钢片冲制而成的冲片叠压而成,以降低电机运行时电枢铁心中产生的涡流损耗和磁滞损耗。叠成的铁心固定在转轴或转子支架上。铁心的外圆开有电枢槽,槽内嵌放电枢绕组。 (2)电枢绕组 电枢绕组的作用是产生电磁转矩和感应电动势,是直流电机进行能量变换的关键部件,所以叫电枢。它是由许多线圈(以下称元件)按一定规律连接而成,线圈采用高强度漆包线或玻璃丝包扁铜线绕成,不同线圈的线圈边分上下两层嵌放在电枢槽中,线圈与铁心之间以及上、下两层线圈边之间都必须妥善绝缘。为防止离心力将线圈边甩出槽外,槽口用槽楔固定。线圈伸出槽外的端接部分用热固性无纬玻璃带进行绑扎。 (3)换向器 在直流电动机中,换向器配以电刷,能将外加直流电源转换为电枢线圈中的交变电流,使电磁转矩的方向恒定不变;在直流发电机中,换向器配以电刷,能将电枢线圈中感应产生的交变电动势转换为正、负电刷上引出的直流电动势。换向器是由许多换向片组成的圆柱体,换向片之间用云母片绝缘。 (4)转轴 转轴起转子旋转的支撑作用,需有一定的机械强度和刚度,一般用圆钢加工而成。  

    时间:2019-09-03 关键词: 电源技术解析 功率 直流

  • PCB设计中的四种接地模式分析

    PCB设计中的四种接地模式分析

    GND,指的是电线接地端的简写。代表地线或0线。 电路图上和电路板上的GND(Ground)代表地线或0线.GND就是公共端的意思,也可以说是地,但这个地并不是真正意义上的地。是出于应用而假设的一个地,对于电源来说,它就是一个电源的负极。它与大地是不同的。有时候需要将它与大地连接,有时候也不需要,视具体情况而定。 设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。 有单点接地,多点接地,浮地和混合接地。     单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。在低频电路中,布线和元件之间不会产生太大影响。通常频率小于1MHz的电路,采用一点接地。 多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。在高频电路中,寄生电容和电感的影响较大。通常频率大于10MHz的电路,常采用多点接地。 PCB设计中的四种接地模式分析 浮地,即该电路的地与大地无导体连接。虚地:没有接地,却和地等电位的点。 其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。 其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。 “地”是电子技术中一个很重要的概念。由于“地”的分类与作用有多种, 容易混淆,故总结一下“地”的概念。 “接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。“地”的经典定义是“作为电路或系统基准的等电位点或平面”。 一: 信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端 。 (1) 直流地:直流电路“地”,零电位参考点。 (2) 交流地:交流电的零线。应与地线区别开。 (3) 功率地:大电流网络器件、功放器件的零电位参考点。 (4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。 (5) 数字地:也叫逻辑地,是数字电路的零电位参考点。 (6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。 (7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。 信号接地 设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。 有单点接地,多点接地,浮地和混合接地。(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。在低频电路中,布线和元件之间不会产生太大影响。通常频率小于1MHz的电路,采用一点接地。多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。在高频电路中,寄生电容和电感的影响较大。通常频率大于10MHz的电路,常采用 多点接地。浮地,即该电路的地与大地无导体连接。『 虚地:没有接地,却和地等电位的点。』其优点是该电路不受大地电性能的影响。浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。一个折衷方案是在浮地与公共地之间跨接一个阻值很大的泄放电阻,用以释放所积累的电荷。注意控制释放电阻的阻抗,太低的电阻会影响设备泄漏电流的合格性。 1:浮地技术的应用 a交流电源地与直流电源地分开 一般交流电源的零线是接地的。但由于存在接地电阻和其上流过的电流,导致电源的零线电位并非为大地的零电位。另外,交流电源的零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和后续的直流电路正常工作产生影响。因此,采用把交流电源地与直流电源地分开的浮地技术,可以隔离来自交流电源地线的干扰。 b 放大器的浮地技术 对于放大器而言,特别是微小输入信号和高增益的放大器,在输入端的任何微小的干扰信号都可能导致工作异常。因此,采用放大器的浮地技术,可以阻断干扰信号的进入,提高放大器的电磁兼容能力。 c 浮地技术的注意事项 1)尽量提高浮地系统的对地绝缘电阻,从而有利于降低进入浮地系统之中的共模干扰电流。 2)注意浮地系统对地存在的寄生电容,高频干扰信号通过寄生电容仍然可能耦合到浮地系统之中。 3)浮地技术必须与屏蔽、隔离等电磁兼容性技术相互结合应用,才能收到更好的预期效果。 4)采用浮地技术时,应当注意静电和电压反击对设备和人身的危害。 2:混合接地 混合接地使接地系统在低频和高频时呈现不同的特性,这在宽带敏感电路中是必要的。电容对低频和直流有较高的阻抗,因此能够避免两模块之间的地环路形成。当将直流地和射频地分开时,将每个子系统的直流地通过10~100nF的电容器接到射频地上,这两种地应在一点有低阻抗连接起来,连接点应选在最高翻转速度(di/dt)信号存在的点。 二: 设备接大地 在工程实践中,除认真考虑设备内部的信号接地外,通常还将设备的信号地,机壳与大地连在一起,以大地作为设备的接地参考点。设备接大地的目的是 1)保护地,保护接地就是将设备正常运行时不带电的金属外壳(或构架)和接地装置之间作良好的电气连接。 为了保护人员安全而设置的一种接线方式。保护“地”线一端接用电器外壳,另一端与大地作可靠连接。 2)防静电接地,泄放机箱上所积累的电荷,避免电荷积累使机箱电位升高,造成电路工作的不稳定。 3)屏蔽地,避免设备在外界电磁环境的作用下使设备对大地的电位发生变化,造成设备工作的不稳定。 此外还有防雷接地和音响中的音频专用地等等。

    时间:2019-09-02 关键词: 电源技术解析 功率 直流

  • 你是否尝试过用线性光耦隔离模拟信号?

    你是否尝试过用线性光耦隔离模拟信号?

    1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于直流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍。 2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示     其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即     K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。 HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。相对于HCNR200,HCNR201提供更高的线性度。 采用HCNR200/201进行隔离的一些指标如下所示:     * 线性度:HCNR200:0.25%,HCNR201:0.05%; * 线性系数K3:HCNR200:15%,HCNR201:5%; * 温度系数:-65ppm/oC; * 隔离电压:1414V; * 信号带宽:直流到大于1MHz。 从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。下面对HCNR200/201的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电压-电流转换进行推导与说明。 3. 典型电路分析 Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图所示: 设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,,和之间的关系取决于和之间的关系。   [!--empirenews.page--]   将前级运放的电路提出来看,如下图所示: 设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系: Vo=Voo-GVi (1) 其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。 忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:     通过R3两端的电流为IF,根据欧姆定律得:     其中,为光耦2脚的电压,考虑到LED导通时的电压基本不变,这里的作为常数对待。 根据光耦的特性,即 K1=IP1/IF (4) 将和的表达式代入上式,可得:     上式经变形可得到:     考虑到G特别大,则可以做以下近似:     这样,输出与输入电压的关系如下:     可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。一般选R1=R2,达到只隔离不放大的目的。 4. 辅助电路与参数确定 上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。 4.1 运放选型 运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。TI公司的LMV321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。 4.2 阻值确定 电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于考虑到IFmax大有利于能量的传输,这样,一般取最大值。 另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,这样,R2的确定可以根据所需要的放大倍数确定,例如如果不需要放大,只需将R2=R1即可。 另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。 4.3 参数确定实例 假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。 * 确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右; * 确定R3:R3=5V/25mA=200; * 确定R1:; * 确定R2:R2=R1=32K。

    时间:2019-08-28 关键词: 电压 电源技术解析 直流

  • 数万工程师熟悉又陌生的5条电机驱动器设计准则,讲得太深刻了!

    数万工程师熟悉又陌生的5条电机驱动器设计准则,讲得太深刻了!

    在直流电机驱动电路的设计中,主要考虑以下几点: 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 性能:对于PWM调速的电机驱动电路,主要有以下性能指标: 输出电流和电压范围,它决定着电路能驱动多大功率的电机。 效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 1. 输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止 2. 栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效应管截止。上面的三极管截止,场效应管导通,输出为低电平。 上面的分析是静态的,下面讨论开关转换的动态过程:三极管导通电阻远小于2千欧,因此三极管由截止转换到导通时场效应管栅极电容上的电荷可以迅速释放,场效应管迅速截止。但是三极管由导通转换到截止时场效应管栅极通过2千欧电阻充电却需要一定的时间。相应的,场效应管由导通转换到截止的速度要比由截止转换到导通的速度快。假如两个三极管的开关动作是同时发生的,这个电路可以让上下两臂的场效应管先断后通,消除共态导通现象。 实际上,运放输出电压变化需要一定的时间,这段时间内运放输出电压处于正负电源电压之间的中间值。这时两个三极管同时导通,场效应管就同时截止了。所以实际的电路比这种理想情况还要安全一些。 场效应管栅极的12V稳压二极管用于防止场效应管栅极过压击穿。一般的场效应管栅极的耐压是18V或20V,直接加上24V电压将会击穿,因此这个稳压二极管不能用普通的二极管代替,但是可以用2千欧的电阻代替,同样能得到12V的分压。 3.场效应管输出部分: 大功率场效应管内部在源极和漏极之间反向并联有二极管,接成H桥使用时,相当于输出端已经并联了消除电压尖峰用的四个二极管,因此这里就没有外接二极管。输出端并联一个小电容(out1和out2之间)对降低电机产生的尖峰电压有一定的好处,但是在使用PWM时有产生尖峰电流的副作用,因此容量不宜过大。在使用小功率电机时这个电容可以略去。如果加这个电容的话,一定要用高耐压的,普通的瓷片电容可能会出现击穿短路的故障。 输出端并联的由电阻和发光二极管,电容组成的电路指示电机的转动方向. 4.性能指标: 电源电压15~30 V,最大持续输出电流5A/每个电机,短时间(10秒)可以达到10A,PWM频率最高可以用到30KHz(一般用1到10KHz)。电路板包含4个逻辑上独立的,输出端两两接成H桥的功率放大单元,可以直接用单片机控制。实现电机的双向转动和调速。 5.PCB的布局布线: 大电流线路要尽量的短粗,并且尽量避免经过过孔,一定要经过过孔的话要把过孔做大一些(>1mm)并且在焊盘上做一圈小的过孔,在焊接时用焊锡填满,否则可能会烧断。另外,如果使用了稳压管,场效应管源极对电源和地的导线要尽可能的短粗,否则在大电流时,这段导线上的压降可能会经过正偏的稳压管和导通的三极管将其烧毁。在一开始的设计中,NMOS管的源极于地之间曾经接入一个0.15欧的电阻用来检测电流,这个电阻就成了不断烧毁板子的罪魁祸首。当然如果把稳压管换成电阻就不存在这个问题了。 电机驱动电路的PCB 需要采用特殊的冷却技术,以解决功耗问题。印刷电路板 (PCB) 基材(例如 FR-4 环氧树脂玻璃)的导热性较差。相反,铜的导热性非常出色。因此,从热管理角度来看,增加 PCB 中的铜面积是一个理想方案。厚铜箔(例如:2 盎司(68 微米厚))的导热性优于较薄的铜箔。然而,使用厚铜箔的成本较高,并且难以实现精细的几何形状。 因此,使用 1 盎司(34 微米)铜箔变得很常见。外层通常使用? 盎司到1 盎司的铜箔。多层电路板内层使用的固体铜面具有良好的散热性。然而,由于这些铜面通常都置于电路板叠层的中央,因此热量会聚集在电路板内部。增加 PCB 外层的铜面积,并经由许多通孔连接或“缝接”至内层,有助于将热量转移到内层外部。 由于存在走线和元件,双层 PCB 的散热可能会更加困难。因此,尽可能多地提供固体铜面,并实现与电机驱动器 IC 的良好热连接显得非常必要。在两个外层上都增加覆铜区,并将其与许多通孔连接在一起,有助于由走线和元件分割的各区域间散热。 a、走线宽度:越宽越好 由于电机驱动器 IC 的进出电流较大(在一些情况下超过 10 A),因此应谨慎考虑进出器件的 PCB 走线宽度。走线越宽,电阻越低。必须调整走线尺寸,以使走线电阻不会消耗过多功率,避免导致走线升温。太小的走线其实可以作为电熔丝,并且容易烧断! 设计师通常使用 IPC-2221 标准来确定适当的走线宽度。这一规范针对各种电流电平和允许的温升提供了显示铜横截面积的相应图表,可转换为给定铜层厚度条件下的走线宽度。例如 1 盎司铜层中承载 10 A 电流的走线需要稍宽于 7 mm,以实现 10℃的温升。针对 1-A 电流,走线宽度只需为 0.3 mm。 鉴于此,10 A 电流似乎不可能通过微型 IC 板。 需要理解的是,IPC-2221 中建议的走线宽度适用于等宽长距离 PCB 走线。如果采用更短的PCB 走线也有可能通过更大得多的电流,且不会产生任何不良作用。这是因为短而窄的 PCB 走线电阻较小,且产生的任何热量都将被吸收至更宽的铜区域,而该区域则起到了散热片的作用。     加宽 PCB 走线, 以使 IC 板能够更好地处理持续电流。 参见图中的示例。尽管该器件的 IC 板只有 0.4 mm 宽,但它们必须承载高达 3 A 的持续电流。所以我们需要尽可能地将走线加宽,并靠近器件。 走线较窄部分产生的任何热量被传导至较宽的铜区域,以使较窄走线的温升可以忽略不计。 嵌入在 PCB 内层的走线无法像外层的走线一样充分散热,因为绝缘基板的导热性不佳。为此,内层走线应设计为外层走线的约两倍宽。 作为一个大致的指导方针,下表显示了电机驱动器应用中较长走线(超过大约 2 cm)的建议走线宽度。     如果空间允许,使用更宽走线或覆铜区的布线可使温升和压降达到最低。 b、热通孔:尽可能多地使用 通孔是小型的电镀孔,通常用于将一根走线从一层穿至另一层。虽然热通孔采用同样的方式制成,但却用于将热量从一层传至另一层。适当使用热通孔对于 PCB 的散热至关重要,但是必须考虑几个工艺性问题。 通孔具有热阻,这意味着当热量流过通孔时,通孔之间会出现一些温降,测量单位为℃/W。为使这一热阻降至最低,并提高通孔传输热量时的效率,应使用大通孔,且孔内应含有尽可能多的铜面积。     应使用大通孔(图为通孔的横截面),且孔内应含有尽可能多的铜面积,以使热阻降至最低。 尽管在 PCB 的开口区域可以使用大通孔,但通孔往往置于 IC 板区域内,以直接从 IC 封装中转移热量。在这种情况下,无法使用大通孔。这是因为大型的电镀通孔可能会导致“渗锡”,即用于连接 IC 与 PCB 的焊料向下流入通孔中,从而导致焊接点质量不佳。 可以通过几种方式来减少渗锡。其中一种是使用非常小的通孔,以减少渗入到孔中的焊料量。然而,小型通孔的热阻更高,因此为实现相同的热力性能,需要更多的通孔。 另一种技术是在板的背面为通孔“搭帐篷”。这需要移除板背面阻焊层中的缺口,以使阻焊层材料盖住通孔。如果通孔较小,阻焊层将塞住通孔;因此,焊料就无法渗透 PCB。 不过,这可能会产生另外一个问题:焊剂聚集。通孔被塞住后,通孔中可能会聚集焊剂(焊膏的一种成分)。一些焊剂配方可能具有腐蚀性,如不去除,时间一长会导致可靠性问题。不过,现代大多数免清洗焊剂工艺不具有腐蚀性,且不会导致问题。 请注意,热通孔不得使用热风焊盘,它们必须直接连接至铜区域。     热通孔应直接连接PCB 上的铜区域。 建议 PCB 设计人员与表面贴装技术 (SMT) 工艺工程师一起检查 PCB 组装件,以选择适用于该组装件工艺的最佳通孔尺寸和结构,尤其是当热通孔置于 IC 板区域内时。 c、电容的布放 电机驱动器 IC 的元件布局指南与其他类型的电源 IC 类似。旁路电容器应尽可能地靠近器件电源引脚,而大容量电容器则置于其旁边。许多电机驱动器 IC 使用引导和/或电荷泵电容器,其同样应置于 IC 附近。     大多数信号直接在顶层路由。电源从大容量电容器路由至底层的旁路和电荷泵电容器,同时在各层过渡之处使用多个通孔。 TSSOP 和 QFN 封装的器件底层有一个较大的外露式 IC 板。该 IC 板连接至芯片的背面,用于去除器件中的热量。该 IC 板必须充分焊接至 PCB 上,以消耗功率。 为沉积该 IC 板的焊膏而使用的模具开口并不一定会在 IC 数据表中详细说明。通常,SMT 工艺工程师对模具上应沉积多少焊料以及模具应使用何种图案有其自己的规则。 如果使用类似于 IC 板大小的单个开口,则会沉积大量焊膏。这样可能会因焊料熔化时的表面张力而导致器件被抬起。另一个问题是焊料空洞(焊料区域内的空腔或缺口)。在回流焊过程中,焊剂的挥发性成分蒸发或沸腾时,就会出现焊料空洞。这可能会导致焊料被推出焊接点。 为解决这些问题,针对面积大于约 2 平方毫米的 IC 板,焊膏通常沉积在几个小的方形或圆形区域。将焊膏分成更小的区域可使焊剂的挥发性成分更易于逸散出焊膏,而不会使焊料移位。[!--empirenews.page--]     QFN 封装的该焊料模有四个小开口,用于沉积中央IC 板上的焊膏。 SOT-23 和 SOIC 封装     标准的引线封装(如 SOIC 和 SOT-23 封装)通常用于低功率电机驱动器中。 为了充分提高引线封装的功耗能力,采用“倒装芯片引线框架”结构。在不使用接合线的情况下,使用铜凸点和焊料将芯片粘接至金属引线,从而可通过引线将热量从芯片传导至 PCB。     倒装芯片引线框架结构有助于充分提高引线封装的功耗能力。 通过将较大的铜区域连接至承载较大电流的引线,可优化热性能。在电机驱动器 IC 上,通常电源、接地和输出引脚均连接至铜区域。 如下图所示为“倒装芯片引线框架”SOIC 封装的典型 PCB 布局。引脚 2 为器件电源引脚。请注意,铜区域置于顶层器件的附近,同时几个热通孔将该区域连接至 PCB 背面的铜层。引脚 4 为接地引脚,并连接至表层的接地覆铜区。引脚 3(器件输出)也被路由至较大的铜区域。     请注意,SMT 板上没有热风焊盘;它们牢牢地连接至铜区域。这对实现良好的热性能至关重要。     QFN 和 TSSOP 封装 TSSOP 封装为长方形,并使用两排引脚。电机驱动器 IC 的 TSSOP 封装通常在封装底部带有一个较大的外露板,用于排除器件中的热量。 TSSOP 封装通常在底部带有一个较大的外露板,用于排除热量。     QFN 封装为无引线封装,在器件外缘周围带有板,器件底部中央还带有一个更大的板。这个更大的板用于吸收芯片中的热量。     为排除这些封装中的热量,外露板必须进行良好的焊接。外露板通常为接地电位,因此可以接入 PCB 接地层。 在理想情况下,热通孔直接位于板区域。在的 TSSOP 封装的示例中,采用了一个 18 通孔阵列,钻孔直径为 0.38 mm。该通孔阵列的计算热阻约为 7.7°C/W。     采用了一个 18 热通孔阵列的 TSSOP 封装 PCB 布局 通常,这些热通孔使用 0.4 mm 及更小的钻孔直径,以防止出现渗锡。如果 SMT 工艺要求使用更小的孔径,则应增加孔数,以尽可能保持较低的整体热阻。 除了位于板区域的通孔,IC 主体外部区域也设有热通孔。在 TSSOP 封装中,铜区域可延伸至封装末端之外,这为器件中的热量穿过顶部的铜层提供了另一种途径。 QFN 器件封装边缘四周的板避免在顶部使用铜层吸收热量。必须使用热通孔将热量驱散至内层或 PCB 的底层。     图中的 PCB 布局所示为一个小型的 QFN (4 × 4 mm) 器件。在外露板区域中,只容纳了九个热通孔。因此,该 PCB 的热性能不及 TSSOP 封装。 倒装芯片 QFN 封装 倒装芯片 QFN (FCQFN) 封装与常规的 QFN 封装类似,但其芯片采取倒装的方式直接连接至器件底部的板上,而不是使用接合线连接至封装板上。这些板可以置于芯片上的发热功率器件的反面,因此它们通常以长条状而不是小板状布置。     FCQFN 封装在芯片的表面采用了多排铜凸点粘接至引线框架     小通孔可置于板区域内,类似于常规 QFN 封装。在带有电源和接地层的多层板上,通孔可直接将这些板连接至各层。在其他情况下,铜区域必须直接连接至板,以便将 IC 中的热量吸入较大的铜区域中。 下图器件具有较长的电源和接地板,以及三个输出口。请注意,该封装只有 4 × 4 mm 大小。     FCQFN封装IC的 PCB 布局 器件左侧的铜区域为功率输入口。这个较大的铜区域直接连接至器件的两个电源板。 三个输出板连接至器件右侧的铜区域。注意铜区域在退出板之后尽可能地扩展。这样可以充分将热量从板传递到环境空气中。 同时,注意器件右侧两个板中的数排小通孔。这些板均进行了接地,且 PCB 背面放置了一个实心接地层。这些通孔的直径为 0.46 mm,钻孔直径为 0.25 mm。通孔足够小,适合置于板区域内。 综上所述,为了使用电机驱动器 IC 实施成功的 PCB 设计,必须对 PCB 进行精心的布局。因此,本文提供了一些实用性的建议,以期望可以帮助 PCB 设计人员实现PCB板良好的电气和热性能。

    时间:2019-08-27 关键词: 电源技术解析 功率 直流

  • FFT分析在示波器中的应用详解

    FFT分析在示波器中的应用详解

    目前,频谱分析在各种噪声、声波、震动、电声、生物、化学、医学和建筑等诸多领域中发挥了十分重要的作用。本文将通过解析相关基本参数,分享4M样本点在FFT分析中的优势。 频谱分析仪是目前专用测试信号频域的专用仪器,为何示波器中仍添加了频谱分析功能呢?主要原因有两个: 1. 性能优越的频谱分析仪多属于国外研发生产,价格较昂贵,而国内的频谱分析仪在精度和结果上不是很理想。2. 示波器在时域分析中具有优越性,但面对日益多样化的信号,简单的时域分析和测量已无法满足我们对信号的测量需求,希望能获取到信号更多和更有用的特征方便对信号进行处理,如频率、幅度、相位信息等。 综上两点,推动了频谱分析在示波器中的研发与发展。执行FFT分析运算后,信号将从时域被转换到频域, 水平坐标为频率,垂直坐标为dB或V。 FFT分析在示波器中的应用 使用FFT运算功能可查找串扰问题、在模拟波形中查找由放大器非线性引起的失真问题或用于调整模拟滤波器。示波器支持通过FFT运算完成以下工作: 测量系统中的谐波分量和失真; 测量直流电源中的噪声特性; 分析振动。     如图1所示为FFT分析界面图。 图1 FFT分析界面图 FFT参数 示波器的FFT分析功能性能如何,需要关注以下三个参数: 样本点数N 频谱分辨率Δf 采样率Sa 1、样本点数N 此样本点数指用于计算FFT的点的数量。示波器存储点数要满足大于频谱分析点数。以ZLG示波器为例,ZDS1000系列示波器运行状态下可分析最大的样本点数为10K,停止状态下最大点数为100K。除ZDS1000系列示波器的型号,运行状态下可分析最大的样本点数为100K,停止状态下最大点数可达4M。那么4M点究竟有何优势呢?了解本章节相关基本参数后,相信通过下一章节的两个例子,您就能明白了。 2、频谱分辨率Δf 频谱分辨率Δf即两个相邻频点之间的频率间隔。如果基频是3kHz,那么频谱分辨率肯定要更小,可通过调节时基档位来改变频谱分辨率。以尺子为例,尺子可测量的最大长度可理解为频谱分析的最大频率,尺子中标识的最小刻度即为频谱分辨率。如图2所示,图中两把尺子长度皆为5cm,第一把尺子的最小刻度达到2mm,第二把尺子的最小刻度为1cm。显然第一把尺子比第二把尺子更精确。如测量长度为4.4cm的橡皮,第一把尺子能很精准的测量,第二把尺子只能通过4cm和5cm之间的间隔进行估算得结果。频谱分辨率也是如此,当Δf为2Hz时,自然分析不到频率为单数(如99HZ)的相关信息。当Δf为1Hz时,也分析不到90.5Hz的相关信息。     图2 最小刻度保证最小精度 3、采样率Sa 采样率Sa指用于FFT分析的每秒采集的点的数量。Nyquist采样定理是示波器对模拟信号进行采样数字化是必须满足的约束条件,即示波器对信号的采样率Sa也需≥最大频率的两倍才能无失真的恢复信号。Sa决定能够分析的最高频率的频点(1/2采样率),想要分析最大频率为1G的信号,采样率需达到2G甚至更大。如图 3所示,此时可分析的最大频率为2Ghz,采样率显示为4Gsa/s。     图3 采样率和频域示意图 4M点优势 FFT分析样本点数为当前采样率和总采样时间的乘积,频谱分辨率△f为采样时间的倒数。如下两公式所示,具体推导在此不展开,可点击跳转至《千万别错过!这些FFT分析干货真的很受用》查看相关说明。 N=Sa×T Δf=1/T T:总采样时间。如图4中红框所示。此采样时间与示波器总采样时间相同。那么4M采样点究竟有何优势呢?请看下文。 图4 采样时间示意图 1、频谱分辨率相同,频域更广 根据我们需要分析的最小频率间隔确定频谱分辨率,从而确定需要采样的时间,进而确认采样率,得到最大可分析的频率。假设我们需要分析的最小间隔为1Hz,采样时间需要1s,当样本点数为4M时,采样率可达4MSa/s,理论上可分析的频率范围为0~2MHz。若样本点数为100K,采样率只有100KSa/s,则理论上可分析的频率范围为0~50KHz。如图5所示为频谱分辨率相同时,4M样本点和100K样本点实测的对比图。     图5 △f相同,4M点频域更广 2、采样率相同,频谱分辨率更小 您可能会想,若我的信号不需要MHz级别的频谱分析,那4M采样点频域更宽的优势就体现不出来了吧?这时候体现的是另外一个优势:更小的频谱分辨率。 当采样率保持为100Ksa/s不变时,根据公式N=Sa×T,Δf=1/T,若样本点数N为100K,则频谱分辨率△f为1Hz。而当样本点数N为4M,频谱分辨率△f可达0.026Hz。 小结 ZDS示波器最高支持强大的4M样本点分析,其优势就在于频谱分辨率相同时,频域更广;保持采样率相同时,能达到的频谱分辨率更小。ZDS系列示波器如何在FFT分析中脱颖而出?答案就是4M样本点。

    时间:2019-08-20 关键词: 测量 电源技术解析 直流

  • 都是干货!5G器件及芯片测试经验深度分享

    都是干货!5G器件及芯片测试经验深度分享

    5G通信系统从最开始就提出了更快、更高、更强的口号(哎,这不正是著名的奥林匹克格言吗?),从1G到5G甚至到未来的通信系统,设计师们正是秉承着这个理想,来设计并升级一代一代的通信系统。     5G更强大的数据通信能力以及更丰富的连接场景的设计目标,如家庭影院、4K甚至8K的高清电影、VR、远程医疗、车联网等新兴应用被各种脑洞,畅想YY( 给大众用户“洗脑”十分必要,毕竟未来的投资要靠这些人收回来)。 要满足这些设计目标,没点创新怎么能行?于是,Massive MIMO、毫米波等新技术名词一度成为热搜名词。但也有人说,当3GPP决定5G NR继续使用OFDM技术的那一刻,相比4G而言,5G其实没有颠覆性的技术,而毫米波差不多成了5G最大的“新意”。 根据3GPP 38.101协议的规定,5G NR主要使用两个频段:FR1 和FR2:FR1(450MHz-6GHz),即通常所说的Sub 6GHz;FR2(24.25GHz-52.6GHz),即通常所说的5G毫米波频段。FR1上即将发生的演变被很多人认为是对当前4G系统的演进,而对毫米波的拓展才是当前5G通信系统最大的新点和难点,因为就算是Massive MIMO这项技术,其实也更多地是为了补充毫米波频段本身的缺陷。 在美国,当前主要的运营商还以发展毫米波5G为主,用于补充偏远地区的用户接入。在中国,虽然优先部署和发展Sub 6GHz 的5G系统,但到2019年这个即将商用的时间点,运营商们也开始逐步将眼光投射到毫米波频段,用以实现5G通信系统的强大指标。 这不,就在不久前,工信部已经给中国移动香港发了频段为26GHz-28GHz之间的毫米波牌照。除此之外,香港电讯和数码通也同样分别获得了该频段内的400MHz的带宽。 01 什么是毫米波 毫米波(millimeter Wave):波长在1-10mm的电磁波称为毫米波,处于微波与远红外波相交叠的波长范围,因而兼具两种波普的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的扩展。 02 为什么要扩展到毫米波 简单来说,应用驱动需求。很多年以前,无线通信应用不像现在这般拥挤繁荣。30GHz以内的频谱足够应付各种应用,而我们所熟悉的移动通信系统更是基本集中在6GHz以下的优质频谱上。不过经过多年的发展,6GHz以内的优质频谱资源已经基本挤不下任何东西了,无论如何折腾(淘汰过往的应用、采用认知无线电技术来复用频谱等),移动通信系统的频谱资源短缺和冲突依然是最为严峻的问题。现在要开发新的5G系统,仅仅靠部分运营商腾出一些2G时代的少量频谱资源怎么够。直到有一天,有人突然发现,那不是还有一大片毫米波频段么!毫米波频段就像一块未开发的处女地,一片新大陆,为移动用户和运营商提供了大量的可用频谱资源。 03 毫米波的优点 优点1 极大的带宽。通常认为毫米波频率范围是26.5GHz-300GHz,带宽高达273.5GHz,超过从直流到微波全部带宽的10倍。即使考虑大气吸收因素,毫米波段有很大一部分带宽并不适合“居住”,使得毫米波段只有四个主要的可用窗口,但这四个窗口的总带宽也可达135GHz。 优点2 波束窄。在相同天线尺寸下,毫米波的波束要比微波的波束窄的多。例如一个12cm的天线,在9.4GHz时波束宽度为18度,而在94GHz波束宽度仅为1.8度,因此毫米波往往被用于分辨更近的小目标或者更为清晰的观察目标的细节。 优点3 与激光相比,传播受气候影响小很多,因此可以认为具有全天候特性。 优点4 与微波相比,毫米波元器件的尺寸要小很多。因此更容易小型号。 04 这么一大片新大陆,怎么现在才想起来搬过去 虽说毫米波频段有以上的各种优点,但要将其应用于移动通信系统,也有诸多难点: 难点1 毫米波的传输距离实在有限,要用在大规模覆盖上难度不小,高密度部署的话成本也颇高,这也是目前很多运营商比较头疼的问题。老师教导我们,无线电波的频率越高,传播距离越短。在理想的自由空间传播条件下,一个70GHz的毫米波传播10米之后损耗高达89dB;而在非理想的传播条件下,传播损耗更是大的多。因此,毫米波系统必须通过提高发射功率、提高天线增益、提高接受灵敏度等各种方法来补偿这么大的传播损耗。现在5G通信系统里引入了Massive MIMO大规模天线阵列技术等,也是为向毫米波频段搬家修好道路。 难点2 成本高。过去毫米波器件/芯片一直用于军事领域而无法大规模商用。但最近几年,通过使用SiGe、GaAs、GaN、InP等材料并结合新的生产工艺,工作于毫米波段的芯片上已经集成了小至几十甚至几纳米的晶体管,大大降低了成本。为毫米波的商业化应用提供了可能。 05 开发新大陆,你的器件/芯片都准备好了么 虽然从技术理论层面上看,Massive MIMO的引入、大功率器件的规模生产能在一定程度上解决毫米波传播距离受限的约束,不过要想达到预定的指标,整个毫米波链路上的所有器件和芯片都必须完美配合。每个器件/芯片各司其职,才能使整个系统最终达到预定指标。 此外,在成本指标越来越严的要求下,您设计和生产的毫米波器件和芯片的性能还有多少裕量也是一个值得考量的问题。今天小编就专门就针对5G毫米波频段的器件/芯片测试,再为您梳理一遍~ 5G通信链路上典型的毫米波芯片/器件等如下:放大器,滤波器,混频器,传输线,天线等。针对这一系列毫米波器件/组件,我们可以总结出一系列通用的测试需求,如下:     针对以上测试需求,Keysight 强大的网络分析仪单机频率覆盖到67GHz,提供诸如S参数、增益压缩、交调测试、脉冲激励测试等一系列测试能力毫无压力,是一台真正意义上的毫米波器件/组件综合测试系统。结合外部扩频头,还可提供1100GHz频段的测试扩展能力。 通用指标测试 5G毫米波组件/器件的On Wafer测试+全参数测试 DUT尺寸小,需配合探针台与仪表仪器进行DUT测量 DUT测试端口连接次数有限,最好能进行一次连接多参数测试 校准较为困难,耗时影响效率,仪表的稳定度一定要好,且能多通道同时校准! DUT没有封装,要考虑散热和屏蔽的问题,因此要使用脉冲式的测试方法 以上所有On Wafer测试需求,Keysight的PNA网络分析仪,一台仪表,全部满足!而针对非wafer级的全参数测试,我们的PNA更是妥妥满足您的测试需求~下图是我们在On Wafer测试中进行噪声系数校准的连接图和校准步骤~     如下是我们PNA-X N5290/91A的典型配置 ▼▼▼ 想了解On Wafer测试及全参数测试的更多内容? (噪声系数校准、功率校准、多通道校准、 IDM测试、增益压缩测试、脉冲测量等) 扫描下载测试图解和步骤解析 扫描二维码,获取测试图解及步骤解析! 当然,对于放大器等芯片/器件,除了通用测试指标之外,往往需要测试系统级的放大性能。因此,下面我们还会介绍如毫米波放大器芯片的系统级测试方案。 系统指标测试 如之前所提,由于5G毫米波和超宽带放大器依然处于起步阶段,为了验证和确保新型的功率放大器能够满足5G无线传输的要求,无论是器件厂商还是基站系统厂商都需要再调试和最终系统测试阶段对产品进行大量的射频测试,这一方面包括了去增益、噪声系统等上述基于网络分析仪的指标测试,第二类就是根据无线通信系统标准对5G宽带调制信号所要求的的矢量EVM和ACLR邻道泄漏比等进行测试。 通过大量的实验我们发现,针对5G毫米波和超宽带PA的EVM测试与传统的3G、4G有很大的不同,主要原因是毫米波和超宽带条件对仪表和附件所构成的测试平台的要求大大提高,由测试平台所引入的失真和误差会严重影响最终的测试结果。 未经校准的超宽带调制信号示例 上图是采用Keysight M8190A+E8267D矢量信号源(最早于2015年创建的5G毫米波和超宽带原型平台)输出的5G调制信号示例,带宽为4GHz,其物理层调制的数据传输速率达到了10-20Gbps,是当时业界通过仪表产生的最高带宽的调制信号。但从图1中你可以看出,整个4GHz范围不同频率成分的幅度有很大波动,远离中心频率的频率分量衰减很大,呈现明显的幅度不平坦。这些幅度衰减的频率成分将使得其所在的子载波信噪比降低,EVM下降。如果这种信号用于PA或者基站的射频测试,那将严重影响EVM测试的准确度。 所以针对5G毫米波和超宽带PA射频测试中非常关键的一点就是测试平台本身必须具备宽带校准能力以确保在测试PA之前所有的仪表和附件所引入的失真和误差达到最小。 经过Keysight系统校准软件校准的宽带信号 上图是经过Keysight系统校准软件校准的宽带信号的示例。校准时将信号源以及驱动放大器的整体EVM控制在1%以内,这样再连接被测PA芯片进行EVM测试时,就能获得比较理想的下过。

    时间:2019-08-20 关键词: 通信 电源技术解析 直流

  • 稳压二极管、1n4007二极管的正负极辨别方法

    稳压二极管、1n4007二极管的正负极辨别方法

    二极管正负极判断并非不可解决的难题,每种类型的二极管皆具备与自身相对应的二极管正负极判断标准或方法。本文中,将向大家讲解稳压二极管正负极判断方法和1n4007二极管正负极判别标准,一起来了解下吧。     稳压二极管,英文名称Zener diode,又叫齐纳二极管。利用pn结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。     在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。 了解了稳压二极管,我们接下里详细的解说一下关于稳压二极管正负极应该如何判断以及稳压二极管正负极的接法。 稳压二极管正负极判断 最简单是看外观上的标识,负极一般印有黑色或者银色圆环,正极没有。见下图     稳压二极管正负极的识别方法 1、从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。 2、塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。 3、对标志不清楚的稳压二极管,也可以用万用表判别其极性,把万用表打到测二极管的档位,两表笔放在二极管的两端,交换两端再测一遍听到万用表的蜂鸣器叫了,那这时红表笔接触的那端就是正的,黑表笔那端就是负的。 稳压二极管正负极接法 很多朋友对稳压二极管的正负极连接很疑问,因为有些的方向是与正常方向相反的。   [!--empirenews.page--]   我们都知道稳压二极管都是工作在反向击中穿状态下的,所以一般情况下稳压二极管的正负极是反向的。 并且稳压二极管通过限流电阻在负极加高电压,在正极接低电压或地,因此输出就是正电压。 1n4007     1N4007 是封装形式为 DO-41 的塑料封装型通用硅材料整流二极管。广泛应用于各种交流变直流的整流电路中。也用于桥式整流电路。1n4007利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。     因为二极管是一个PN结组成所以开头是1N也就是一个PN结,1N开头的都是二极管,2N开头的就是三极管,我们可以把两个PN结接在一起就可以构成一个三极管。1N就说明管子是一个PN结组成,4007就是管子的型号。 1N4007 是封装形式为 DO-15 的塑料封装型通用硅材料整流二极管。广泛应用于各种交流变直流的整流电路中。 1N4007利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉冲直流电。 1n4007分正负极吗? 当然分正负极,所有的二极管都分正负极。 如下图,标有环的一端为负极(阴极)。     in4007二极管正负极区分方法 IN4007 整流二级管 带银色一边的是正极还是负极? IN4148 带黑色一边的是正是负? 凡带色环的是负极,接在整流电路中,二极管负极处是整流后的直流电源正极。  

    时间:2019-08-15 关键词: 电源技术解析 二级管 直流

  • 7 种应用电路解析二极管

    7 种应用电路解析二极管

    许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。 二极管简易直流稳压电路及故障处理 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。 如图9-40所示是由普通3只二极管构成的简易直流稳压电路。电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。     图9-40 3只普通二极管构成的简易直流稳压电路 1.电路分析思路说明 分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。 关于这一电路的分析思路主要说明如下。 1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。 2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。由此分析可知,3只二极管VD1、VD2和VD3是在直流工作电压+V作用下导通的。 3)从电路中还可以看出,3只二极管上没有加入交流信号电压,因为在VD1正极即电路中的A点与地之间接有大容量电容C1,将A点的任何交流电压旁路到地端。 2.二极管能够稳定直流电压原理说明 电路中,3只二极管在直流工作电压的正向偏置作用下导通,导通后对这一电路的作用是稳定了电路中A点的直流电压。 众所周知,二极管内部是一个PN结的结构,PN结除单向导电特性之外还有许多特性,其中之一是二极管导通后其管压降基本不变,对于常用的硅二极管而言导通后正极与负极之间的电压降为0.6V。 根据二极管的这一特性,可以很方便地分析由普通二极管构成的简易直流稳压电路工作原理。3只二极管导通之后,每只二极管的管压降是0.6V,那么3只串联之后的直流电压降是0.6×3=1.8V。 3.故障检测方法 检测这一电路中的3只二极管最为有效的方法是测量二极管上的直流电压,如图9-41所示是测量时接线示意图。如果测量直流电压结果是1.8V左右,说明3只二极管工作正常;如果测量直流电压结果是0V,要测量直流工作电压+V是否正常和电阻R1是否开路,与3只二极管无关,因为3只二极管同时击穿的可能性较小;如果测量直流电压结果大于1.8V,检查3只二极管中有一只开路故障。     图9-41 测量二极管上直流电压接线示意图 4.电路故障分析     如表9-40所示是这一二极管电路故障分析: 表9-40 二极管电路故障分析     5.电路分析细节说明 关于上述二极管简易直流电压稳压电路分析细节说明如下。 1)在电路分析中,利用二极管的单向导电性可以知道二极管处于导通状态,但是并不能说明这几只二极管导通后对电路有什么具体作用,所以只利用单向导电特性还不能够正确分析电路工作原理。 2)二极管众多的特性中只有导通后管压降基本不变这一特性能够最为合理地解释这一电路的作用,所以依据这一点可以确定这一电路是为了稳定电路中A点的直流工作电压。 3)电路中有多只元器件时,一定要设法搞清楚实现电路功能的主要元器件,然后围绕它进行展开分析。分析中运用该元器件主要特性,进行合理解释。 2 二极管温度补偿电路及故障处理 众所周知,PN结导通后有一个约为0.6V(指硅材料PN结)的压降,同时PN结还有一个与温度相关的特性:PN结导通后的压降基本不变,但不是不变,PN结两端的压降随温度升高而略有下降,温度愈高其下降的量愈多,当然PN结两端电压下降量的绝对值对于0.6V而言相当小,利用这一特性可以构成温度补偿电路。如图9-42所示是利用二极管温度特性构成的温度补偿电路。     图9-42 二极管温度补偿电路 对于初学者来讲,看不懂电路中VT1等元器件构成的是一种放大器,这对分析这一电路工作原理不利。 在电路分析中,熟悉VT1等元器件所构成的单元电路功能,对分析VD1工作原理有着积极意义。了解了单元电路的功能,一切电路分析就可以围绕它进行展开,做到有的放矢、事半功倍。 1.需要了解的深层次电路工作原理 分析这一电路工作原理需要了解下列两个深层次的电路原理。 1)VT1等构成一种放大器电路,对于放大器而言要求它的工作稳定性好,其中有一条就是温度高低变化时三极管的静态电流不能改变,即VT1基极电流不能随温度变化而改变,否则就是工作稳定性不好。了解放大器的这一温度特性,对理解VD1构成的温度补偿电路工作原理非常重要。 2)三极管VT1有一个与温度相关的不良特性,即温度升高时,三极管VT1基极电流会增大,温度愈高基极电流愈大,反之则小,显然三极管VT1的温度稳定性能不好。由此可知,放大器的温度稳定性能不良是由于三极管温度特性造成的。 2.三极管偏置电路分析 电路中,三极管VT1工作在放大状态时要给它一定的直流偏置电压,这由偏置电路来完成。电路中的R1、VD1和R2构成分压式偏置电路,为三极管VT1基极提供直流工作电压,基极电压的大小决定了VT1基极电流的大小。如果不考虑温度的影响,而且直流工作电压+V的大小不变,那么VT1基极直流电压是稳定的,则三极管VT1的基极直流电流是不变的,三极管可以稳定工作。 在分析二极管VD1工作原理时还要搞清楚一点:VT1是NPN型三极管,其基极直流电压高,则基极电流大;反之则小。 3.二极管VD1温度补偿电路分析 根据二极管VD1在电路中的位置,对它的工作原理分析思路主要说明下列几点: 1)VD1的正极通过R1与直流工作电压+V相连,而它的负极通过R2与地线相连,这样VD1在直流工作电压+V的作用下处于导通状态。理解二极管导通的要点是:正极上电压高于负极上电压。 2)利用二极管导通后有一个0.6V管压降来解释电路中VD1的作用是行不通的,因为通过调整R1和R2的阻值大小可以达到VT1基极所需要的直流工作电压,根本没有必要通过串入二极管VD1来调整VT1基极电压大小。 3)利用二极管的管压降温度特性可以正确解释VD1在电路中的作用。假设温度升高,根据三极管特性可知,VT1的基极电流会增大一些。当温度升高时,二极管VD1的管压降会下降一些,VD1管压降的下降导致VT1基极电压下降一些,结果使VT1基极电流下降。由上述分析可知,加入二极管VD1后,原来温度升高使VT1基极电流增大的,现在通过VD1电路可以使VT1基极电流减小一些,这样起到稳定三极管VT1基极电流的作用,所以VD1可以起温度补偿的作用。 4)三极管的温度稳定性能不良还表现为温度下降的过程中。在温度降低时,三极管VT1基极电流要减小,这也是温度稳定性能不好的表现。接入二极管VD1后,温度下降时,它的管压降稍有升高,使VT1基极直流工作电压升高,结果VT1基极电流增大,这样也能补偿三极管VT1温度下降时的不稳定。 4.电路分析细节说明 电路分析的细节说明如下。 1)在电路分析中,若能运用元器件的某一特性去合理地解释它在电路中的作用,说明电路分析很可能是正确的。例如,在上述电路分析中,只能用二极管的温度特性才能合理解释电路中VD1的作用。 2)温度补偿电路的温度补偿是双向的,即能够补偿由于温度升高或降低而引起的电路工作的不稳定性。 3)分析温度补偿电路工作原理时,要假设温度的升高或降低变化,然后分析电路中的反应过程,得到正确的电路反馈结果。在实际电路分析中,可以只设温度升高进行电路补偿的分析,不必再分析温度降低时电路补偿的情况,因为温度降低的电路分析思路、过程是相似的,只是电路分析的每一步变化相反。 4)在上述电路分析中,VT1基极与发射极之间PN结(发射结)的温度特性与VD1温度特性相似,因为它们都是PN结的结构,所以温度补偿的结果比较好。 5)在上述电路中的二极管VD1,对直流工作电压+V的大小波动无稳定作用,所以不能补偿由直流工作电压+V大小波动造成的VT1管基极直流工作电流的不稳定性。 5.故障检测方法和电路故障分析 这一电路中的二极管VD1故障检测方法比较简单,可以用万用表欧姆档在路测量VD1正向和反向电阻大小的方法。 当VD1出现开路故障时,三极管VT1基极直流偏置电压升高许多,导致VT1管进入饱和状态,VT1可能会发烧,严重时会烧坏VT1。如果VD1出现击穿故障,会导致VT1管基极直流偏置电压下降0.6V,三极管VT1直流工作电流减小,VT1管放大能力减小或进入截止状态。 二极管控制电路及故障处理 二极管导通之后,它的正向电阻大小随电流大小变化而有微小改变,正向电流愈大,正向电阻愈小;反之则大。 利用二极管正向电流与正向电阻之间的特性,可以构成一些自动控制电路。如图9-43所示是一种由二极管构成的自动控制电路,又称ALC电路(自动电平控制电路),它在磁性录音设备中(如卡座)的录音电路中经常应用。 图9-43 二极管构成的自动控制电路 1.电路分析准备知识说明 二极管的单向导电特性只是说明了正向电阻小、反向电阻大,没有说明二极管导通后还有哪些具体的特性。 二极管正向导通之后,它的正向电阻大小还与流过二极管的正向电流大小相关。尽管二极管正向导通后的正向电阻比较小(相对反向电阻而言),但是如果增加正向电流,二极管导通后的正向电阻还会进一步下降,即正向电流愈大,正向电阻愈小,反之则大。 不熟悉电路功能对电路工作原理很不利,在了解电路功能的背景下能有的放矢地分析电路工作原理或电路中某元器件的作用。 ALC电路在录音机、卡座的录音卡中,录音时要对录音信号的大小幅度进行控制,了解下列几点具体的控制要求有助于分析二极管VD1自动控制电路。 1)在录音信号幅度较小时,不控制录音信号的幅度。 2)当录音信号的幅度大到一定程度后,开始对录音信号幅度进行控制,即对信号幅度进行衰减,对录音信号幅度控制的电路就是ALC电路。 3)ALC电路进入控制状态后,要求录音信号愈大,对信号的衰减量愈大。 通过上述说明可知,电路分析中要求自己有比较全面的知识面,这需要在不断的学习中日积月累。 2.电路工作原理分析思路说明 关于这一电路工作原理的分析思路主要说明下列几点: 1)如果没有VD1这一支路,从第一级录音放大器输出的录音信号全部加到第二级录音放大器中。但是,有了VD1这一支路之后,从第一级录音放大器输出的录音信号有可能会经过C1和导通的VD1流到地端,形成对录音信号的分流衰减。 2)电路分析的第二个关键是VD1这一支路对第一级录音放大器输出信号的对地分流衰减的具体情况。显然,支路中的电容C1是一只容量较大的电容(C1电路符号中标出极性,说明C1是电解电容,而电解电容的容量较大),所以C1对录音信号呈通路,说明这一支路中VD1是对录音信号进行分流衰减的关键元器件。 3)从分流支路电路分析中要明白一点:从第一级录音放大器输出的信号,如果从VD1支路分流得多,那么流入第二级录音放大器的录音信号就小,反之则大。 4)VD1存在导通与截止两种情况,在VD1截止时对录音信号无分流作用,在导通时则对录音信号进行分流。 5)在VD1正极上接有电阻R1,它给VD1一个控制电压,显然这个电压控制着VD1导通或截止。所以,R1送来的电压是分析VD1导通、截止的关键所在。 分析这个电路最大的困难是在VD1导通后,利用了二极管导通后其正向电阻与导通电流之间的关系特性进行电路分析,即二极管的正向电流愈大,其正向电阻愈小,流过VD1的电流愈大,其正极与负极之间的电阻愈小,反之则大。 3.控制电路的一般分析方法说明 对于控制电路的分析通常要分成多种情况,例如将控制信号分成大、中、小等几种情况。就这一电路而言,控制电压Ui对二极管VD1的控制要分成下列几种情况。 1)电路中没有录音信号时,直流控制电压Ui为0,二极管VD1截止,VD1对电路工作无影响,第一级录音放大器输出的信号可以全部加到第二级录音放大器中。 2)当电路中的录音信号较小时,直流控制电压Ui较小,没有大于二极管VD1的导通电压,所以不足以使二极管VD1导通,此时二极管VD1对第一级录音放大器输出的信号也没有分流作用。 3)当电路中的录音信号比较大时,直流控制电压Ui较大,使二极管VD1导通,录音信号愈大,直流控制电压Ui愈大,VD1导通程度愈深,VD1的内阻愈小。 4)VD1导通后,VD1的内阻下降,第一级录音放大器输出的录音信号中的一部分通过电容C1和导通的二极管VD1被分流到地端,VD1导通愈深,它的内阻愈小,对第一级录音放大器输出信号的对地分流量愈大,实现自动电平控制。 5)二极管VD1的导通程度受直流控制电压Ui控制,而直流控制电压Ui随着电路中录音信号大小的变化而变化,所以二极管VD1的内阻变化实际上受录音信号大小控制。 4.故障检测方法和电路故障分析 对于这一电路中的二极管故障检测最好的方法是进行代替检查,因为二极管如果性能不好也会影响到电路的控制效果。 当二极管VD1开路时,不存在控制作用,这时大信号录音时会出现声音一会儿大一会儿小的起伏状失真,在录音信号很小时录音能够正常。 当二极管VD1击穿时,也不存在控制作用,这时录音声音很小,因为录音信号被击穿的二极管VD1分流到地了。[!--empirenews.page--] 二极管限幅电路及故障处理 二极管最基本的工作状态是导通和截止两种,利用这一特性可以构成限幅电路。所谓限幅电路就是限制电路中某一点的信号幅度大小,让信号幅度大到一定程度时,不让信号的幅度再增大,当信号的幅度没有达到限制的幅度时,限幅电路不工作,具有这种功能的电路称为限幅电路,利用二极管来完成这一功能的电路称为二极管限幅电路。 如图9-44所示是二极管限幅电路。在电路中,A1是集成电路(一种常用元器件),VT1和VT2是三极管(一种常用元器件),R1和R2是电阻器,VD1~VD6是二极管。 图9-44 二极管限幅电路 1.电路分析思路说明 对电路中VD1和VD2作用分析的思路主要说明下列几点: 1)从电路中可以看出,VD1、VD2、VD3和VD4、VD5、VD6两组二极管的电路结构一样,这两组二极管在这一电路中所起的作用是相同的,所以只要分析其中一组二极管电路工作原理即可。 2)集成电路A1的①脚通过电阻R1与三极管VT1基极相连,显然R1是信号传输电阻,将①脚上输出信号通过R1加到VT1基极,由于在集成电路A1的①脚与三极管VT1基极之间没有隔直电容,根据这一电路结构可以判断:集成电路A1的①脚是输出信号引脚,而且输出直流和交流的复合信号。确定集成电路A1的①脚是信号输出引脚的目的是为了判断二极管VD1在电路中的具体作用。 3)集成电路的①脚输出的直流电压显然不是很高,没有高到让外接的二极管处于导通状态,理由是:如果集成电路A1的①脚输出的直流电压足够高,那么VD1、VD2和VD3导通,其导通后的内阻很小,这样会将集成电路A1的①脚输出的交流信号分流到地,对信号造成衰减,显然这一电路中不需要对信号进行这样的衰减,所以从这个角度分析得到的结论是:集成电路A1的①脚输出的直流电压不会高到让VD1、VD2和VD3导通的程度。 4)从集成电路A1的①脚输出的是直流和交流叠加信号,通过电阻R1与三极管VT1基极,VT1是NPN型三极管,如果加到VT1基极的正半周交流信号幅度出现很大的现象,会使VT1的基极电压很大而有烧坏VT1的危险。加到VT1基极的交流信号负半周信号幅度很大时,对VT1没有烧坏的影响,因为VT1基极上负极性信号使VT1基极电流减小。 5)通过上述电路分析思路可以初步判断,电路中的VD1、VD2、VD3是限幅保护二极管电路,防止集成电路A1的①脚输出的交流信号正半周幅度太大而烧坏VT1。 从上述思路出发对VD1、VD2、VD3二极管电路进一步分析,分析如果符合逻辑,可以说明上述电路分析思路是正确的。 2.二极管限幅电路 分析各种限幅电路工作是有方法的,将信号的幅度分两种情况: 1)信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 2)信号幅度比较大时的电路工作状态,即信号幅度大到让限幅度电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 用画出信号波形的方法分析电路工作原理有时相当管用,用于分析限幅电路尤其有效,如图9-45所示是电路中集成电路A1的①脚上信号波形示意图。 图9-45 集成电路A1的①脚上信号波形示意图 图中,U1是集成电路A1的①脚输出信号中的直流电压,①脚输出信号中的交流电压是“骑”在这一直流电压上的。U2是限幅电压值。 结合上述信号波形来分析这个二极管限幅电路,当集成电路A1的①脚输出信号中的交流电压比较小时,交流信号的正半周加上直流输出电压U1也没有达到VD1、VD2和VD3导通的程度,所以各二极管全部截止,对①脚输出的交流信号没有影响,交流信号通过R1加到VT1中。 假设集成电路A1的①脚输出的交流信号其正半周幅度在某期间很大,见图8-12中的信号波形,由于此时交流信号的正半周幅度加上直流电压已超过二极管VD1、VD2和VD3正向导通的电压值,如果每只二极管的导通电压是0.7V,那么3只二极管的导通电压是2.1V。由于3只二极管导通后的管压降基本不变,即集 成电路A1的①脚最大为2.1V,所以交流信号正半周超出部分被去掉(限制),其超出部分信号其实降在了集成电路A1的①脚内电路中的电阻上(图中未画出)。 当集成电路A1的①脚直流和交流输出信号的幅度小于2.1V时,这一电压又不能使3只二极管导通,这样3只二极管再度从导通转入截止状态,对信号没有限幅作用。 3.电路分析细节说明 对于这一电路的具体分析细节说明如下。 1)集成电路A1的①脚输出的负半周大幅度信号不会造成VT1过电流,因为负半周信号只会使NPN型三极管的基极电压下降,基极电流减小,所以无须加入对于负半周的限幅电路。 2)上面介绍的是单向限幅电路,这种限幅电路只能对信号的正半周或负半周大信号部分进行限幅,对另一半周信号不限幅。另一种是双向限幅电路,它能同时对正、负半周信号进行限幅。 3)引起信号幅度异常增大的原因是多种多样的,例如偶然的因素(如电源电压的波动)导致信号幅度在某瞬间增大许多,外界的大幅度干扰脉冲窜入电路也是引起信号某瞬间异常增大的常见原因。 4)3只二极管VD1、VD2和VD3导通之后,集成电路A1的①脚上的直流和交流电压之和是2.1V,这一电压通过电阻R1加到VT1基极,这也是VT1最高的基极电压,这时的基极电流也是VT1最大的基极电流。 5)由于集成电路A1的①脚和②脚外电路一样,所以其外电路中的限幅保护电路工作原理一样,分析电路时只要分析一个电路即可。 6)根据串联电路特性可知,串联电路中的电流处处相等,这样可以知道VD1、VD2和VD3三只串联二极管导通时同时导通,否则同时截止,绝不会出现串联电路中的某只二极管导通而某几只二极管截止的现象。 4.故障检测方法和电路故障分析 对这一电路中的二极管故障检测主要采用万用表欧姆档在路测量其正向和反向电阻大小,因为这一电路中的二极管不工作在直流电路中,所以采用测量二极管两端直流电压降的方法不合适。 这一电路中二极管出现故障的可能性较小,因为它们工作在小信号状态下。如果电路中有一只二极管出现开路故障时,电路就没有限幅作用,将会影响后级电路的正常工作。 5. 二极管开关电路及故障处理 开关电路是一种常用的功能电路,例如家庭中的照明电路中的开关,各种民用电器中的电源开关等。 在开关电路中有两大类的开关: 1)机械式的开关,采用机械式的开关件作为开关电路中的元器件。 2)电子开关,所谓的电子开关,不用机械式的开关件,而是采用二极管、三极管这类器件构成开关电路。 1.开关二极管开关特性说明 开关二极管同普通的二极管一样,也是一个PN结的结构,不同之处是要求这种二极管的开关特性要好。 当给开关二极管加上正向电压时,二极管处于导通状态,相当于开关的通态;当给开关二极管加上反向电压时,二极管处于截止状态,相当于开关的断态。二极管的导通和截止状态完成开与关功能。 开关二极管就是利用这种特性,且通过制造工艺,开关特性更好,即开关速度更快,PN结的结电容更小,导通时的内阻更小,截止时的电阻很大。 如表9-41所示是开关时间概念说明。 表6.19 开关时间概念说明 2.典型二极管开关电路工作原理 二极管构成的电子开关电路形式多种多样,如图9-46所示是一种常见的二极管开关电路。 图9-46 二极管开关电路 通过观察这一电路,可以熟悉下列几个方面的问题,以利于对电路工作原理的分析: 1)了解这个单元电路功能是第一步。从图8-14所示电路中可以看出,电感L1和电容C1并联,这显然是一个LC并联谐振电路,是这个单元电路的基本功能,明确这一点后可以知道,电路中的其他元器件应该是围绕这个基本功能的辅助元器件,是对电路基本功能的扩展或补充等,以此思路可以方便地分析电路中的元器件作用。 2)C2和VD1构成串联电路,然后再与C1并联,从这种电路结构可以得出一个判断结果:C2和VD1这个支路的作用是通过该支路来改变与电容C1并联后的总容量大小,这样判断的理由是:C2和VD1支路与C1上并联后总电容量改变了,与L1构成的LC并联谐振电路其振荡频率改变了。所以,这是一个改变LC并联谐振电路频率的电路。 关于二极管电子开关电路分析思路说明如下几点: 1)电路中,C2和VD1串联,根据串联电路特性可知,C2和VD1要么同时接入电路,要么同时断开。如果只是需要C2并联在C1上,可以直接将C2并联在C1上,可是串入二极管VD1,说明VD1控制着C2的接入与断开。 2)根据二极管的导通与截止特性可知,当需要C2接入电路时让VD1导通,当不需要C2接入电路时让VD1截止,二极管的这种工作方式称为开关方式,这样的电路称为二极管开关电路。 3)二极管的导通与截止要有电压控制,电路中VD1正极通过电阻R1、开关S1与直流电压+V端相连,这一电压就是二极管的控制电压。 4)电路中的开关S1用来控制工作电压+V是否接入电路。根据S1开关电路更容易确认二极管VD1工作在开关状态下,因为S1的开、关控制了二极管的导通与截止。 如表9-42所示是二极管电子开关电路工作原理说明。 表9-42 二极管电子开关电路工作原理说明 在上述两种状态下,由于LC并联谐振电路中的电容不同,一种情况只有C1,另一种情况是C1与C2并联,在电容量不同的情况下LC并联谐振电路的谐振频率不同。所以,VD1在电路中的真正作用是控制LC并联谐振电路的谐振频率。 关于二极管电子开关电路分析细节说明下列二点: 1)当电路中有开关件时,电路的分析就以该开关接通和断开两种情况为例,分别进行电路工作状态的分析。所以,电路中出现开关件时能为电路分析提供思路。 2)LC并联谐振电路中的信号通过C2加到VD1正极上,但是由于谐振电路中的信号幅度比较小,所以加到VD1正极上的正半周信号幅度很小,不会使VD1导通。 3.故障检测方法和电路故障分析 如图9-47所示是检测电路中开关二极管时接线示意图,在开关接通时测量二极管VD1两端直流电压降,应该为0.6V,如果远小于这个电压值说明VD1短路,如果远大小于这个电压值说明VD1开路。另外,如果没有明显发现VD1出现短路或开路故障时,可以用万用表欧姆档测量它的正向电阻,要很小,否则正向电阻大也不好。 图9-47 检测电路中开关二极管时接线示意图 如果这一电路中开关二极管开路或短路,都不能进行振荡频率的调整。开关二极管开路时,电容C2不能接入电路,此时振荡频率升高;开关二极管短路时,电容C2始终接入电路,此时振荡频率降低。 4.同类电路工作原理分析 如图所示,电路中的VD1为开关二极管,控制电压通过R1加到VD1正极,控制电压是一个矩形脉冲电压,波形见图中所示。 当控制电压为0V时,VD1不能导通,相当于开路,这时对L1和C1、L2和C2电路没有影响;当控制电压为高电平时,控制电压使开关二极管VD1导通,VD1相当于通路,电路中A点的交流信号通过导通的VD1和电容C3接地,等于将电路中的A点交流接地,使L2和C2电路不起作用。 从上述分析可知,电路中的二极管VD1相当于一只开关,控制电路中的A点交流信号是否接地。 二极管检波电路及故障处理 如图9-48所示是二极管检波电路。电路中的VD1是检波二极管,C1是高频滤波电容,R1是检波电路的负载电阻,C2是耦合电容。 图9-48 二极管检波电路 1.电路分析准备知识 众所周知,收音机有调幅收音机和调频收音机两种,调幅信号就是调幅收音机中处理和放大的信号。见图中的调幅信号波形示意图,对这一信号波形主要说明下列几点: 1)从调幅收音机天线下来的就是调幅信号。 2)信号的中间部分是频率很高的载波信号,它的上下端是调幅信号的包络,其包络就是所需要的音频信号。 3)上包络信号和下包络信号对称,但是信号相位相反,收音机最终只要其中的上包络信号,下包络信号不用,中间的高频载波信号也不需要。 2.电路中各元器件作用说明 如表9-43所示是元器件作用解说。 表9-43 元器件作用解说 3.检波电路工作原理分析 检波电路主要由检波二极管VD1构成。 在检波电路中,调幅信号加到检波二极管的正极,这时的检波二极管工作原理与整流电路中的整流二极管工作原理基本一样,利用信号的幅度使检波二极管导通,如图9-49所示是调幅波形展开后的示意图。 图9-49 调幅波形时间轴展开示意图 从展开后的调幅信号波形中可以看出,它是一个交流信号,只是信号的幅度在变化。这一信号加到检波二极管正极,正半周信号使二极管导通,负半周信号使二极管截止,这样相当于整流电路工作一样,在检波二极管负载电阻R1上得到正半周信号的包络,即信号的虚线部分,见图中检波电路输出信号波形(不加高频滤波电容时的输出信号波形)。 检波电路输出信号由音频信号、直流成分和高频载波信号三种信号成分组成,详细的电路分析需要根据三种信号情况进行展开。这三种信号中,最重要的是音频信号处理电路的分析和工作原理的理解。 1)所需要的音频信号,它是输出信号的包络,如图9-50所示,这一音频信号通过检波电路输出端电容C2耦合,送到后级电路中进一步处理。 图9-50 检波电路输出端信号波形示意图 2)检波电路输出信号的平均值是直流成分,它的大小表示了检波电路输出信号的平均幅值大小,检波电路输出信号幅度大,其平均值大,这一直流电压值就大,反之则小。这一直流成分在收音机电路中用来控制一种称为中频放大器的放大倍数(也可以称为增益),称为AGC(自动增益控制)电压。AGC电压被检波电路输出端耦合电容隔离,不能与音频信号一起加到后级放大器电路中,而是专门加到AGC电路中。 3)检波电路输出信号中还有高频载波信号,这一信号无用,通过接在检波电路输出端的高频滤波电容C1,被滤波到地端。 一般检波电路中不给检波二极管加入直流电压,但在一些小信号检波电路中,由于调幅信号的幅度比较小,不足以使检波二极管导通,所以给检波二极管加入较小的正向直流偏置电压,如图所示,使检波二极管处于微导通状态。 从检波电路中可以看出,高频滤波电容C1接在检波电路输出端与地线之间,由于检波电路输出端的三种信号其频率不同,加上高频滤波电容C1的容量取得很小,这样C1对三种信号的处理过程不同。 1)对于直流电压而言,电容的隔直特性使C1开路,所以检波电路输出端的直流电压不能被C1旁路到地线。 2)对于音频信号而言,由于高频滤波电容C1的容量很小,它对音频信号的容抗很大,相当于开路,所以音频信号也不能被C1旁路到地线。 3)对于高频载波信号而言,其频率很高,C1对它的容抗很小而呈通路状态,这样惟有检波电路输出端的高频载波信号被C1旁路到地线,起到高频滤波的作用。 如图9-51所示是检波二极管导通后的三种信号电流回路示意图。负载电阻构成直流电流回路,耦合电容取出音频信号。 图9-51 检波二极管导通后三种信号电流回路示意图 4.故障检测方法及电路故障分析 对于检波二极管不能用测量直流电压的方法来进行检测,因这这种二极管不工作在直流电压中,所以要采用测量正向和反向电阻的方法来判断检波二极管质量。 当检波二极管开路和短路时,都不能完成检波任务,所以收音电路均会出现收音无声故障。 5.实用倍压检波电路工作原理分析 如图9-52所示是实用倍压检波电路,电路中的C2和VD1、VD2构成二倍压检波电路,在收音机电路中用来将调幅信号转换成音频信号。电路中的C3是检波后的滤波电容。通过这一倍压检波电路得到的音频信号,经耦合电容C5加到音频放大管中。 图9-52 实用倍压检波电路 继电器驱动电路中二极管保护电路及故障处理 继电器内部具有线圈的结构,所以它在断电时会产生电压很大的反向电动势,会击穿继电器的驱动三极管,为此要在继电器驱动电路中设置二极管保护电路,以保护继电器驱动管。 如图9-53所示是继电器驱动电路中的二极管保护电路,电路中的J1是继电器,VD1是驱动管VT1的保护二极管,R1和C1构成继电器内部开关触点的消火花电路。 1.电路工作原理分析 继电器内部有一组线圈,如图9-54所示是等效电路,在继电器断电前,流过继电器线圈L1的电流方向为从上而下,在断电后线圈产生反向电动势阻碍这一电流变化,即产生一个从上而下流过的电流,见图中虚线所示。根据前面介绍的线圈两端反向电动势判别方法可知,反向电动势在线圈L1上的极性为下正上负,见图中所示。如表9-44所示是这一电路中保护二极管工作原理说明。 表9-44 保护二极管工作原理说明 2.故障检测方法和电路故障分析 对于这一电路中的保护二极管不能采用测量二极管两端直流电压降的方法来判断检测故障,也不能采用在路测量二极管正向和反向电阻的方法,因为这一二极管两端并联着继电器线圈,这一线圈的直流电阻很小,所以无法通过测量电压降的方法来判断二极管质量。应该采用代替检查的方法。 当保护二极管开路时,对继电器电路工作状态没有大的影响,但是没有了保护作用而很有可能会击穿驱动管;当保护二极管短路时,相当于将继电器线圈短接,这时继电器线圈中没有电流流过,继电器不能动作。

    时间:2019-08-14 关键词: 二极管 电源技术解析 直流

  • 详解整流输出推挽式变压器开关电源工作原理

    详解整流输出推挽式变压器开关电源工作原理

    工作原理:推挽式开关电源的典型电路如图一所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。 这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100-500W范围内。     整流输出推挽式变压器开关电源,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,推挽式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,仅需要很小的滤波电感和电容,其输出电压纹波就可以达到非常小。 图1-30是桥式整流输出推挽式变压器开关电源工作原理图,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27相同。桥式整流电路由D1、D2、D3、D4组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io为流过负载电阻的电流。     图1-31是全波整流输出的推挽式变压器开关电源工作原理图,同样,除了整流滤波电路以外,其余部分电路的工作原理基本与图1-27和图1-30相同。但开关变压器的次级需要多一个绕组,两个绕组N31、N32轮流输出电压;全波整流电路由D1、D2组成,C为储能滤波电容,R为负载电阻,Uo为直流输出电压,Io为流过负载电阻的电流。     图1-30与图1-31比较,桥式整流输出的推挽式变压器开关电源比全波整流输出的推挽式变压器开关电源多用两个整流二极管,但全波整流输出的开关变压器又比桥式整流输出的开关变压器多一组次级线圈。因此,图1-30桥式整流输出推挽式变压器开关电源比较适用于输出电流相对较小的情况;而图1-31全波整流输出推挽式变压器开关电源比较适用于输出电流相对较大的情况。因为,大电流整流二极管成本高,而且损耗功率也比较大。 下面我们来详细分析图1-30桥式整流输出推挽式变压器开关电源和图1-31全波整流输出推挽式变压器开关电源的工作原理。 由于图1-30桥式整流输出推挽式变压器开关电源或图1-31全波整流输出推挽式变压器开关电源的电压输出电路中都接有储能滤波电容,储能滤波电容会对输入脉动电压起到平滑的作用,因此,图1-30和图1-31中输出电压Uo都不会出现很高幅度的电压反冲,其输出电压的峰值Up基本上就可以认为是半波平均值Upa。其值略大于正激输出nUi,即:桥式整流输出推挽式变压器开关电源或全波整流输出推挽式变压器开关电源,整流滤波输出电压Uo的值略大于正激输出nUi,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。 因此,推挽式变压器开关电源的输出电压uo,主要还是由(1-131)式来决定。即:推挽式变压器开关电源的输出电压uo(K1或K2接通期间),约等于开关变压器次级线圈N3绕组产生的正激式输出电压Up或Up-的半波平均值Upa或Upa-: uo = Upa = nUi —— K1接通期间 (1-134) 或uo = Upa- =-nUi —— K2接通期间 (1-135) 上式中,uo为推 挽式变压 器开关电源的输出电压,n为变压器次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比,Ui为开关变压器初级线圈N1绕组或N2绕组的输入电压。 图1-32是桥式整流输出或全波整流输出推挽式变压器开关电源,在两个控制开关K1和K2交替接通和断开,且占空比D均等于0.5时,各主要工作点的电压、电流波形。 图1-32-a)和图1-32-b)分别表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压u1的波形,以及流过变压器初级线圈N1绕组两端的电流i1波形;图1-32-c)和图1-32-d)分别表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压u2的波形,以及流过开关变压器初级线圈N2绕组两端的电流i2的波形;图1-32-e)和图1-32-f)分别表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形,以及流过开关变压器次级线圈N3绕组两端的电流波形。 图1-32-f)中,虚线箭头表示反激式输出电流是由最大值开始,然后逐渐减小到最小值;而实线箭头表示正激式输出电流则是由最小值开始,然后逐渐增加到最大值;因此,两者同时作用的结果,正好输出一个矩形波。     从图1-32-e)可以看出,输出电压uo虽然还是由两个部分组成,一部分为输入电压Ui通过变压器初级线圈N1绕组或N2感应到次级线圈N3绕组的正激式输出电压(uo);另一部分为励磁电流通过变压器初级线圈N1绕组或N2绕组存储的能量产生的反激式输出电压[uo];这里反激式输出电压[uo]不会再使波形产生反冲,是因为储能滤波电容会把反冲电压吸收掉,使其成为充电流。 由于推挽式变压器开关电源输出电压的半波平均值Upa幅值基本上是稳定的,它不会像反激式输出开关电源那样,输出电压的幅值随着控制开关占空比的改变而改变。因此,如果需要调整推挽式变压器开关电源输出电压,只能通过改变两个控制开关的占空比,来改变输出电压的平均值。因此,在输出电压可调的推挽式变压器开关电源电路中,必须要在整流输出电路后面加接一个LC储能滤波电路,才能从整流输出的脉动直流电压中提取平均值输出。 图1-33是输出电压可调的推挽式变压器开关电源电路。实际上图1-33就是在图1-31全波整流输出推挽式变压器开关电源电路的基础上,在整流输出电路后面加接了一个LC储能滤波电路。LC储能滤波电路的工作原理与图1-2串联式开关电源中的储能滤波电路工作原理基本相同。不过,在全波整流输出的LC储能滤波电路中可以省去一个续流二极管,因为用于全波整流的两个二极管可以轮流充当续流二极管的作用。关于LC储能滤波电路的详细工作原理,请参考《1-2-2.串联式开关电源输出电压滤波电路》章节。 由于图1-33中两个控制开关占空比D的可调范围很小(小于0.5),并且在一个周期内两个控制开关均需要接通和关 断一次, 因此,输出电压的可调范围相对来说要比单激式开关电源输出电压的可调范围小很多;但双激式开关电源比单激式开关电源,具有输出功率大、电压纹波小、电压输出特性好等优点。     图1-34是输出电压可调的推挽式变压器开关电源各主要工作点的电压、电流波形。 图1-34-a)表示控制开关K1接通时,开关变压器初级线圈N1绕组两端的电压波形;图1-34-b)表示控制开关K2接通时,开关变压器初级线圈N2绕组两端的电压波形;图1-34-c)表示控制开关K1和K2轮流接通时,开关变压器次级线圈N3绕组两端输出电压uo的波形。图1-34-d)表示开关变压器次级线圈N3绕组两端输出电压经全波整流后的电压波形。[!--empirenews.page--] 图1-34-c)中,Up、Up-分别表示开关变压器次级线圈N3绕组两端输出电压uo的正最大值(半波平均值)和负最大值(半波平均值),[Up]、[Up-]分别表示开关变压器次级线圈N3绕组两端反激输出电压的正最大值(半波平均值)和负最大值(半波平均值)。     这里还需再次说明,实际上反激输出电压[Up]和[Up-]的脉冲幅度都很高,只不过它的能量很小,即宽度很窄,其幅度被限幅和平均以后就变得很低了。在整流输出电路中,反激输出电压[Up]、[Up-]的幅度一般都不会高于Up、Up-的幅度,其幅度高于Up、Up-将要被滤波电容两端的电压限幅,或通过变压器两个初级线圈的互感作用被输入电源电压限幅。 图1-34-d)中,实线波形对应控制开关K1接通时,开关变压器次级线圈N3绕组两端输出电压经桥式或全波整流后的波形;虚线波形对应控制开关K2接通时,开关变压器次级线圈N3绕组两端输出电压经桥式或全波整流后的波形。Ua表示整流输出电压的平均值。 从图1-34-d)可以看出,仅用储能电容对整流输出电压进行滤波,是很难从脉动直流中取出输出电压的平均值的,必须同时使用储能滤波电感才能取出输出电压的平均值。 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。     图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或 滤波电容 器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。 1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL为: eL = Ldi/dt = Up – Uo —— K1接通期间 (1-136) 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:     式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。从图1-35中可以看出i(0)= Ix 。 当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值:     (1-139)和(1-140)式就是计算推挽式变压器开关电源输出电压的表达式。式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。 根据上面分析结果,(1-138)式可以写为:     由(1-75)式可知,当控制开关K1、K2的占空比均为0.5时,Upa与Upa-基本相等,由此我们也可以认为Up与Up-基本相等。 由于,当控制开关K1、K2的占空比均为0.5时,(1-141)式和(1-142)式的计算结果为0。因此,当控制开关K1、K2的占空比均为0.5时,推挽式变压器开关电源经整流后输出的电压波形基本上是纯直流,没有交流成分,输出电压Uo等于最大值Up,因此,可以不需要储能电感滤波。 但是,如果要求输出电压可调,推挽式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为推挽式变压器开关电源正反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。由此可知,当要求输出电压可调范围为最大时,占空比最好取值为0.25。 当两个控制开关K1、K2的占空比取值均为0.25时,Upa = 3Upa-,由此我们也可以认为Up等于3Up-。把上面已知条件代入(1-1 42)式, 可求得:     (1-143)、(1-144)、(1-145)式就是计算推挽式变压器开关电源储能滤波电感和滤波输出电压的表达式(D为0.25时)。式中Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,T为控制开关的工作周期,F为控制开关的工作频率,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。 同理,(1-143)、(1-144)、(1-145)式的计算结果,只给出了计算推挽式变压器开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。

    时间:2019-08-13 关键词: 电源技术解析 功率 直流

  • 一些主流厂家组串式逆变器超配能力调研

    一些主流厂家组串式逆变器超配能力调研

    在现在的生活中,太阳能产品处处可见,人们用太阳能煮饭,还有太阳能热水器等等,无处不见太阳能产品,当然,最重要的还是太阳能发电,但是目前的技术并不能让人们很好利用太阳能发电,主流厂家组串式逆变器超配能力的真实情况如何呢?实际可用交流侧功率是否与参数表相吻合?散热能力是否足够?直流侧端子数量是否足够多?逆变器过载能力到底如何?带着这些问题,笔者对国内外主流厂家如SMA,Delta,阳光电源,古瑞瓦特,山亿等进行了调研。 各家逆变器的主要相关参数汇总在表2.根据表中数据并结合调研可以得出: (1)大部分组串式逆变器是以交流侧额定功率进行标定,并且实际可用交流侧功率是足够的,但也有一家逆变器的实际可用功率偏小,不仅不能配置到满载,更谈不上超配。结合表1和表2分析可知,6路输入的直流侧最大可接入容量远远达不到其产品型号所宣称的40KW功率值,甚至无法达到其标称的额定输出功率36KW,逆变器真实可用容量大大缩水,超配设计就更谈不上了。大大增加了系统的度电成本,严重影响投资者的收益。 (2)大部分组串式逆变器是使用风扇散热的,能保证在超配时,长时间的过载稳定运行,但也有一家逆变器是无外置风扇,即使在正常功率下,逆变器本身寿命受到挑战,超配更是无从谈起。从表2调查结果看,主流厂家均以风扇散热为主流散热解决方案。为了对比风扇散热与自然散热的性能的差异,笔者调查不同厂家的40KW组串式逆变器散热效果,结果表明同样的45℃环境温度下满载运行,自然散热的A厂家40KW逆变器内部IGBT、电容等关键部件的温升至少比智能风扇散热的B厂家40KW逆变器高10℃,根据电子元器件寿命十度法则,即意味着同样的条件下,自然冷却方式的产品寿命会降低一半,而这种对寿命的影响,由于短期内无法显现,往往被用户所忽视。 (3)大部分组串式逆变器的直流端子数量在应对超配设计时是足够多的,只有一家逆变器的直流端子数量不够。这家逆变器厂家的40KW组串式逆变器直流侧设计有三路MPPT,但每路MPPT最大只能接2路组串,即逆变器直流侧端子数量只有6路。根据表1,6路端子最大接入的直流功率只有34320W,最大超配系数只有0.95,不具备超配能力。 光伏系统超配设计已受到用户的广泛关注,通过适当的超配,可以提高投资者的整体收益。对于国内正大力推广的分布式项目,需要至少1.1倍以上的超配系数。以上就是主流厂家组串式逆变器超配能力调研的相关知识,目前太阳能还未能更好被人类利用,需要科研人员不断努力,研究出更高效地产品,这样才能保证我们人类的能源够人类发展所需。

    时间:2019-08-05 关键词: 电源技术解析 逆变器 功率 直流

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包