当前位置:首页 > 二极管
  • MOS管开关原理以及深入解析,值得你收藏

    MOS管开关原理以及深入解析,值得你收藏

    什么是MOS管?它有什么作用?MOS管可以说是工程师最熟悉的器件之一,不过MOS管我们天天见,但是不乏一些刚入行的工程师、甚至是少数行业老手对于MOS的基础理论的掌握不是很牢固,所以专门写一篇文章为大家总结一下MOS的开关原理和基础知识。 一般来说,普遍用于高端驱动的 MOS,导通时需要是栅极电压大于源极电压,而高端驱动的 MOS 管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比 VCC 大 4V 或 10V。如果在同一个系统里,要得到比 VCC 大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动 MOS 管。 MOS 管是电压驱动,按理说只要栅极电压到到开启电压就能导通 DS,栅极串多大电阻均能导通。但如果要求开关频率较高时,栅对地或 VCC 可以看做是一个电容,对于一个电容来说,串的电阻越大,栅极达到导通电压时间越长,MOS 处于半导通状态时间也越长,在半导通状态内阻较大,发热也会增大,极易损坏 MOS,所以高频时栅极栅极串的电阻不但要小,一般要加前置驱动电路的。 下面我们先来了解一下 MOS 管开关的基础知识 No.1 MOS 管种类和结构 MOSFET 管是 FET 的一种(另一种是 JFET),可以被制造成增强型或耗尽型,P 沟道或 N 沟道共 4 种类型,但实际应用的只有增强型的 N 沟道 MOS 管和增强型的 P 沟道 MOS 管,所以通常提到 NMOS,或者 PMOS 指的就是这两种。对于这两种增强型 MOS 管,比较常用的是 NMOS —— 原因是导通电阻小,且容易制造,所以开关电源和马达驱动的应用中,一般都用 NMOS。 MOS 管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。在 MOS 管的漏极和源极之间有一个寄生二极管,这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的 MOS 管中存在,在集成电路芯片内部通常是没有的。 No.2 MOS 管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS 的特性,Vgs 大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到 4V 或 10V 就可以了。PMOS 的特性,Vgs 小于一定的值就会导通,适合用于源极接 VCC 时的情况(高端驱动)。 但是,虽然 PMOS 可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用 NMOS。 No.3 MOS 开关管损失 不管是 NMOS 还是 PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的 MOS 管会减小导通损耗。现在的小功率 MOS 管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS 在导通和截止的时候,一定不是在瞬间完成的。MOS 两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS 管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 No.4 MOS 管驱动 跟双极性晶体管相比,一般认为使 MOS 管导通不需要电流,只要 GS 电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在 MOS 管的结构中可以看到,在 GS 和 GD 之间存在寄生电容,而 MOS 管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择 / 设计 MOS 管驱动时第一要注意的是可提供瞬间短路电流的大小。 而在进行 MOSFET 的选择时,因为 MOSFET 有两大类型:N 沟道和 P 沟道。在功率系统中,MOSFET 可被看成电气开关。当在 N 沟道 MOSFET 的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻 RDS(ON)。 必须清楚 MOSFET 的栅极是个高阻抗端,因此,总是要在栅极加上一个电压,这就是后面介绍电路图中栅极所接电阻至地。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即 IDSS。 第一步:选用 N 沟道还是 P 沟道 为设计选择正确器件的第一步是决定采用 N 沟道还是 P 沟道 MOSFET。在典型的功率应用中,当一个 MOSFET 接地,而负载连接到干线电压上时,该 MOSFET 就构成了低压侧开关。在低压侧开关中,应采用 N 沟道 MOSFET,这是出于对关闭或导通器件所需电压的考虑。 当 MOSFET 连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用 P 沟道 MOSFET,这也是出于对电压驱动的考虑。 第二步:确定额定电流 第二步是选择 MOSFET 的额定电流,视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的 MOSFET 能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。 在连续导通模式下,MOSFET 处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件,一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOSFET 并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOSFET 在“导通”时就像一个可变电阻,由器件的 RDS(ON)所确定,并随温度而显着变化。 器件的功率耗损可由 Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对 MOSFET 施加的电压 VGS 越高,RDS(ON)就会越小,反之 RDS(ON)就会越高。 对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意 RDS(ON)电阻会随着电流轻微上升,关于 RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 第三步:确定热要求 选择 MOSFET 的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在 MOSFET 的资料表上还有一些需要注意的测量数据,比如封装器件的半导体结与环境之间的热阻,以及最大的结温。 器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散]),根据这个方程可解出系统的最大功率耗散,即按定义相等于 I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的 RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结 / 器件外壳及外壳 / 环境的热容量,即要求印刷电路板和封装不会立即升温。 通常,一个 PMOS 管,会有寄生的二极管存在,该二极管的作用是防止源漏端反接,对于 PMOS 而言,比起 NMOS 的优势在于它的开启电压可以为 0,而 DS 电压之间电压相差不大,而 NMOS 的导通条件要求 VGS 要大于阈值,这将导致控制电压必然大于所需的电压,会出现不必要的麻烦。 选用 PMOS 作为控制开关,有下面两种应用: 1 由 PMOS 来进行电压的选择,当 V8V 存在时,此时电压全部由 V8V 提供,将 PMOS 关闭,VBAT 不提供电压给 VSIN,而当 V8V 为低时,VSIN 由 8V 供电。注意 R120 的接地,该电阻能将栅极电压稳定地拉低,确保 PMOS 的正常开启,这也是前文所描述的栅极高阻抗所带来的状态隐患。D9 和 D10 的作用在于防止电压的倒灌。D9 可以省略。这里要注意到实际上该电路的 DS 接反,这样由附生二极管导通导致了开关管的功能不能达到,实际应用要注意。 2 来看这个电路,控制信号 PGC 控制 V4.2 是否给 P_GPRS 供电。此电路中,源漏两端没有接反,R110 与 R113 存在的意义在于 R110 控制栅极电流不至于过大,R113 控制栅极的常态,将 R113 上拉为高,截至 PMOS,同时也可以看作是对控制信号的上拉。当 MCU 内部管脚并没有上拉时,即输出为开漏时,并不能驱动 PMOS 关闭,此时,就需要外部电压给予的上拉,所以电阻 R113 起到了两个作用。R110 可以更小,到 100 欧姆也可。 No.5 MOS 管的开关特性 静态特性 MOS 管作为开关元件,同样是工作在截止或导通两种状态。由于 MOS 管是电压控制元件,所以主要由栅源电压 uGS 决定其工作状态。 工作特性如下: uGS 开启电压 UT:MOS 管工作在截止区,漏源电流 iDS 基本为 0,输出电压 uDS≈UDD,MOS 管处于“断开”状态,其等效电路如下图所示。 uGS>开启电压 UT:MOS 管工作在导通区,漏源电流 iDS=UDD/(RD+rDS)。其中,rDS 为 MOS 管导通时的漏源电阻。输出电压 UDS=UDD·rDS/(RD+rDS),如果 rDS《RD,则 uDS≈0V,MOS 管处于“接通”状态,其等效电路如上图(c)所示。 动态特性 MOS 管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的杂散电容充、放电所需的时间,而管子本身导通和截止时电荷积累和消散的时间是很小的。下图分别给出了一个 NMOS 管组成的电路及其动态特性示意图。 NMOS 管动态特性示意图 当输入电压 ui 由高变低,MOS 管由导通状态转换为截止状态时,电源 UDD 通过 RD 向杂散电容 CL 充电,充电时间常数τ1=RDCL,所以,输出电压 uo 要通过一定延时才由低电平变为高电平。 当输入电压 ui 由低变高,MOS 管由截止状态转换为导通状态时,杂散电容 CL 上的电荷通过 rDS 进行放电,其放电时间常数τ2≈rDSCL。可见,输出电压 Uo 也要经过一定延时才能转变成低电平。但因为 rDS 比 RD 小得多,所以,由截止到导通的转换时间比由导通到截止的转换时间要短。 由于 MOS 管导通时的漏源电阻 rDS 比晶体三极管的饱和电阻 rCES 要大得多,漏极外接电阻 RD 也比晶体管集电极电阻 RC 大,所以,MOS 管的充、放电时间较长,使 MOS 管的开关速度比晶体三极管的开关速度低。不过,在 CMOS 电路中,由于充电电路和放电电路都是低阻电路,因此,其充、放电过程都比较快,从而使 CMOS 电路有较高的开关速度。以上就是MOS管的原理解析,希望能给大家帮助。

    时间:2020-05-25 关键词: MOSFET 二极管 mos管

  • 芯片设计如何避免电应力,你知道吗?

    芯片设计如何避免电应力,你知道吗?

    你知道芯片设计如何避免电应力吗?芯片设计者在将一个运放的敏感引脚引出芯片的时候,通常会想到用户是否会认真处理这个引脚?或只是粗心的把这个引脚直接和交流电连接起来?我们都希望设计出好产品,可以应对用户的极端使用。那么,如何在设计中防止过电应力造成的产品失效呢? OPA320 是大多数典型运放的一种,其最大额定参数表如图 1 所示,它描述了芯片最大允许供电电压、引脚最大允许输入电压和电流。根据参数表的附加说明,如果限制引脚输入电流,那么就不需要限制输入电压。内部钳位二极管允许±10mA 的输入电流。但是在输入电压超出正常值很多的情况下,限制输入电流需要较大的输入阻抗,这会增加噪声,降低带宽,同时还可能产生其它错误。 钳位二极管在输入电压超过电源轨大约 0.6V 时开始导通。通常,许多设备可以承受较大电流,但是当电压急剧增加时,设备失效的概率就会增加。 通过添加外部二极管可以大大提高设备耐受大电流的能力,同时也可以提高设备的防护等级。市场上常见的传输信号二极管,比如无处不在的 1N4148,具有非常低的导通压降(实验室测试显示,其至少比运放内部二极管低 100mV)。在与运放内部二极管并联后,当遇到输入过流时,大多数电流将流向外部的二极管。 肖特基二极管具有更低的导通电压,这种特性可以提升保护性能。但缺点也很明显,它的漏电流太大了。室温下,它的反向漏电流通常是微安级或者更大,同时,随着温度的升高而增加。 另外,你还需要一个足够强大的电源。钳位二极管,无论是运放内部或者外部的,都需要一个相对稳定的电源来释放能量。如果故障脉冲很大,灌入电源轨过多的电流,提高(或拉低负电源)电源电压,那么脉冲会使电源端承受过大的电压应力,如图 2 所示。典型的线性电源不能吸收电流,因此不要指望使用它做为电源有多稳定。大的旁路电容可以用来吸收大的故障脉冲电流。对于连续的故障电流,可以在输入引脚和电源上加用齐纳二极管来解决。齐纳二极管的反向击穿电压要刚好高于系统最大供电电压,这样仅仅在故障时,齐纳二极管才会被导通。对于正负供电系统,需要在两个电源轨分别设计相同的保护电路。 尽管采取了这些措施,引脚输入电压仍可能超过最大额定参数表中的值,但问题关键在于:最大额定参数表中的值通常过于保守;在这个电压或者电流下芯片损坏几乎是不可能的。一般来说,大幅超过这些参数,器件也不太可能损坏(但不保证)。钳位到比最大额定参数表中的值高几伏的电压,同时获得较低的失效率是很容易的。在许多情况下,设计的目标是在成本和性能折中的情况下降低失效率。 没有哪一种方案可以应对所有的情况,也没有一种保护电路可以同时满足所有需求。在不同应用中,保护电路方案差别很大。不同运放的灵敏度不同,所需保护等级也存在很大差异。这可能会需要你有一定创造力,最好自己做自己的专家。虽然在极端的环境中做一些测试会损失一些运放,但这是必要的。以上就是芯片设计如何避免电应力的方法,希望能给大家帮助。

    时间:2020-05-15 关键词: 二极管 电源 电应力

  • PCB抄板的方法,你知道吗?

    PCB抄板的方法,你知道吗?

    你会PCB抄板吗?PCB抄板的技术实现过程简单来说,就是先将要抄板的电路板进行扫描,记录详细的元器件位置,然后将元器件拆下来做成物料清单(BOM)并安排物料采购,空板则扫描成图片经抄板软件处理还原成 pcb 板图文件,然后再将 PCB 文件送制版厂制板,板子制成后将采购到的元器件焊接到制成的 PCB 板上,然后经过电路板测试和调试即可。 一、PCB 抄板的具体步骤 1. 拿到一块 PCB,首先在纸上记录好所有元气件的型号,参数,以及位置,尤其是二极管,三级管的方向,IC 缺口的方向。最好用数码相机拍两张元气件位置的照片。现在的 pcb 电路板越做越高级上面的二极管三极管有些不注意根本看不到。 2. 拆掉所有器多层板抄板件,并且将 PAD 孔里的锡去掉。用酒精将 PCB 清洗干净,然后放入扫描仪内,扫描仪扫描的时候需要稍调高一些扫描的像素, 以便得到较清晰的图像。再用水纱纸将顶层和底层轻微打磨,打磨到铜膜发亮,放入扫描仪,启动 PHOTOSHOP,用彩色方式将两层分别扫入。注意,PCB 在扫描仪内摆放一定要横平竖直,否则扫描的图像就无法使用。 3. 调整画布的对比度,明暗度,使有铜膜的部分和没有铜膜的部分对比强 烈,然后将次图转为黑白色,检查线条是否清晰,如果不清晰,则重复本步骤。如果清晰,将图存为黑白 BMP 格式文件 TOP.BMP 和 BOT.BMP,如果发 现图形有问题还可以用 PHOTOSHOP 进行修补和修正。 4. 将两个 BMP 格式的文件分别转为 PROTEL 格式文件,在 PROTEL 中调入两层,如过两层的 PAD 和 VIA 的位置基本重合,表明前几个步骤做的很好,如果有偏差,则重复第三步。所以说 pcb 抄板是一项极需要耐 心的工作,因为一点小问题都会影响到质量和抄板后的匹配程度。 5. 将 TOP 层的 BMP 转化为 TOP.PCB,注意要转化到 SILK 层,就是黄色的那层,然后你在 TOP 层描线就是了,并且根据第二步的图纸放置器件。画完后将 SILK 层删掉。不断重复知道绘制好所有的层。 6. 在 PROTEL 中将 TOP.PCB 和 BOT.PCB 调入,合为一个图就 OK 了。 7.,用激光打印机将 TOP LAYER,BOTTOM LAYER 分别打印到透明胶片上(1:1 的比例),把胶片放到那块 PCB 上,比较一下是否有误,如果没错,你就大功告成了。 一块和原板一样的抄板就诞生了,但是这只是完成了一半。还要进行测试,测试抄板的电子技术性能是不是和原板一样。如果一样那真的是完成了。 备注:如果是多层板还要细心打磨到里面的内层,同时重复第三到第五步的抄板步骤,当然图形的命名也不同,要根据层数来定,一般双面板抄板要比多层板简单 许多,多层抄板容易出现对位不准的情况,所以多层板抄板要特别仔细和小心(其中内部的导通孔和不导通孔很容易出现问题)。 二、双面板抄板方法 1. 扫描线路板的上下表层,存出两张 BMP 图片。 2. 打开抄板软件 Quickpcb2005,点“文件”“打开底图”,打开一张扫描图片。用 PAGEUP 放大屏幕,看到焊盘,按 PP 放置一个焊盘,看到线按 PT 走线……就象小孩描图一样,在这个软件里描画一遍,点“保存”生成一个 B2P 的文件。 3. 再点“文件”“打开底图”,打开另一层的扫描彩图; 4. 再点“文件”“打开”,打开前面保存的 B2P 文件,我们看到刚抄好的板,叠在这张图片之上——同一张 PCB 板,孔在同一位置,只是线路连接不同。所以我们按“选项”——“层设置”,在这里关闭显示顶层的线路和丝印,只留下多层的过孔。 5. 顶层的过孔与底层图片上的过孔在同一位置,现在我们再象童年时描图一样,描出底层的线路就可以了。再点“保存”——这时的 B2P 文件就有了顶层和底层两层的资料了。 6. 点“文件”“导出为 PCB 文件”,就可以得到一个有两层资料的 PCB 文件,可以再改板或再出原理图或直接送 PCB 制版厂生产 三、多层板抄板方法 其实四层板抄板就是重复抄两个双面板,六层就是重复抄三个双面板……,多层之所以让人望而生畏,是因为我们无法看到其内部的走线。一块精密的多层板,我们怎样看到其内层乾坤呢?——分层。 现在分层的办法有很多,有药水腐蚀、刀具剥离等,但很容易把层分过头,丢失资料。经验告诉我们,砂纸打磨是最准确的。 当我们抄完 PCB 的顶底层后,一般都是用砂纸打磨的办法,磨掉表层显示内层;砂纸就是五金店出售的普通砂纸,一般平铺 PCB,然后按住砂纸,在 PCB 上均匀磨擦(如果板子很小,也可以平铺砂纸,用一根手指按住 PCB 在砂纸上磨擦)。要点是要铺平,这样才能磨得均匀。 丝印与绿油一般一擦就掉,铜线与铜皮就要好好擦几下。一般来说,蓝牙板几分钟就能擦好,内存条大概要十几分钟;当然力气大,花的时间会少一点;力气小花的时间就会多一点。 磨板是目前分层用得最普遍的方案,也是最经济的了。咱们可以找块废弃的 PCB 试一下,其实磨板没什么技术难度,只是有点枯燥,要花点力气,完全不用担心会把板子磨穿磨到手指头哦。 PCB 布板过程中,对系统布局完毕以后,要对 PCB 图进行审查,看系统的布局是否合理,是否能够达到最优的效果。通常可以从以下若干方面进行考察: 1. 系统布局是否保证布线的合理或者最优,是否能保证布线的可靠进行,是否能保证电路工作的可靠 性。在布局的时候需要对信号的走向以及电源和地线网络有整体的了解和规划。 2. 印制板尺寸是否与加工图纸尺寸相符,能否符合 PCB 制造工艺要求、有无行为标记。这一点需要特 别注意,不少 PCB 板的电路布局和布线都设计得很漂亮、合理,但是疏忽了定位接插件的精确定位,导致 设计的电路无法和其他电路对接。 3. 元件在二维、三维空间上有无冲突。注意器件的实际尺寸,特别是器件的高度。在焊接免布局的元 器件,高度一般不能超过 3mm。 4. 元件布局是否疏密有序、排列整齐,是否全部布完。在元器件布局的时候,不仅要考虑信号的走向 和信号的类型、需要注意或者保护的地方,同时也要考虑器件布局的整体密度,做到疏密均匀。 5. 需经常更换的元件能否方便地更换,插件板插入设备是否方便。应保证经常更换的元器件的更换和 接插的方便和可靠。以上就是PCB抄板技术,希望能给大家帮助。

    时间:2020-05-09 关键词: PCB 二极管 抄板

  • 你了解升压PFC电感上面的二极管吗?

    你了解升压PFC电感上面的二极管吗?

    什么是升压PFC电感上面的二极管?为了提高电网的功率因数,减少干扰,平板电视的大多数电源都采用了有源PFC电路,尽管电路的具体形式繁多,不尽相同,工作模式也不一样(CCM电流连续型、DCM不连续型、BCM临界型),但基本的结构大同小异,都是采用BOOST升压拓扑结构。如下图所示,这是一典型的升压开关电源,基本的思想就是把整流电路和大滤波电容分割,通过控制PFC开-关管的导通使输入电流能跟踪输入电压的变化,获得理想的功率因数,减少电磁干扰EMI和稳定开关电源中开关管的工作电压。 下图是一个广泛应用的升压型开关电源拓扑,相信大家并不陌生。在这个电路中,PFC电感L在MOS开关管Q导通时储存能量,在开关管截止时,电感L上感应出右正左负的电压,将导通时储存的能量通过升压二极管D1对大的滤波电容充电,输出能量。Boost升压PFC电感L上都并连着一个二极管D2。 观点众说纷纭 关于这个二极管的作用,在电源工程师中有一些不同的看法,摘录如下: 说法一:减少浪涌电压对电容的冲击在开机瞬间限制PFC电感L因浪涌电流产生巨大的自感电势,从而造成电路故障。每次电源开关接通瞬间加到电感上的可以是交流正弦波的任意瞬时值,如果在电源开关接通的瞬间是在正弦波的最大值峰点附近,那么给电感所加的是一个突变的电压,会引起电感L上产生极大的自感电势,该电势是所加电压的两倍以上,并形成较大的电流对后面的电容充电,轻则引起输入电路的保险丝熔断,重则引起滤波电容及斩波开关管Q击穿。设置保护二极管D2后在接通电源的瞬间,由D2导通并对C充电,使流过PFC电感L的电流大大减小,产生的自感电势也要小得多,对滤波电容和开关管的危害及保险丝的熔断可能要小得多。 说法二:减少浪涌电压对升压二极管的冲击该二极管分流一部分PFC电感和升压二极管支路的电流,因而能对升压二极管起保护作用。 误区解析 以上的观点都提到了该二极管D2的保护作用,都有一定的道理,但上述的有些解释有值得商榷的地方。 大家知道:PFC电路后面大的储能滤波电容C和PFC电感L是串联的,由于电感L上的电流不能突变.PFC电感本身对大的滤波电容C的浪涌电流起限制作用,不会出现观点一提到的“电源开关接通的瞬间电感L1上产生极大的自感电势时电容的充电的情况,”因为自感电势的方向也是左正右负,此观点令人费解。并联保护分流二极管D2以后,这一路由于没有电感的限制作用,对滤波电容的冲击反而会更大,不会减小。实践也证明,去掉二极管D2后,电容C上的浪涌冲击反而减小。观点二保护升压管D1说法,有一定的道理,因为D1是快速恢复二极管,承受浪涌电流的能力较弱,减小反向恢复电流和提高浪涌电压承载力是相互牵制的,而D1所采用的普通整流二极管承受浪涌电流的能力很强,如1N5407的额定电流3A,浪涌电流可达200A。 不过由于升压二极管D1有串接的PFC电感L的限流作用,笔者认为保护二极管D2的最主要作用还不仅仅是保护升压管D1。一些资料也有说明并联二极管D2是减少开机过程的浪涌电压,这个总体的说法没错,但我认为该保护二极管D2表面降低的是对PFC电感和升压二极管的浪涌冲击,但实际上还有一个重要的作用:保护PFC开关管。 在开机的瞬间,滤波电容的电压尚未建立,由于要对大电容充电,通过PFC电感的电流相对比较大,有可能在电源开关接通的瞬间是在正弦波的最大值,在对电容充电的过程中PFC电感L有可能会出现磁饱和的情况,如果此时PFC电路工作,就麻烦了,流过PFC开关管的电流就会失去限制,烧坏开关管。为防止悲剧发生,一种方法是对PFC电路的工作时序加以控制,即当对大电容的充电完成以后,再启动PFC电路;另一种比较简单的办法就是并接在PFC线圈和升压二极管上一个旁路二极管,启动瞬间给大电容的充电提供另一个支路,防止大电流流过PFC线圈造成饱和,避免PFC电路工作瞬间造成开关管过流,保护开关管,同时该保护二极管D2也分流了升压二极管D1上的电流,保护了升压二极管。另外,D2的加入使得对大电容充电过程加快,其上的电压及时建立,也能使PFC电路的电压反馈环路及时工作,减小开机时PFC开关管的导通时间,使PFC电路尽快正常工作。 综述 综上所述,以上电路中二极管D2的作用是在开机瞬间或负载短路、PFC输出电压低于输入电压的非正常状况下给电容提供充电路径,防止PFC电感磁饱和对PFCMOS管造成的危险,同时也减轻了PFC电感和升压二极管的负担,起到保护作用。该二极管的作用仍然可以说是减少浪涌电压的冲击,但主要是为了减少浪涌电压对开关管造成的威胁,对升压二极管也有分流保护作用,而不是保护滤波电容的。在开机正常工作以后,由于D2右面为B+PFC输出电压,电压比左面高,D2呈反偏截止状态,对电路的工作没有影响,D2可选用可承受较大浪涌电流的普通大电流的整流二极管。 在有些电源中,PFC后面的电容容量不大,也有的没有接入保护二极管D2,但如果PFC后面是使用大容量的滤波电容,此二极管是不能减少的,对电路的安全性有着重要的意义。以上就是升压PFC电感上面的二极管的解析,希望能给大家帮助。

    时间:2020-05-01 关键词: 二极管 浪涌电压 pfc电感

  • LED光源的特点是什么

    LED光源的特点是什么

    LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 LED光源的特点结构以及发光原理解析 LED光源的特点 1.电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2.效能:消耗能量较同光效的白炽灯减少80% 3.适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4.稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8.价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成 单色光LED的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 白光LED的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的LED开发成功。这种LED是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含Ce3+的YAG荧光粉受此蓝光激发后发出黄色光发射,峰值550nm。蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm。 LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。现在,对于InGaN/YAG白色LED,通过改变YAG荧光粉的化学组成和调节荧光粉层的厚度,可以获得色温3500-10000K的各色白光。(如下图所示) 表一列出了目前白色LED的种类及其发光原理。目前已商品化的第一种产品为蓝光单晶片加上YAG黄色荧光粉,其最好的发光效率约为25流明/瓦,YAG多为日本日亚公司的进口,价格在2000元/公斤;第二种是日本住友电工亦开发出以ZnSe为材料的白光LED,不过发光效率较差。 从表中也可以看出某些种类的白色LED光源离不开四种荧光粉:即三基色稀土红、绿、蓝粉和石榴石结构的黄色粉,在未来较被看好的是三波长光,即以无机紫外光晶片加R.G.B三颜色荧光粉,用于封装LED白光,预计三波长白光LED今年有商品化的机机会。但此处三基色荧光粉的粒度要求比较小,稳定性要求也高,具体应用方面还在探索之中。 采用LED光源进行照明,首先取代耗电的白炽灯,然后逐步向整个照明市场进军,将会节约大量的电能。近期,白色LED已达到单颗用电超过1瓦,光输出25流明,也增大了它的实用性。表二和表三列出了白色LED的效能进展。 业界概况 在LED业者中,日亚化学是最早运用上述技术工艺研发出不同波长的高亮度LED,以及蓝紫光半导体激光(Laser Diode;LD),是业界握有蓝光LED专利权的重量级业者。在日亚化学取得兰色LED生产及电极构造等众多基本专利后,坚持不对外提供授权,仅采自行生产策略,意图独占市场,使得蓝光LED价格高昂。但其他已具备生产能力的业者相当不以为然,部分日系LED业者认为,日亚化工的策略,将使日本在蓝光及白光LED竞争中,逐步被欧美及其他国家的LED业者抢得先机,届时将对整体日本LED产业造成严重伤害。因此许多业者便千方百计进行蓝光LED的研发生产。目前除日亚化学和住友电工外,还有丰田合成、罗沐、东芝和夏普,美商Cree,全球3大照明厂奇异、飞利浦、欧司朗以及HP、Siemens、 Research、EMCORE等都投入了该产品的研发生产,对促进白光LED产品的产业化、市场化方面起到了积极的促进作用。

    时间:2020-04-30 关键词: 半导体 LED 二极管

  • 稳压二极管与TVS管解析

    稳压二极管与TVS管解析

    什么是稳压二极管?它与TVS管的区别是什么?本文主要讲了稳压二极管的定义、原理、应用和TVS管的定义、应用以及稳压二极管与TVS管的区别。 稳压二极管介绍 稳压二极管,英文名称Zener diode,又叫齐纳二极管。利用pn结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。 此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。 稳压二极管原理: 稳压二极管的伏安特性曲线的正向特性和普通二极管差不多,反向特性是在反向电压低于反向击穿电压时,反向电阻很大,反向漏电流极小。但是,当反向电压临近反向电压的临界值时,反向电流骤然增大,称为击穿,在这一临界击穿点上,反向电阻骤然降至很小值。尽管电流在很大的范围内变化,而二极管两端的电压却基本上稳定在击穿电压附近,从而实现了二极管的稳压功能。 稳压二极管应用: 1、典型的串联型稳压电路 在此电路中,三极管T的基极被稳压 二极管D稳定在13V,那么其发射极就输出恒定的13-0.7=12.3V电压了,在一定范围内,无论输入电压升高还是降低,无论负载电阻大小变化,输出电压都保持不变。这个电路在很多场合下都有应用。7805就是一种串联型集成稳压电路,可以输出5V的电压。7805-7824可以输出5-24V电压。在很多电器上都有应用。 2、电视机里的过压保护电路 115V是电视机主供电电压,当电源输出电压过高时,D导通,三极管T导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的电压使电视机进入待机保护状态。 3、电弧抑制电路 在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它。 TVS管介绍 TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10^-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的反应速度比RC回路快10E-12s,可不用考虑TVS的击穿电压VBR,反向临界电压VWM,最大峰值脉冲电流IPP和最大箝位电压VC及峰值脉冲功率PP. 选择VWM等于或大于电路工作电压,VC为小于保护器件的耐压值,能测量最好(IPP),或估计出脉冲的功率,选功率较大的TVS。 TVS管的特性参数: 最大反向漏电流ID和额定反向关断电压VWM。VWM是TVS最大连续工作的直流或脉冲电压,当这个反向电压加入TVS的两极间时,它处于反向关断状态,流过它的电流应小于或等于其最大反向漏电流ID。 最小击穿电压VBR和击穿电流IR。VBR是TVS最小的雪崩电压。25℃时,在这个电压之前,TVS是不导通的。当TVS 流过规定的1mA电流(IR)时,加入TVS两极间的电压为其最小击穿电压VBR。按TVS的VBR与标准值的离散程度,可把TVS分为±5%VBR和±10% VBR两种。对于±5%VBR来说,VWM=0.85VBR;对于±10% VBR来说,VWM=0.81 VBR。 最大箝位电压VC和最大峰值脉冲电流。IPP当持续时间为20微秒的脉冲峰值电流IPP流过TVS时,在其两极间出现的最大峰值电压为VC。它是串联电阻上和因温度系数两者电压上升的组合。VC 、IPP反映了TVS器件的浪涌抑制能力。VC与VBR之比称为箝位因子,一般在1.2~1.4之间。 电容量C 是TVS雪崩结截面决定的、在特定的1MHZ频率下测得的。C的大小与TVS的电流承受能力成正比,C过大将使信号衰减。因此,C是数据接口电路选用TVS的重要参数。 最大峰值脉冲功耗PMPM是TVS能承受的最大峰值脉冲耗散功率。其规定的试验脉冲波形和各种TVS的PM值,请查阅有关产品手册。在给定的最大箝位电压下,功耗PM越大,其浪涌电流的承受能力越大;在给定的功耗PM下,箝位电压VC越低,其浪涌电流的承受能力越大。另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。而且TVS所能承受的瞬态脉冲是不重复的,器件规定的脉冲重复频率(持续时间与间歇时间之比)为0.01%,如果电路内出现重复性脉冲,应考虑脉冲功率的“累积”,有可能使TVS损坏。 箝位时间TCTC是从零到最小击穿电压VBR的时间。对单极性TVS小于1&TImes;10-12秒;对双极性TVS小于是1&TImes;10-11 秒。 TVS管的四大应用: 1、TVS管在TN电源系统的应用 雷电过电压波、负载开关等人为操作错误引起的过电压容易通过供电线路侵入电气电子设备内部,造 成电气电子设备失效、误动作,甚至造成设备的永久性损坏,造成严重经济损失。通过在电源线路上安装浪涌吸收装置MOV和TVS,实施两级保护,并对L、N 线进行共模、差模保护。具体做法是在线路的前端安装MOV作为第一级SPD保护,泄放大部分雷电流,在线路的末端(设备前端)安装大功率TVS管作为第二 级SPD保护,进一步削弱过电压波幅值,将电网电压降至E/I安全耐压范围之内。要注意的是,MOV与TVS应达到电压和能量的协调与配合,AB之间的线 路长度不应小于5 m,否则应增加线路长度或安装退耦器件。 2、TVS管在网络信号线路的应用 TVS管不仅可以用于电源系统的浪涌防护,还可以用于信号线路的浪涌保护,采用气体放电管GDT与TVS管组合成信号浪涌保护器,其特点是反应快,漏流小,几乎对信号无损耗,可以对高速网络线路提供安全、可靠的保护。 3、TVS管在直流电源系统的应用 一台普通PC电脑的供电电源电路,市电AC 220 V经过变压器降压至AC 20 V,再经调制整流电路,输出DC 10 V 直流电源,接入负载。通过在变压器输出端安装双向瞬态电压抑制器TVS1,吸收L 及N 线的瞬时冲击脉冲电流,将电路电压箝制在安全电压水平,TVS1可以保护变压器后端整流器及其他电路元器件。在整流器后的直流电源输出端安装单向瞬态电压 抑制器TVS2,用于保护直流负载免受过电压电电流冲击。 4、TVS管在晶体管电路的应用 晶体三极管作为电流控制型器 件,是电子集成电路中的重要组成部分,可分为NPN 管和PNP 管两类,应用于开关电路、放大电路和稳压电路。为了使晶体管电路免受ESD/EFT(静电放电/电快速瞬变脉冲群)等浪涌电压的干扰,在电路的输入 端和输出端分别加入TVS1、TVS2进行保护。 稳压二极管与TVS管的区别 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR) 或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 如果是使用的话,TVS有二极管类,和压敏电阻类。我个人认为压敏电阻类更有优势,目前广泛用于手机,LCD模组,及一些比较精密的手持设备。特别是出口欧洲的产品一般都要加,来作为静电防护的主要手段之一。TVS和齐纳稳压管都能用作稳压,但是TVS管齐纳击穿电流更小,大于10V的稳压只有1mA,相对来说齐纳二极管击穿电流要大不少,但是齐纳二极管稳压精度可以做的比较高。 在电路中一般工作于反向截止状态,此时它不影响电路的任何功能。TVS在规定的反向应用条件下,当电路中由于雷电、各种电器干扰出现大幅度的瞬态干扰电压或脉冲电流时,它在极短的时间内(最高可达到1&TImes;10-12秒)迅速转入反向导通状态,并将电路的电压箝位在所要求的安全数值上,从而有效的保护电子线路中精密元器件免受损坏。干扰脉冲过去后,TVS又转入反向截止状态。 由于在反向导通时,其箝位电压低于电路中其它器件的最高耐压,因此起到了对其它元器件的保护作用。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位时间仅为1ps。TVS根据极性可分为单向和双向TVS。单向TVS一般适用于直流电路,双向TVS一般适用于交流电路中。由于TVS起保护作用时动作迅速、寿命长、使用方便,因此在瞬变电压防护领域有着非常广泛的应用。以上就是稳压二极管TVS管的区别,希望能给大家帮助。

    时间:2020-04-03 关键词: 二极管 稳压 tvs管

  • 贸泽电子新品推荐:2020年3月

    贸泽电子新品推荐:2020年3月

    2020年4月2日 – 致力于快速引入新产品与新技术的业界知名分销商贸泽电子 (Mouser Electronics),首要任务是提供来自800多家知名厂商的新产品与技术,帮助客户设计出先进产品,并加快产品上市速度。贸泽只为客户提供通过全面认证的原厂产品,并提供全方位的制造商可追溯性。 上个月,贸泽总共发布了329多种新品,这些产品均可以当天发货,贸泽上月引入的部分产品包括: · 英特尔® NUC迷你电脑 英特尔下一代计算单元 (NUC) 迷你电脑尺寸小且性能高,适用于家庭影院、家庭办公、入门级游戏、工业/商业信息亭和数字标牌等应用。 · Osram Opto Semiconductors PLPT9 450LA_E蓝色激光二极管 Osram Opto Semiconductors PLPT9 450LA_E蓝色激光二极管的光学功率可达3W,可发射波长为447 nm、高度集中的可见光。 · 用于树莓派的Pimoroni PIM486 Enviro 用于树莓派的Pimoroni PIM486 Enviro是一种用于RPi Zero(树莓派Zero)的pHAT,能够测量室内环境中的温度、压力、湿度、光照和噪声等级。 · Samtec AcceleRate® HD超高密度多排夹层料带 Samtec AcceleRate HD超高密度多排夹层料带具有5 mm低矮堆叠高度、5 mm的纤细外形宽度以及 0.635 mm 的间距。

    时间:2020-04-02 关键词: 二极管 nuc 迷你电脑

  • 明纬电源“1+1”并机冗余设计

    明纬电源“1+1”并机冗余设计

    全彩LED小间距显示屏能在更小的屏体上,显示更真实的效果,应用范围越来越广泛,特别在一些特殊应用场合,例如剧场剧院、大型演出、国际赛事现场直播与重要视频会议等。显示屏的高可靠性、低故障、免维护的特性也是受到人们青睐的主因之一。传统冗余电源接法是由2个或多个电源于正端分别串接二极管的方式并联输出至电源总线上。可以让1个电源单独工作,也可以让多个电源同时工作。当其中1个电源出现故障时,由于二极管的单向导通特性,不会影响电源总线的输出。 现在新的冗余电源方案是采用大功率的MOSFET来代替电路中的二极管,由于MOSFET的导通内阻小,可以达到几mΩ,大幅降低了压降损耗,应用电路中MOSFET采用专业芯片的控制,不仅实现了效率更高的解决方案,而且可接较小的散热器,缩减了散热器的空间,因此设计到电源中,节省了系统的总成本。 明纬新推出的LSP-160系列的设计是利用MOSFET来代替传统电路中的二极管并联方式,并采用专业的芯片控制,可实现冗余+并联均流应用,而且体积小,效率高,可满足小间距全彩显示屏市场冗余应用需求。此外,LSP-160全系列属于轻薄型半灌胶产品,可降低因特殊应用环境、污染、震动、潮湿带来的电源故障,如铁路信息化设备、城市轨道交通智慧化设备等可靠性要求较高的系统,或者受安装空间限制的设备,皆可推荐客户选择此系列予以替换。 近几年全彩LED显示屏兴起,其高亮度大屏幕吸睛的特点,被众多广告商、地产商所喜爱。为了提供更好的观赏体验,对于画面的清晰度和真实度要求越来越高,小间距LED显示屏不仅成为业界的新宠儿也将是未来的发展趋势。现有的显示屏通常是采用单电源供电,一旦电源故障,则会导致无法正常显示图像,严重影响视觉效果,然而于现场更换电源和维修皆会影响活动的进行,因此LED全彩显示屏进行了可靠度升级 : 电源和讯号备份系统采用了“1+1”并机冗余设计。

    时间:2020-04-01 关键词: MOSFET 二极管 全彩led小间距显示屏

  • 汽车级200VQspeed二极管

    汽车级200VQspeed二极管

    什么是汽车级200VQspeed二极管?它的用途有哪些?深耕于高压集成电路高能效功率转换领域的知名公司Power Integrations(纳斯达克股票代号:POWI)今日宣布其200 V Qspeed™二极管 – LQ10N200CQ和LQ20N200CQ – 现已通过AEC-Q101汽车级认证。Qspeed硅二极管采用混合PIN技术,可在软开关和低反向恢复电荷(Qrr)之间提供独特的平衡。该特性有助于降低EMI和输出噪声,这对于车载音响系统特别重要。 最新通过认证的200 V二极管具有业界最低的反向恢复电荷,在125°C TJ下通常为32.4 nC,并且二极管的软度比为0.39。该特性可以最大程度降低高频EMI,而这是D类功率放大器输出级中常用的肖特基整流管的固有特点。10 A和20 A共阴极双二极管采用了符合行业标准的坚固耐用的DPAK TO-252封装。 Power Integrations产品营销经理Edward Ong表示:“汽车音响行业一直强烈要求用一种具有快速反向恢复特性的二极管来替代肖特基二极管,但这一特性会导致振铃,从而在敏感的D级放大器中产生EMI和噪声。我们通过认证的汽车级200 V QSpeed二极管是车载音频放大应用的完美解决方案。” LQ10N200CQ和LQ20N200CQ二极管在通过IATF 16949标准认证的工厂进行生产。LQ10N200CQ和LQ20N200CQ现已开始供货,基于10,000片的订货量单价分别为每片0.60美元和0.74美元.以上就是汽车级200VQspeed二极管,希望能给大家帮助。

    时间:2020-03-31 关键词: 二极管 音频放大器 powi

  • Littelfuse低电容瞬态抑制二极管阵列解析

    Littelfuse低电容瞬态抑制二极管阵列解析

    什么是低电容瞬态抑制二极管阵列?它的用途有哪些?全球领先的电路保护、电源控制和传感技术制造商Littelfuse, Inc.(纳斯达克股票代码:LFUS)今日宣布推出了低电容瞬态抑制二极管阵列(SPA®二极管)。该产品经过优化设计,可用于保护高速差分数据线免受因静电放电(ESD)、电缆放电(CDE)、电气快速瞬变(EFT)和雷击感应浪涌造成的损坏,通过维护信号完整性保持网络通信的可靠性。 SP3384NUTG系列可在高达15A (IEC 61000-4- 5第2版)和高达±30kV ESD (IEC 61000-4-2)的情况下为四个信道提供保护,并可提供紧凑型μDFN封装。 由于兼具低电容和低钳位电压,SP3384NUTG可针对2.5G/5G/10G以太网高速数据接口提供可靠的保护解决方案,同时避免信号衰减,提高各种应用的可靠性。 SP3384NUTG系列瞬态抑制二极管的典型市场和应用包括: ·数据中心和电信 - 2.5G/5G/10G以太网、WAN/LAN设备、5G无线回程 ·工业 - LVDS接口、集成磁 ·消费电子产品 - 台式机、服务器和笔记本电脑 “基于1GbE和5GbE应用中相似的封装尺寸,SP3384NUTG系列扩大了我们的产品组合,并满足了当今速度最快的10GbE消费以太网解决方案对超强ESD和浪涌保护的市场需求。”瞬态抑制二极管阵列(SPA®二极管)业务开发总监Tim Micun表示。 “它还采用了数据中心、电信以及消费电子产品行业常见的紧凑配置封装。” SP3384NUTG系列瞬态抑制二极管阵列具有下列主要优势: ·低电容(每个I/O 0.5pF)和低箝位电压(4V@Ipp=1A),可维护信号完整性,将数据损失降至最低,同时使设备在面临电气威胁时更加稳定可靠。 ·紧凑型μDFN封装(3.0 x 2.0mm)专为保护高速差分数据线进行了优化。 ·在高达15A的电流条件下为两个差分数据线对(4个信道)提供保护。 ·超过针对ESD保护的最高IEC标准要求,确保产品可靠性。以上就是低电容瞬态抑制二极管阵列,希望能给大家帮助。

    时间:2020-03-31 关键词: littelfuse 二极管 spa二极管

  • 二极管奇幻世界是怎么样?

    二极管奇幻世界是怎么样?

    相信很多人都见过二极管,那么它的作用是什么?对于硬件工程师而言,工作甚是很枯燥,只能自己在平凡的岗位上找到属于自己的乐趣,才能干力十足的完成各项工作。今天我们就聊一聊硬件工程师的得力助手--二极管,下面我们一起围观,看看都有什么门道吧~ 常见二极管的类型: 二极管在硬件电路中的应用非常广泛,二极管的主要类型包括如下一些:整流二极管:利用二极管的单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 稳压二极管:利用二极管的反向击穿特性(齐纳击穿)制成,在电路中其两端的电压保持基本不变(在临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流在增大,但动态电阻在变小,电压基本不变),起到稳定电压的作用。开关二极管:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。 TVS管:类似稳压二极管。利用二极管的反向击穿特性(雪崩击穿)。 检波二极管:类似整流二极管。利用单向导电性将高频或中频无线电信号中的低频信号或音频信号提取出来。限幅二极管:二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 发光二极管:二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。发光二极管的反向击穿电压大于5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过二极管的电流。 光电二极管:光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,反向电流也越大。 肖特基二极管(SBD,Schottky Barrier Diode):肖特基势垒二极管是利用金属和半导体接触产生的势垒而起到单向导电的作用,而普通二极管是利用PN结的单向导电性。肖特基二极管的两个缺点:一是反向耐压较低,一般只有100V左右;二是反向漏电流较大。 快恢复二极管(FRD/SRD,Fast Recovery Diode):是一种具有开关特性好、反向恢复时间短等特点的半导体二极管,主要应用于开关电源、PWM脉宽调制器、变频器等电子电路中,作为高频整流二极管、续流二极管或阻尼二极管使用。快恢复二极管的内部结构与普通PN结二极管不同,它属于PIN结型二极管,即在P型硅材料与N型硅材料中间增加了基区I,构成PIN硅片。因基区很薄,反向恢复电荷很小,所以快恢复二极管的反向恢复时间较短,正向压降较低,反向击穿电压(耐压值)较高。 以上是针对常见的二极管的简单分类介绍,实际使用中的分类还会有很多很多,使用的地方不一样,叫法也不一样。以上就是二极管的一些作用,希望能对大家有所帮助。

    时间:2020-03-31 关键词: 二极管 硬件电路 sbd

  • 二极管正负极的判断方法

    二极管正负极的判断方法

    都认识二极管,那么如何判断它的正负极呢?大家几乎在所有的电子电路中,都要用到半导体二极管。半导体二极管在电路中的使用能够起到保护电路,延长电路寿命等作用。半导体二极管的发展,使得集成电路更加优化,在各个领域都起到了积极的作用。二极管在集成电路中的作用很多,维持着集成电路正常工作。 二极管正负极判断是二极管基本知识,但初学者却不知道怎么辨识二极管正负极,原因在于目前市场上存在不同类型的二极管。对于二极管正负极的判断,本文以晶体二极管为例。通过本文,希望大家学会对晶体二极管正负极的判断。 二极管是用半导体材料(硅、硒、锗等)制成的一种电子器件。它具有单向导电性能,即给二极管阳极和阴极加上正向电压时,二极管导通。当给阳极和阴极加上反向电压时,二极管截止。因此,二极管的导通和截止,则相当于开关的接通与断开。二极管是最早诞生的半导体器件之一,其应用非常广泛。 二极管就是由一个 PN 结加上相应的电极引线及管壳封装而成的。采用不同的掺杂工艺,通过扩散作用,将 P 型半导体与 N 型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为 PN 结。由 P 区引出的电极称为阳极,N 区引出的电极称为阴极。因为 PN 结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。 二极管有两个电极,由 P 区引出的电极是正极,又叫阳极;由 N 区引出的电极是负极,又叫阴极。三角箭头方向表示正向电流的方向,二极管的文字符号用 VD 表示。 二极管的种类很多,分辨正负极的方法也不尽相同。以下小编列举了几种二极管正负极的判断方法,仅供参考。 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。 一、普通二极管有色端标识一极为负极。 二、发光二极管长脚为正,短脚为负。如果脚一样长,发光二极管里面的大点是负极,小的是正极。有的发光二极管带有一个小平面,靠近小平面的一根引线为负极。 也可以采用万有表来测正负极。红表笔接“+”,黑表笔接“-”,用档位 RX10K 来测,两个表笔接触二极管的两极,若显示的电阻值是小电阻值,则黑表笔所接触的一极就是正极,反之,为负极。 三、稳压二极管正负极的识别方法: 1、从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。 2、塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。 3、对标志不清楚的稳压二极管,也可以用万用表判别其极性,把万用表打到测二极管的档位,两表笔放在二极管的两端,交换两端再测一遍听到万用表的蜂鸣器叫了,那这时红表笔接触的那端就是正的,黑表笔那端就是负的。 四、判定电路中整流二极管的正负极: 1. 二极管特点是正向导通,反向截止。发光二极管两端各接上电池正负极,亮说明接电池正极的为发光二极管正极,不亮则接电池正极的为发光二极管负极。 2. 直流电路中电流方向是从高电位点流向低电位点。简单说就是从电池的正极经过电路流向电池负极。 五、晶体二极管 晶体二极管由一个 PN 结,两条电极引线和管壳构成。在 PN 结的两侧用导线引出加以封装,就是晶体二极管。晶体二极管的字母符号为 V。PN 结的导通方向是从 P 型半导体到 N 型半导体,即 P 到 N 导通(P 为正极,N 为负极) 。PN 结正向导通,反向截至,具有单相导电的特性。 六、印制板中通过 PCB 板上丝印来判别二极管方向的方法总结如下: 通常情况下: 1、有缺口的一端为负极;2、有横杠的一端为负极;3、有白色双杠的一端为负极;4、三角形箭头方向的一端为负极;5、插件二极管丝印小圆一端是负极,大圆是正极。6、插件发光二极管方孔为第一脚为正极。 二极管的种类非常的多,而小编整理出来这些二极管的判断方法只是其中的很小一部分,希望可以帮助要初识二极管的你。以上就是二极管正负极的判断方法,这对初接触电路的人来说,会有一定的帮助。

    时间:2020-03-30 关键词: 二极管 pn结 正负极

  • 功率二极管解析

    功率二极管解析

    什么是功率二极管?它的作用是什么?功率二极管是电子工程师不可避免打交道的元器件之一?你又对功率二极管有何见解呢?不清楚的童鞋不慌,本文主要汇总了关于功率二极管知识点,一起学习一下: 1. 什么是二极管的正向额定电流? 二极管的额定电流是二极管的主要标称值,比如5A/100V的二极管,5A就是额定电流。通常额定电流的定义是该二极管所能 通过的额定平均电流。但是有些的测试前是方波,也就是可以通过平均值为5A的方波电流。有些得测试前提是直流,也就是能通过5A的直流电流。理论上来说, 对于硅二极管,以方波为测试条件的二极管能通过更大的直流电流,因为同样平均电流的方波较于直流电流,会给二极管带来更大损耗。那么5A的二极管是否一定 能通过5A的电流?不一定,这个和温度有关,当你的散热条件不足够好,那么二极管能通过的电流会被结温限制。 2. 什么是二极管的反向额定电压? 二极管反向截止时,可以承受一定的反压,那么其最高可承受的反压就是额定电压。比如5A/100V的二极管,其额定反压就是 100V。虽然,所有二极管厂家都会留一定的裕量,100V的二极管通常用到110V都不会有问题,但是不建议这么用,因为超过额定值,厂家就不会保证其 可靠性,出了问题就是你的问题了。而且很多电源设计公司,为了保障可靠性,还会降额设计。 3. 什么是二极管的正向冲击电流? 开关电源在开机或者其他瞬态情况下,需要二极管能够承受很大的冲击电流而不坏,当然这种冲击电流应该是不重复性,或者间隔时 间很长的。通常二极管的数据手册都有定义这个冲击电流,其测试条件往往是单个波形的冲击电流,比如单个正弦波,或者方波。其电流值往往可达几百。 4. 什么是二极管的正向导通压降? 二极管在正向导通,流过电流的时候会产生压降。这个压降和正向电流以及温度有关。通常硅二极管,电流越大,压降越大。温度越高,压降越小。但是碳化硅二极管却是温度越高,压降越大。 5. 什么是二极管的反向漏电流? 二极管在反向截止的时候,并不是完全理想的截止。在承受反压得时候,会有些微小的电流从阴极漏到阳极。这个电流通常很小,而且反压越高,漏电流越大,温度越高,漏电流越大。大的漏电流会带来较大的损耗,特别在高压应用场合。 6. 什么是二极管的反向恢复时间和反向恢复电流? 这个是二极管的重要指标,所谓的快恢复,慢恢复二极管就是以此为标准。二极管 在从正偏转换到反偏的时候,会出现较大的反向恢复电流从阴极流向阳极,其反向电流先上升到峰值,然后下降到零。那么其上升下降的时间就是反向恢复时间,峰 值电流就是反向恢复电流。这个在高频率的应用中会带来很大损耗。而反向恢复时间和电流和二极管截止时,正向电流的下降速率正相关。解决这个问题,一就是用 恢复时间更快的二极管,二是采用ZCS方式关断二极管。 7. 什么是软恢复二极管? 二极管在反向恢复的时候,反向电流下降的比较慢的,称为软恢复二极管。软恢复对减小EMI有一定的好处。 8. 什么是二极管的结电容? 结电容是二极管的一个寄生参数,可以看作在二极管上并联的电容。 9. 什么是二极管的寄生电感? 二极管寄生电感主要由引线引起,可以看作串联在二极管上的电感。 10. 二极管正向导通时候瞬态过程是怎样? 对于二极管的瞬态过程,通常关心比较多的是反向恢复特性。但是其实二极管从反偏转为正向导通的过程也有值得注意的地 方。在二极管刚导通的时候,正向压降会先上升到一个最大值,然后才会下降到稳态值。而这个最大值,随di/dt的增大而增大。也就是说二极管带导通瞬间会 产生一个正向尖峰电压,而且电压要大于稳态电压。快恢复管的这个正向尖峰电压比较小,慢恢复管就会很严重。这个就引出了另外一个问题: 11. 在RCD钳位电路中,二极管到底选慢管,还是快管? RCD电路常用于一些需要钳位的场合,比如flyback原边MOS的电压钳位,次级整流管的电压钳 位。有些技术文献说应该用慢恢复管,理由是慢恢复管由于其反向恢复时间比较长,这样钳位电容中的一部分能量会在二极管反向恢复过程中回馈给电路,这样整个 RCD电路的损耗可以降低。不过这个只适合小电流,低di/dt的场合。比如小功率flyback的原边钳位电路。但是不适合大电流,高di/dt的钳位 场合,比如大电流输出的电源的次级钳位电路。因为,慢恢复管在导通的时候会产生很高导通压降尖峰,导致虽然钳位电容上的电压很低,但是却没法钳住尖峰电 压。所以应该选择肖特基二极管之类。 12. 什么是肖特基二极管? 肖特基二极管是一种利用肖特基势垒工艺的二极管,和普通的PN结二极管相比,其优点:更快的反向恢复时间,很多称之为0反向恢复时 间。虽然并不是真的0反向恢复时间,但是相对普通二极管要快非常多。其缺点:反向漏电流比较大,所以没法做成高压的二极管。目前的肖特基二极管,基本都是 200V以下的。虽然有些公司可以提供高压的肖特基硅二极管,但是也是将几个二极管串联之后封装在一起。当然也有公司称有独特的工艺,可以制造高压肖特基 二极管,但并不知晓是什么样的工艺。 13. 什么是碳化硅二极管? 通常大家所用的基本都是以硅为原料的二极管,但是最近比较热门的碳化硅二极管是用碳化硅为原料的二极管。目前常见的多为高压的肖特基 碳化硅二极管,其优点:反向恢复特性很好,媲美肖特基硅二极管。但是可以做高压的二极管。在PFC中已有较多应用。缺点:正向导通压降比较大。还有一点与 硅二极管不同的是其导通压降随温度上升反而增大。早期的碳化硅二极管,还有可承受冲击电流小,可靠性不高等缺点。但是目前已有很大改善。 14. 什么是砷化镓二极管? 说实话,我听说砷化镓材料早于碳化硅,但是后来就较少听说了。目前砷化镓在LED上似乎有些应用,但是功率器件上却还比较少。 15. 二极管适合并联么? 理论上来说硅二极管,由于导通压降随温度上升而下降,所以是不适合并联的,但是现在很多二极管会把两个单管封装在一起,这样温升相对均匀,给并联带来好处。但是碳化硅是的压降是随温度上升而上升,理论上是适合并联的。以上就是功率二极管的技术解析,希望能给大家帮助。

    时间:2020-03-30 关键词: 电流 二极管 功率

  • 肖特基和碳化硅二极管解析

    肖特基和碳化硅二极管解析

    什么是肖特基和碳化硅二极管,他们有哪些注意事项?电子行业发展日新月异,离不开元器件家族各位的一起辛勤耕耘。本文我们就对二极管之肖特基和碳化硅,这两款二极管进入深入学习,看看哪些点是你不清楚的,一起把正确的思想捋顺了。 什么是肖特基二极管? 肖特基二极管是一种利用肖特基势垒工艺的二极管,和普通的PN结二极管相比,其优点:更快的反向恢复时间,很多称之为0反向恢复时 间。虽然并不是真的0反向恢复时间,但是相对普通二极管要快非常多。其缺点:反向漏电流比较大,所以没法做成高压的二极管。目前的肖特基二极管,基本都是 200V以下的。虽然有些公司可以提供高压的肖特基硅二极管,但是也是将几个二极管串联之后封装在一起。当然也有公司称有独特的工艺,可以制造高压肖特基 二极管,但并不知晓是什么样的工艺。 什么是碳化硅二极管? 通常大家所用的基本都是以硅为原料的二极管,但是最近比较热门的碳化硅二极管是用碳化硅为原料的二极管。目前常见的多为高压的肖特基 碳化硅二极管,其优点:反向恢复特性很好,媲美肖特基硅二极管。但是可以做高压的二极管。在PFC中已有较多应用。缺点:正向导通压降比较大。还有一点与 硅二极管不同的是其导通压降随温度上升反而增大。早期的碳化硅二极管,还有可承受冲击电流小,可靠性不高等缺点。但是目前已有很大改善。 什么是砷化镓二极管? 说实话,我听说砷化镓材料早于碳化硅,但是后来就较少听说了。目前砷化镓在LED上似乎有些应用,但是功率器件上却还比较少。 什么是二极管的正向额定电流? 二极管的额定电流是二极管的主要标称值,比如5A/100V的二极管,5A就是额定电流。通常额定电流的定义是该二极管所能 通过的额定平均电流。但是有些的测试前是方波,也就是可以通过平均值为5A的方波电流。有些得测试前提是直流,也就是能通过5A的直流电流。理论上来说, 对于硅二极管,以方波为测试条件的二极管能通过更大的直流电流,因为同样平均电流的方波较于直流电流,会给二极管带来更大损耗。那么5A的二极管是否一定 能通过5A的电流?不一定,这个和温度有关,当你的散热条件不足够好,那么二极管能通过的电流会被结温限制。 什么是二极管的反向额定电压? 二极管反向截止时,可以承受一定的反压,那么其最高可承受的反压就是额定电压。比如5A/100V的二极管,其额定反压就是 100V。虽然,所有二极管厂家都会留一定的裕量,100V的二极管通常用到110V都不会有问题,但是不建议这么用,因为超过额定值,厂家就不会保证其 可靠性,出了问题就是你的问题了。而且很多电源设计公司,为了保障可靠性,还会降额设计。 什么是二极管的正向冲击电流? 开关电源在开机或者其他瞬态情况下,需要二极管能够承受很大的冲击电流而不坏,当然这种冲击电流应该是不重复性,或者间隔时 间很长的。通常二极管的数据手册都有定义这个冲击电流,其测试条件往往是单个波形的冲击电流,比如单个正弦波,或者方波。其电流值往往可达几百。 什么是二极管的正向导通压降? 二极管在正向导通,流过电流的时候会产生压降。这个压降和正向电流以及温度有关。通常硅二极管,电流越大,压降越大。温度越高,压降越小。但是碳化硅二极管却是温度越高,压降越大。 什么是二极管的反向漏电流? 二极管在反向截止的时候,并不是完全理想的截止。在承受反压得时候,会有些微小的电流从阴极漏到阳极。这个电流通常很小,而且反压越高,漏电流越大,温度越高,漏电流越大。大的漏电流会带来较大的损耗,特别在高压应用场合。 什么是二极管的反向恢复时间和反向恢复电流? 这个是二极管的重要指标,所谓的快恢复,慢恢复二极管就是以此为标准。二极管 在从正偏转换到反偏的时候,会出现较大的反向恢复电流从阴极流向阳极,其反向电流先上升到峰值,然后下降到零。那么其上升下降的时间就是反向恢复时间,峰 值电流就是反向恢复电流。这个在高频率的应用中会带来很大损耗。而反向恢复时间和电流和二极管截止时,正向电流的下降速率正相关。解决这个问题,一就是用 恢复时间更快的二极管,二是采用ZCS方式关断二极管。 什么是软恢复二极管? 二极管在反向恢复的时候,反向电流下降的比较慢的,称为软恢复二极管。软恢复对减小EMI有一定的好处。 什么是二极管的结电容? 结电容是二极管的一个寄生参数,可以看作在二极管上并联的电容。 什么是二极管的寄生电感? 二极管寄生电感主要由引线引起,可以看作串联在二极管上的电感。 二极管正向导通时候瞬态过程是怎样? 对于二极管的瞬态过程,通常关心比较多的是反向恢复特性。但是其实二极管从反偏转为正向导通的过程也有值得注意的地 方。在二极管刚导通的时候,正向压降会先上升到一个最大值,然后才会下降到稳态值。而这个最大值,随di/dt的增大而增大。也就是说二极管带导通瞬间会 产生一个正向尖峰电压,而且电压要大于稳态电压。快恢复管的这个正向尖峰电压比较小,慢恢复管就会很严重。这个就引出了另外一个问题: 在RCD钳位电路中,二极管到底选慢管,还是快管? RCD电路常用于一些需要钳位的场合,比如flyback原边MOS的电压钳位,次级整流管的电压钳 位。有些技术文献说应该用慢恢复管,理由是慢恢复管由于其反向恢复时间比较长,这样钳位电容中的一部分能量会在二极管反向恢复过程中回馈给电路,这样整个 RCD电路的损耗可以降低。不过这个只适合小电流,低di/dt的场合。比如小功率flyback的原边钳位电路。但是不适合大电流,高di/dt的钳位 场合,比如大电流输出的电源的次级钳位电路。因为,慢恢复管在导通的时候会产生很高导通压降尖峰,导致虽然钳位电容上的电压很低,但是却没法钳住尖峰电 压。所以应该选择肖特基二极管之类。 二极管适合并联么? 理论上来说硅二极管,由于导通压降随温度上升而下降,所以是不适合并联的,但是现在很多二极管会把两个单管封装在一起,这样温升相对均匀,给并联带来好处。但是碳化硅是的压降是随温度上升而上升,理论上是适合并联的。以上就是肖特基和碳化硅二极管的技术解析,希望能给大家帮助?

    时间:2020-03-30 关键词: 二极管 碳化硅 肖特基二极管

  • MOS的使用方法

    MOS的使用方法

    现在很多地方都会用到MOS管,那么它的工作原理是什么,MOS 管由多数载流子参与导电,也称为单极型晶体管。它属于电压控制型半导体器件。具有输入电阻高(10^7~10^12Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 所有 MOS 集成电路(包括 P 沟道 MOS,N 沟道 MOS,互补 MOS—CMOS 集成电路)都有一层绝缘栅,以防止电压击穿。一般器件的绝缘栅氧化层的厚度大约是 25nm、50nm、80nm 三种。 在集成电路高阻抗栅前面还有电阻——二极管网络进行保护,虽然如此,器件内的保护网络还不足以免除对器件的静电损害(ESD),实验指出,在高电压放电时器件会失效,器件也可能为多次较低电压放电的累积而失效。 按损伤的严重程度静电损害有多种形式,最严重的也是最容易发生的是输入端或输出端的完全破坏以至于与电源端 VDDGND 短路或开路,器件完全丧失了原有的功能。稍次一等严重的损害是出现断续的失效或者是性能的退化,那就更难察觉。还有一些静电损害会使泄漏电流增加导致器件性能变坏。 MOS 管的定义 MOS 管做为电压驱动大电流型器件,在电路尤其是动力系统中大量应用,MOS 管有一些特性在实际应用中是我们应该特别注意的 MOS 管体二极管,又称寄生二极管,在单个 MOS 管器件中有,在集成电路光刻中没有,这个二极管在大电流驱动中和感性负载时可以起到反向保护和续流的作用,一般正向导通压降在 0.7~1V 左右。 因为这个二极管的存在,MOS 器件在电路中不能简单地看到一个开关的作用,比如充电电路中,充电完成,移除电源后,电池会反向向外部供电,这个通常是我们不愿意看到的结果。 一般解决的方法是在后面增加一个二极管来防止反向供电,这样虽然可以做到,但是二极管的特性决定必须有 0.6~1V 的正向压降,在大电流的情况下发热严重,同时造成能源的浪费,使整机能效低下。还有一个方法是再增加一个背靠背的 MOS 管,利用 MOS 管低导通电阻来达到节能的目的,这一特性另一个常见的应用为低压同步整流。 注意事项 MOS 管导通后的无方向性,MOS 在加压导通后,就类似于一根导线,只具有电阻特性,无导通压降,通常饱和导通电阻为几到几十毫欧,且无方向性,允许直流和交流电通过。 使用 MOS 管的注意事项 1、为了安全使用 MOS 管,在线路的设计中不能超过管的耗散功率,最大漏源电压、最大栅源电压和最大电流等参数的极限值。 2、各类型 MOS 管在使用时,都要严格按要求的偏置接入电路中,要遵守 MOS 管偏置的极性。如结型 MOS 管栅源漏之间是 PN 结,N 沟道管栅极不能加正偏压;P 沟道管栅极不能加负偏压,等等。 3、MOSMOS 管由于输入阻抗极高,所以在运输、贮藏中必须将引出脚短路,要用金属屏蔽包装,以防止外来感应电势将栅极击穿。尤其要注意,不能将 MOS 管放入塑料盒子内,保存时最好放在金属盒内,同时也要注意管的防潮。 4、为了防止 MOS 管栅极感应击穿,要求一切测试仪器、工作台、电烙铁、线路本身都必须有良好的接地;管脚在焊接时,先焊源极;在连入电路之前,管的全部引线端保持互相短接状态,焊接完后才把短接材料去掉;从元器件架上取下管时,应以适当的方式确保人体接地如采用接地环等。 当然,如果能采用先进的气热型电烙铁,焊接 MOS 管是比较方便的,并且确保安全;在未关断电源时,绝对不可以把管插人电路或从电路中拔出。以上安全措施在使用 MOS 管时必须注意。 5、在安装 MOS 管时,注意安装的位置要尽量避免靠近发热元件;为了防管件振动,有必要将管壳体紧固起来;管脚引线在弯曲时,应当大于根部尺寸 5 毫米处进行,以防止弯断管脚和引起漏气等。 6、使用 VMOS 管时必须加合适的散热器后。以 VNF306 为例,该管子加装 140×140×4(mm)的散热器后,最大功率才能达到 30W。 7、多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。为此,并联复合管管子一般不超过 4 个,而且在每管基极或栅极上串接防寄生振荡电阻。 8、结型 MOS 管的栅源电压不能接反,可以在开路状态下保存,而绝缘栅型 MOS 管在不使用时,由于它的输入电阻非常高,须将各电极短路,以免外电场作用而使管子损坏。 9、焊接时,电烙铁外壳必须装有外接地线,以防止由于电烙铁带电而损坏管子。对于少量焊接,也可以将电烙铁烧热后拔下插头或切断电源后焊接。特别在焊接绝缘栅 MOS 管时,要按源极 - 漏极 - 栅极的先后顺序焊接,并且要断电焊接。 10、用 25W 电烙铁焊接时应迅速,若用 45~75W 电烙铁焊接,应用镊子夹住管脚根部以帮助散热。结型 MOS 管可用表电阻档定性地检查管子的质量(检查各 PN 结的正反向电阻及漏源之间的电阻值),而绝缘栅场效管不能用万用表检查,必须用测试仪,而且要在接入测试仪后才能去掉各电极短路线。取下时,则应先短路再取下,关键在于避免栅极悬空。 在要求输入阻抗较高的场合使用时,必须采取防潮措施,以免由于温度影响使 MOS 管的输入电阻降低。如果用四引线的 MOS 管,其衬底引线应接地。陶瓷封装的芝麻管有光敏特性,应注意避光使用。 对于功率型 MOS 管,要有良好的散热条件。因为功率型 MOS 管在高负荷条件下运用,必须设计足够的散热器,确保壳体温度不超过额定值,使器件长期稳定可靠地工作。总之,确保 MOS 管安全使用,要注意的事项是多种多样,采取的安全措施也是各种各样,广大的专业技术人员,特别是广大的电子爱好者,都要根据自己的实际情况出发,采取切实可行的办法,安全有效地用好 MOS 管。以上就是MOS的相关解析,希望能带给大家帮助。

    时间:2020-03-28 关键词: 集成电路 二极管 mos

  • 二极管构成的自动控制电路解析

    二极管构成的自动控制电路解析

    很多人都知道二极管,那么它的作用是什么呢?关于二极管我们在之前讲解过二极管的工作原理以及分类命名等相关知识,而本文的主题是二极管构成的自动控制电路及解决方案,希望能通过本文帮助到有需要的工程师们。 二极管控制电路及故障处理 二极管导通之后,它的正向电阻大小随电流大小变化而有微小改变,正向电流愈大,正向电阻愈小;反之则大。利用二极管正向电流与正向电阻之间的特性,可以构成一些自动控制电路。如图所示是一种由二极管构成的自动控制电路,又称ALC电路(自动电平控制电路),它在磁性录音设备中(如卡座)的录音电路中经常应用。 1.电路分析准备知识说明 二极管的单向导电特性只是说明了正向电阻小、反向电阻大,没有说明二极管导通后还有哪些具体的特性。二极管正向导通之后,它的正向电阻大小还与流过二极管的正向电流大小相关。尽管二极管正向导通后的正向电阻比较小(相对反向电阻而言),但是如果增加正向电流,二极管导通后的正向电阻还会进一步下降,即正向电流愈大,正向电阻愈小,反之则大。 不熟悉电路功能对电路工作原理很不利,在了解电路功能的背景下能有的放矢地分析电路工作原理或电路中某元器件的作用。ALC电路在录音机、卡座的录音卡中,录音时要对录音信号的大小幅度进行控制,了解下列几点具体的控制要求有助于分析二极管VD1自动控制电路。 (1)在录音信号幅度较小时,不控制录音信号的幅度。 (2)当录音信号的幅度大到一定程度后,开始对录音信号幅度进行控制,即对信号幅度进行衰减,对录音信号幅度控制的电路就是ALC电路。 (3)ALC电路进入控制状态后,要求录音信号愈大,对信号的衰减量愈大。 通过上述说明可知,电路分析中要求自己有比较全面的知识面,这需要在不断的学习中日积月累。 2.电路工作原理分析思路说明 关于这一电路工作原理的分析思路主要说明下列几点: (1)如果没有VD1这一支路,从第一级录音放大器输出的录音信号全部加到第二级录音放大器中。但是,有了VD1这一支路之后,从第一级录音放大器输出的录音信号有可能会经过C1和导通的VD1流到地端,形成对录音信号的分流衰减。 (2)电路分析的第二个关键是VD1这一支路对第一级录音放大器输出信号的对地分流衰减的具体情况。显然,支路中的电容C1是一只容量较大的电容(C1电路符号中标出极性,说明C1是电解电容,而电解电容的容量较大),所以C1对录音信号呈通路,说明这一支路中VD1是对录音信号进行分流衰减的关键元器件。 (3)从分流支路电路分析中要明白一点:从第一级录音放大器输出的信号,如果从VD1支路分流得多,那么流入第二级录音放大器的录音信号就小,反之则大。 (4)VD1存在导通与截止两种情况,在VD1截止时对录音信号无分流作用,在导通时则对录音信号进行分流。 (5)在VD1正极上接有电阻R1,它给VD1一个控制电压,显然这个电压控制着VD1导通或截止。所以,R1送来的电压是分析VD1导通、截止的关键所在。 分析这个电路最大的困难是在VD1导通后,利用了二极管导通后其正向电阻与导通电流之间的关系特性进行电路分析,即二极管的正向电流愈大,其正向电阻愈小,流过VD1的电流愈大,其正极与负极之间的电阻愈小,反之则大。 3.控制电路的一般分析方法说明 对于控制电路的分析通常要分成多种情况,例如将控制信号分成大、中、小等几种情况。就这一电路而言,控制电压Ui对二极管VD1的控制要分成下列几种情况。 (1)电路中没有录音信号时,直流控制电压Ui为0,二极管VD1截止,VD1对电路工作无影响,第一级录音放大器输出的信号可以全部加到第二级录音放大器中。 (2)当电路中的录音信号较小时,直流控制电压Ui较小,没有大于二极管VD1的导通电压,所以不足以使二极管VD1导通,此时二极管VD1对第一级录音放大器输出的信号也没有分流作用。 (3)当电路中的录音信号比较大时,直流控制电压Ui较大,使二极管VD1导通,录音信号愈大,直流控制电压Ui愈大,VD1导通程度愈深,VD1的内阻愈小。 (4)VD1导通后,VD1的内阻下降,第一级录音放大器输出的录音信号中的一部分通过电容C1和导通的二极管VD1被分流到地端,VD1导通愈深,它的内阻愈小,对第一级录音放大器输出信号的对地分流量愈大,实现自动电平控制。 (5)二极管VD1的导通程度受直流控制电压Ui控制,而直流控制电压Ui随着电路中录音信号大小的变化而变化,所以二极管VD1的内阻变化实际上受录音信号大小控制。 4.故障检测方法和电路故障分析 对于这一电路中的二极管故障检测最好的方法是进行代替检查,因为二极管如果性能不好也会影响到电路的控制效果。当二极管VD1开路时,不存在控制作用,这时大信号录音时会出现声音一会儿大一会儿小的起伏状失真,在录音信号很小时录音能够正常。当二极管VD1击穿时,也不存在控制作用,这时录音声音很小,因为录音信号被击穿的二极管VD1分流到地了。以上就是二极管的相关作用描述,希望能给大家帮助。

    时间:2020-03-28 关键词: 电阻 二极管 自动控制电路

  • 接触型二极管解析

    接触型二极管解析

    二极管很常见,那么点接触二极管就不那么常见,由于构造简单,性价比高,点接触型二极管被大多数工程师所选购。点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。点接触型与面结型相比,较少使用于大电流和整流。对于小信号的检波、整流、调制、混频和限幅等一般用途而言,它是应用范围较广的类型。 点接触型二极管的特性 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门坎电压”,又称“死区电压”,锗管约为0.1V,硅管约为0.5V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿 点接触型二极管的分类 1、一般用点接触型二极管 这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。 2、高反向电阻点接触型二极管 正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。 3、高传导点接触型二极管 它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。 4、高反向耐压点接触型二极管 是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。以上就是点接触型二极管的一些参数以及使用讲解,需要根据不同的使用场景来选择。

    时间:2020-03-27 关键词: 二极管 高频电路 点接触型

  • 常见的二极管有哪些?

    常见的二极管有哪些?

    相信大家对二极管并不陌生,说到二极管,大家都清楚它具有单向导电性能, 即给二极管阳极和阴极加上正向电压时,二极管导通。二极管根据功能和作用有分为不同类别的二极管。下面我们一起看看这些二极管都听说过吗? 1、 检波二极管 检波二极管的主要作用是把高频信号中的低频信号检出。它们的结构为点接触型,所以其结电容较小,工作频率较高。一般都采用锗材料制成。就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。 2、整流二极管 就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,因此结电容较大,一般为3kHZ以下。最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。 3、限幅二极管 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。 4、调制二极管 通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。 5、混频二极管 使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。 6、放大二极管 用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。 7、开关二极管 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。 8、变容二极管 用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, ;使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。 9、频率倍增用二极管 对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显着地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。 10、稳压二极管 这种管子是利用二极管的反向击穿特性制成的,在电路中其两端的电压保持基本不变,起到稳定电压的作用。是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW、2CW56等;将两个互补二极管反向串接以减少温度系数则为2DW型。 稳压二极管的温度系数α:α表示温度每变化1℃稳压值的变化量。稳定电压小于4V的管子具有负温度系数(属于齐纳击穿),即温度升高时稳定电压值下降(温度使价电子上升较高能量);稳定电压大于7V的管子具有正温度系数(属于雪崩式击穿),即温度升高时稳定电压值上升(温度使原子振幅加大,阻碍载流子运动);而稳定电压在4~7V之间的管子,温度系数非常小,近似为零(齐纳击穿和雪崩击穿均有)。 11、PIN型二极管(PIN Diode) 这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是"本征"意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。 12、雪崩二极管(Avalanche Diode) 它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。 13、江崎二极管(Tunnel Diode) 它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷"。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。 14、快速关断(阶跃恢复)二极管(Step Recovary Diode) 它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成"自助电场"。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个"存贮时间"后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的"自助电场"缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。 15、肖特基二极管 (Schottky Barrier Diode) 它是具有肖特基特性的"金属半导体结"的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 可作为续流二极管,在开关电源的电感中和继电器等感性负载中起续流作用。 16、阻尼二极管 阻尼二极管多用在高频电压电路中,具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。常用的阻尼二极管有2CN1、2CN2、BSBS44等。 17、瞬变电压抑制二极管 TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。 18、双基极二极管(单结晶体管) 两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。 19、发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿、蓝单色光。随着技术的进步,近 来 研制成了白光高亮二极管,形成了LED照明这一新兴产业。 还用于VCD、DVD、计算器等显示器上。 20、硅功率开关二极管 硅功率开关二极管具有高速导通与截止的能力。它主要用于大功率开关或稳压电路、直流变换器、高速电机调速及在驱动电路中作高频整流及续流箝拉,具有恢复特性软、过载能力强的优点、广泛用于计算机、雷达电源、步进电机调速等方面。以上就是常见的二极管的种类,需要在选择时根据情况考虑。 1、 检波二极管 检波二极管的主要作用是把高频信号中的低频信号检出。它们的结构为点接触型,所以其结电容较小,工作频率较高。一般都采用锗材料制成。就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。 2、整流二极管 就原理而言,从输入交流中得到输出的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,因此结电容较大,一般为3kHZ以下。最高反向电压从25伏至3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG型。 3、限幅二极管 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。 4、调制二极管 通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。 5、混频二极管 使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。 6、放大二极管 用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。 7、开关二极管 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率高。 8、变容二极管 用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, ;使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。 9、频率倍增用二极管 对二极管的频率倍增作用而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急速地变成关闭的转移时间显着地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。 10、稳压二极管 这种管子是利用二极管的反向击穿特性制成的,在电路中其两端的电压保持基本不变,起到稳定电压的作用。是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状态,硅材料制作,动态电阻RZ很小,一般为2CW、2CW56等;将两个互补二极管反向串接以减少温度系数则为2DW型。 稳压二极管的温度系数α:α表示温度每变化1℃稳压值的变化量。稳定电压小于4V的管子具有负温度系数(属于齐纳击穿),即温度升高时稳定电压值下降(温度使价电子上升较高能量);稳定电压大于7V的管子具有正温度系数(属于雪崩式击穿),即温度升高时稳定电压值上升(温度使原子振幅加大,阻碍载流子运动);而稳定电压在4~7V之间的管子,温度系数非常小,近似为零(齐纳击穿和雪崩击穿均有)。 11、PIN型二极管(PIN Diode) 这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是"本征"意义的英文略语。当其工作频率超过100MHz时,由于少数载流子的存贮效应和"本征"层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏置或直流反向偏置时,"本征"区的阻抗很高;在直流正向偏置时,由于载流子注入"本征"区,而使"本征"区呈现出低阻抗状态。因此,可以把PIN二极管作为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。 12、雪崩二极管(Avalanche Diode) 它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。 13、江崎二极管(Tunnel Diode) 它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。其主要参数有峰谷电流比IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷"。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。 14、快速关断(阶跃恢复)二极管(Step Recovary Diode) 它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成"自助电场"。由于PN结在正向偏压下,以少数载流子导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个"存贮时间"后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的"自助电场"缩短了存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路中。 15、肖特基二极管 (Schottky Barrier Diode) 它是具有肖特基特性的"金属半导体结"的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 可作为续流二极管,在开关电源的电感中和继电器等感性负载中起续流作用。 16、阻尼二极管 阻尼二极管多用在高频电压电路中,具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。常用的阻尼二极管有2CN1、2CN2、BSBS44等。 17、瞬变电压抑制二极管 TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。 18、双基极二极管(单结晶体管) 两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。 19、发光二极管 用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿、蓝单色光。随着技术的进步,近 来 研制成了白光高亮二极管,形成了LED照明这一新兴产业。 还用于VCD、DVD、计算器等显示器上。 20、硅功率开关二极管 硅功率开关二极管具有高速导通与截止的能力。它主要用于大功率开关或稳压电路、直流变换器、高速电机调速及在驱动电路中作高频整流及续流箝拉,具有恢复特性软、过载能力强的优点、广泛用于计算机、雷达电源、步进电机调速等方面。以上就是常见的二极管的种类,需要在选择时根据情况考虑。

    时间:2020-03-27 关键词: 二极管 整流二极管 检波二极管

  • 学子专区—ADALM2000实验:将BJT连接为二极管

    学子专区—ADALM2000实验:将BJT连接为二极管

    目标: 本次实验的目的是研究将双极性结型晶体管(BJT)连接为二极管时的正向/反向电流与电压特性。 材料: ► ADALM2000主动学习模块 ► 无焊面包板 ► 一个1 kΩ电阻(或其他类似值) ► 一个小信号NPN晶体管(2N3904) 说明: NPN晶体管的发射极-基极结的电流与电压特性可以使用ADALM2000实验室硬件和以下连接来测量。使用面包板,将波形发生器W1连接到电阻R1的一端。将示波器输入2+也连接到这里。将Q1的基极和集电极连接到R1的另一端,如图所示。Q1的发射极接地。将示波器输入2-和示波器输入1+连接到Q1的基极-集电极节点。示波器输入1-也可以选择接地。 图1.NPN二极管连接图。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为6 V,偏移为0 V。示波器的差分通道2(2+、2-)用于测量电阻(和晶体管)中的电流。连接示波器通道1 (1+)用于测量晶体管两端的电压。流过晶体管的电流是1+和1-之间的电压差除以电阻值(1 kΩ)的结果。 图2.NPN二极管面包板电路。 步骤: 将捕获的数据加载到电子表格中,计算电流。绘制电流与晶体管两端电压(VBE)的曲线。没有反向流动电流。在正向导通区域,电压-电流呈对数关系。如果在对数坐标系中绘制电流曲线,结果应为直线。 图3.NPN二极管XY曲线。 图4.NPN二极管波形。 反向击穿特性 目标: 本次实验的目标是研究BJT连接为二极管时发射极-基极结的反向击穿电压特性。 材料: ► 一个100 Ω电阻 ► 一个小信号PNP晶体管(2N3906) 说明: 使用面包板,将波形发生器输出连接到100 Ω串联电阻R1的一端以及Q1的基极和集电极,如图2所示。发射极连接到-5 V固定电源。将示波器通道1 (1+) 连接到基极-集电极节点,1-连接到发射极节点。示波器通道2用于测量R1两端的电压,从而测得通过Q1的电流。 之所以选择PNP 2N3906而不是NPN 2N3904,是因为PNP发射极-基极击穿电压小于ADALM2000可产生的+10 V最大值,而NPN的击穿电压可能会高于10V。 图5.PNP发射极-基极反向击穿配置。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为10 V,偏移为0 V。示波器通道1 (1+)用于测量电阻两端的电压。其设置应配置为将通道2跨接到电阻R1的两端(2+、2-)。两个通道均应设置为每格1 V。流过晶体管的电流是2+和2-之间的电压差除以电阻值(100 Ω)的结果。 图6.PNP发射极面包板电路。 步骤: 实验室硬件电源将可用的最大电压限制为小于10V。许多晶体管的发射极-基极反向击穿电压都大于此电压。在图6所示的配置中,可以测量0 V至10 V(W1峰峰值摆幅)之间的电压。 图7.PNP发射极波形。 捕获示波器波形并将其导出到电子表格中。对于本示例中使用的PNP晶体管2N3906,发射极-基极结击穿电压约为8.5V。 降低二极管的有效正向电压 目标: 本次实验的目标是研究一种正向电压特性小于BJT连接作为二极管时的电路配置。 材料: ► 一个1 kΩ电阻 ► 一个150 kΩ电阻(或100 kΩ与47 kΩ电阻串联) ► 一个小信号NPN晶体管(2N3904) ► 一个小信号PNP晶体管(2N3906) 说明: 连接面包板,将波形发生器W1连接到串联电阻R1的一端以及NPN Q1的集电极和PNP Q2的基极,如图8所示。Q1的发射极接地。Q2的集电极连接到Vn (5 V)。电阻R2的一端连接到Vp (5 V)。R2的另一端连接到Q1的基极和Q2的发射极。示波器通道2 (2+)的单端输入连接到Q1的集电极。 图8.降低二极管的有效正向压降所需的配置图。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为8 V,偏移为2 V。示波器通道2 (2+)用于测量电阻两端的电压。流过晶体管的电流是示波器输入1+和1-之间的电压差除以电阻值(1kΩ)的结果。 步骤: 现在,二极管的导通电压约为100 mV,而第一个示例中的简单二极管连接方案为650 mV。绘制W1扫频时Q1的VBE曲线。 图9.降低二极管有效正向压降的面包板电路。 图10.降低二极管有效正向压降的波形。 VBE乘法器电路 目标: 我们已探讨了一种能有效降低VBE的方法,本次实验的目的则是增大VBE,并展示与单个BJT连接为二极管的方案相比更大的正向电压特性。 材料: ► 两个2.2 kΩ电阻 ► 一个1 kΩ电阻 ► 一个5 kΩ可变电阻、电位计 ► 一个小信号NPN晶体管(2N3904) 说明: 连接面包板,将波形发生器W1连接到电阻R1的一端,如图11所示。Q1的发射极接地。电阻R2、R3和R4构成分压器,电位计R3的滑动端连接到Q1的基极。Q1的集电极连接到R1的另一端和R2处的分压器顶端。示波器通道2 (2+)连接到Q1的集电极。 图11.VBE乘法器配置。 硬件设置: 波形发生器配置为100 Hz三角波,峰峰值幅度为4 V,偏移为2 V。示波器通道单端输入2+用于测量晶体管两端的电压。其设置应配置为通道1+连接发生器W1以显示输出,通道2+连接Q1的集电极。流过晶体管的电流是示波器输入1+和示波器输入2+测得的W1两端的电压差除以电阻值(1 kΩ)的结果。 步骤: 开始时,将电位计R3设置为其范围的中间值,Q2集电极处的电压应大约为VBE的2倍。将R3设置为最小值时,集电极处的电压应为VBE的9/2(或4.5)倍。将R3设置为最大值时,集电极处的电压应为VBE的9/7倍。 图12.VBE乘法器面包板电路。 图13.VBE乘法器面包板波形。 问题: ► 此VBE乘法器与简单的二极管连接的晶体管相比,其电压与电流之间的特性如何? 您可以在学子专区博客上找到问题答案。

    时间:2020-03-25 关键词: 二极管 adalm2000 学子专区

  • 二极管的整流问题解决方法

    二极管的整流问题解决方法

    电路的发展不断使用到二极管,那么大家了解二极管的整流吗?近几年,随着电子技术不断飞速的发展,促使电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,同时也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 问题举例 但设采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)PO,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 同步整流技术引言 在电源转换领域,输出直流电压不高的隔离式转换器都使用 MOSFET作为整流器件。由於这些器件上的导通损耗较小,能够提高效率因而应用越来越广泛;为了这种电路能够正常运作,必须对同步整流器(SR)加以控制,这是基本的要求。同步整流器是用来取代二极管的,所以必须选择适当的方法,按照二极管的工作规律来驱动同步整流器。驱动信号必须用PWM控制信号来形成,而PWM控制信号决定著开关型电路的不同状态。 同步整流器件的特点 同步整流技术就是采用低导通电阻的功率MOS管代替开关变换器快恢复二极管,起整流管的作用,从而达到降低整流损耗,提高效率的目的。通常,变换器的主开关管也采用功率MOS管,但是二者还是有一些差异的。 功率MOS管实际上是一个双向导电器件,由于工作原理的不同,而导致了其他一些方面的差异。例如:作为主开关的MOS管通常都是硬开关,因此要求开关速度快,以减小开关损耗;而作为整流/续流用的同步MOS管,则要求MOS管具有低导通电阻、体二极管反向恢复电荷小、栅极电阻小和开关特性好等特点,因此,虽然两者都是MOS管,但是它们的工作特性和损耗机理并不一样,对它们的性能参数要求也不一样,认识这一点,对于如何正确选用MOS管是有益的。 同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 工作方式的比较 传统的同步整流方案基本上都是PWM型同步整流,主开关与同步整流开关的驱动信号之间必须设置一定的死区时间,以避免交叉导通,因此,同步整流MOS管就存在体二极管导通和反向恢复等问题,从而降低同步整流电路的性能。 增加驱动能力的外驱电路 由NMOSFET构成的反激同步整流自驱动电路结构由PMOSFET构成的反激同步整流自驱动电路结构反激同步整流驱动电路选择 同步整流管的驱动方式有三种:第一种是外加驱动控制电路,优点是其驱动波形的质量高,调试方便。缺点是:电路复杂,成本高,在追求小型化和低成本的今天只有研究价值,基本没有应用价值。上图是简单的外驱电路,R1D1用于调整死区。该电路的驱动能力较小,在同步整流管的Ciss较小时,可以使用。图6是在图5的基础上增加副边推挽驱动电路的结构,可以驱动Ciss较大的MOSFET。在输出电压低于5V时,需要增加驱动电路供电电源。 第二种是自驱动同步整流。优点是直接由变压器副边绕组驱动或在主变压器上加独立驱动绕组,电路简单、成本低和自适应驱动是主要优势,在商业化产品中广泛使用。缺点是电路调试的柔性较少,在宽输入低压范围时,有些波形需要附加限幅整形电路才能满足驱动要求。由于Vgs的正向驱动都正比于输出电压,调节驱动绕组的匝数可以确定比例系数,且输出电压都是很稳定的,所以驱动电压也很稳定。比较麻烦的是负向电压可能会超标,需要在设计变压器变比时考虑驱动负压幅度。 第三种是半自驱。其驱动波形的上升或下降沿,一个是由主变压器提供的信号,另一个是独立的外驱动电路提供的信号。上图是针对自驱的负压问题,用单独的放电回路,提供同步整流管的关断信号,避开了自驱动负压放电的电压超标问题。以上就是二极管整流的一些思路。

    时间:2020-03-19 关键词: 二极管 整流 高频变压器

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包