当前位置:首页 > 信号链
  • 在汽车电子领域做到细分应用覆盖和领先,纳芯微携多款产品亮相上海慕展

    在汽车电子领域做到细分应用覆盖和领先,纳芯微携多款产品亮相上海慕展

    纳芯微于2013年成立至今,已经成为了国产芯在信号链芯片领域的领先厂商。随着市场机遇的演化,纳芯微的业务重点也从成立之初的移动设备应用转移到了当前火热的汽车电子市场中,并且已经在车载传感器领域取得了一定的市场份额。当前随着纳芯微电子第二代隔离技术的突破,在汽车电子的隔离器应用中,也将赢得更多市场机会。在近日召开的上海慕尼黑电子展上,纳芯微携诸多汽车电子产品亮相,纳芯微电子CEO王升杨也和记者进行了精彩的分享。 汽车行业“冰火两重天”,为国产芯片造就机会 据王总分享,当前汽车行业面临着冰火两重天的局面。“火是因为现在全民在造车,很多大家耳熟能详大、但之前完全不在汽车领域的大公司,也纷纷宣布要开始造车。冰在于从从去年下半年开始整个汽车产业链供给的情况,尤其芯片供给情况非常艰难,这导致了很多汽车车厂最近都面临着极大地挑战。”正如王总所说的,随着诸多新势力造车势力的入局,尤其是电动汽车行业正面临着诸多新的增长机会。为了实现更好的驾乘体验,新的电动汽车上自动驾驶、驾驶辅助、智能座舱等模组越来越多,因此所需的芯片产品的类型和数量也越来越多,这本身是一个很大的驱动力。另一方面为了获得更好的产业链把控力,新势力也更倾向于向国内的IC公司进行芯片采购。而缺货,是全球车企当下面临的一个亟待解决的问题。这也给国内IC厂商造就了很好的机会去开拓更多市场份额,进入之前没有机会进入到的客户供应链和领域中。 纳芯微CEO王升杨 虽然市场有点过热,但王总表示这是一个需要经历的发展阶段。”这两年不光汽车行业拥挤,芯片设计行业也很拥挤,但是我觉得这对整体产业发展来说未必是坏事情。像当年的互联网行业发展也一样,任何一个行业的发展会经历这样一个曲线,先是过热,然后大量资本、人才会涌入到这个当中,这个过程当中一定会产生非常激烈的竞争,最后可能会产生泡沫,也可能会有很多的企业被淘汰掉。但是这个过程当中会完成对行业的洗牌,最终会形成未来这个行业的头部企业,顺便这个过程当中也完成了对整个行业的重构,汽车行业其实在经历同样的事情,包括国内的芯片设计行业也在经历同样的事情。“所以对于一些一直在踏踏实实做技术沉淀的IC公司而言,当下是一个非常好的切入时间点。 根据王总的分享,目前纳芯微营收的一半以上来自隔离与接口产品;另外一部分来自传感器产品,而在传感器产品的出货中,大约一半来自汽车和工业,另外一半来自纳芯微最早期的消费类传感器应用。接下来,纳芯微主要的增长点将放在汽车电子领域的信号链产品、隔离产品和传感器产品,细分到诸多相关的汽车电子应用中。 围绕汽车应用场景做深入布局 纳芯微最先进入汽车领域是通过压力传感器产品,包括刹车压力传感器、机油压力传感器、空调压力传感器等,目前国内东风汽车、上汽等主力车厂都已经占据了一定的量产份额。目前纳芯微在汽车传感器上的优势在于产品覆盖范围很宽,例如压力传感器从1%大气压到10MPa大气压的量程的应用都有覆盖。另外在磁力传感器、轮速传感器、电流传感器和车载温湿度传感器上也都有诸多不同型号的产品覆盖。 近几年来,纳芯微围绕着隔离新产品也已经有一些布局,当前纳芯微的隔离技术已经演化到了基于Adaptive OOK调制技术的的第二代增强隔离技术,在包含隔离耐压、CMTI、传播延时等所有的隔离性能指标上能全面达到行业内的领先水平,并且已经构建了完整的隔离和接口产品阵营,目前市场上 比较热门的几款A0级新能源车上也都使用了纳芯微的隔离产品。另外在纳芯微大的泛能源应用布局中,电动汽车相关应用也有诸多产品。据王总分享,纳芯微将电源相关应用、电力和光伏相关应用和新能源车的应用,都拉到一个叫做泛能源的大应用领域里,整个能源市场未来有非常有增长潜力。 ### 目前国产IC公司都面临着很好的机会,随着国产替代、新基建、碳达峰等推动力的影响,整个市场供不应求。纳芯微已经在信号链领域沉淀了多年的技术,当前借着汽车电子和储能市场的增长,也将继续发展获得更多市场份额。

    时间:2021-04-20 关键词: 汽车电子 信号链 隔离 纳芯微

  • 圣邦股份荣获“第14届中国上市公司价值评选”及“第22届上市公司金牛奖”五大奖项

    “第14届(2020)中国上市公司价值论坛暨深圳特区40周年价值盛典”和“2020上市公司高质量发展论坛暨第22届上市公司金牛奖颁奖典礼”日前分别在深圳和海口举行。圣邦股份在两大资本市场经典盛事中共荣获五项大奖。 中国上市公司价值评选 “第14届中国上市公司价值评选”由证券时报社主办,圣邦股份荣膺三大奖项:公司获评“创业板上市公司价值50强”、“创业板十佳管理团队”;副总经理张勤女士获评“创业板上市公司优秀董秘”。 “中国上市公司价值评选”践行价值投资与监管理念,以上市公司基本面为主,以合规为本,以财务数据为基,采用定量与定性的方法,体现上市公司在资本市场中的价值。 “中国上市公司价值评选”由人民日报金融传媒集团指导,证券时报社主办,十几年来一直受到证监会会管单位支持与指导。来自国内二十余家知名券商和基金公司的研究专家担当专业评委,最终合规复查产生获奖榜单。活动理念契合监管部门倡导的价值投资思想,是国内较早针对中国资本市场上市公司、极具品牌影响力的价值发现活动。 上市公司金牛奖 “第22届上市公司金牛奖”由中国证券报举办,圣邦股份荣获两项殊荣:“金牛最具投资价值奖”和“金牛投资者关系管理奖”。 本次评选体系采用定性研究和定量分析相结合、比较研究与综合分析相结合的方法,选取了盈利能力、偿债能力、资产管理能力、成长能力、创新能力五大方面的17个关键指标,力求全方位对A股上市公司进行综合评价。 “上市公司金牛奖”每年举办一次,旨在建立和完善国内上市公司的科学评价体系和交流平台,表彰在上一年度业绩优秀、治理卓越、具有崇高使命和社会责任感的上市公司和高管。金牛奖系列评选汇聚多家专业评价机构的智慧,以定量指标为依据,坚持公开、公正、公平原则,已成为中国资本市场最具公信力和影响力的权威奖项之一,享有中国上市公司“奥斯卡奖”的美誉。 不忘初心 “第14届中国上市公司价值评选”及“第22届上市公司金牛奖”为圣邦股份颁发奖项,是对圣邦股份的成长和证券相关工作的认可。在未来,圣邦股份会一如既往地秉持诚信守则、锐意进取原则,保持稳健成长的同时承担更多社会责任,回馈社会各界的关注与信任。

    时间:2021-04-20 关键词: 电源管理 信号链

  • 轻松构建交流和直流数据采集信号链

    轻松构建交流和直流数据采集信号链

    简介 模数转换器(ADC)中的采样会产生混叠和电容反冲问题,为此设计人员使用滤波器和驱动放大器来解决,但这又带来了一系列相关挑战。尤其是在中等带宽应用中,实现精密直流和交流性能面临挑战,设计人员最终不得不降低系统目标。 本文介绍连续时间Σ-Δ ADC,通过简化信号链来有效解决采样问题。采用这种方法无需使用抗混叠滤波器和缓冲器,并可解决与额外组件相关的信号链失调误差和漂移问题。进而可缩小解决方案尺寸,简化设计,并改善系统的相位匹配和整体延迟。 本文还将连续时间转换器与离散时间转换器进行了比较,并着重介绍使用连续时间Σ-Δ ADC的系统优势和存在的限制。 采样基本原理 数据数字化包含采样和量化两个基本过程,如图1所示。采样是第一步,其中使用采样频率fS将连续时间可变模拟信号x(t)转换为离散时间信号x(n)。最终得到以 1/TS (fS = 1/TS)间隔的信号。 图1.数据采样 第二步是量化,将这些离散时间样本值估算为一个有限可能值,并用数字代码表示,如图1所示。这种量化为一组有限值的操作会导致数字化误差,称为量化噪声。 采样过程也会导致混叠,可以看到有输入信号折返以及采样保持时钟频率周围出现谐波。奈奎斯特准则要求采样频率必须至少是最高信号频率的两倍。如果采样频率小于最大模拟信号频率的两倍,将会出现一种称为"混叠"的现象。 为了理解混叠在时域和频域中的含义,首先来看图2所示的单信号音正弦波采样信号的时域表示。在本例中,采样频率 fS不是 fa的至少2倍,只是稍微高于模拟输入频率 fa,因此不符合奈奎斯特准则。注意,实际样本图案会产生较低频率 fS – fa的混叠正弦波。 图2.混叠:时域表示 图3.混叠:频域表示 这种情况的相应频域表示如图3所示。 奈奎斯特带宽定义为从DC到 fS/2的频谱。该频谱可细分为无数个奈奎斯特区,每个区的宽度为 0.5fS。在实际应用中,可以将理想采样器用ADC后接FFT处理器来代替。FFT处理器仅提供DC到 fS/2范围内的输出;即第一奈奎斯特区出现的信号或混叠。 如果采用理想的脉冲采样器,在 fS 频率下对 fa 频率的单频正弦波进行采样(见图1)。另外假定 fS > 2fa。采样器的频域输出显示,每个 fS倍数频率附近均会出现原始信号的混叠或镜像;即 |± KfS ± fa| 频率处,K = 1,2,3,4等。 接下来,我们考虑第一奈奎斯特区之外的信号(图3)。信号频率仅略小于采样频率,就是图2中时域表示的情形。注意,即使信号位于第一奈奎斯特区之外,其镜像(或混叠) fS – fa仍位于该区内。回到图3。很明显,如果任何镜像频率 fa处出现干扰信号,那么也将会出现在 fa,因而会在第一奈奎斯特区内产生杂散频率成分。 解决挑战,实现精密性能 对于高性能应用,系统设计人员需要解决采样过程导致的量化噪声、混叠和开关电容输入采样问题。两种类型的精密ADC都采用基于开关电容的采样技术构建,这两种ADC分别是行业中常见的逐次逼近寄存器(SAR)和Σ-Δ ADC。 量化噪声 在理想的奈奎斯特ADC中,ADC的LSB大小将决定进行模数转换时带到输入中的量化噪声。这些量化噪声都分布在 fS/2带宽范围内。为了解决量化噪声问题,首先需要采用过采样技术,即以大幅高于奈奎斯特频率的速率对输入信号进行采样,以提高信噪比(SNR)和分辨率(ENOB)。过采样期间,选择使用的采样频率为奈奎斯特频率的N倍 (2 × fIN),因此必须让相同的量化噪声分布在N倍奈奎斯特频率范围内。这也会放宽对抗混叠滤波器的要求。过采样率(OSR)定义为 fS/2fIN,其中 fIN 是目标信号带宽。一般来说,对ADC进行4倍过采样可额外提供1位分辨率,或增加6 dB的动态范围。提升过采样率可降低整体噪声并增加动态范围(DR),因为过采样为ΔDR = 10log10 OSR,单位dB。 过采样可以与集成数字滤波器和抽取功能一起使用和实现。Δ-Σ型ADC基本过采样调制器对量化噪声进行整形,使其大部分出现在目标带宽以外,从而增加低频下的整体动态范围,如图4所示。然后,数字低通滤波器(LPF)滤除目标带宽以外的量化噪声,抽取器降低输出数据速率,使其回落至奈奎斯特速率。 图4.过采样示例 噪声整形是另一种用于降低量化噪声的技术。在Σ-Δ ADC中,在环路滤波器之后的环路内使用低分辨率(一位至五位)量化器。DAC用作反馈,用于提取输入中的量化信号,如图5所示。 图5.噪声整形 积分器将累加量化误差,将量化噪声整形至更高频率,然后使用数字滤波器进行滤波。图6所示为典型的Σ-Δ ADC输出x[n]的功率谱密度(PSD)。噪声整形斜率取决于环路滤波器的阶数H(z)(见图11),每十倍频程为(20 × n) dB,其中n表示环路滤波器的阶数。Σ-Δ ADC通过结合使用噪声整形和过采样,可实现带内高分辨率。带内带宽等于 fODR/2 (ODR表示输出数据速率)。通过提高环路滤波器的阶数或提高过采样率,可以获得更高的分辨率。 图6.过采样和噪声整形图 混叠 为了解决高性能应用中的混叠,可使用更高阶的抗混叠滤波器来避免任何数量的混叠。抗混叠滤波器是一款低通滤波器,其带宽会限制输入信号,并确保信号中不含可以折返的目标带宽以外的频率分量。滤波器性能将取决于带外信号与fS/2的接近程度和所需的衰减量。 对于SAR ADC,输入信号带宽和采样频率之间的差距并不大,所以我们需要使用更高阶的滤波器,这要求采用更复杂、更高阶的滤波器设计,且功率更高,失真更大。例如,如果采样速度为200 kSPS的SAR的输入带宽为100 kHz,则抗混叠滤波器需要抑制>100 kHz的输入信号,以确保不会产生混叠。这就需要使用极高阶的滤波器。图7显示了陡峭的需求曲线。 图7.混叠要求 如果选择使用400 kSPS采样速度来降低滤波器的阶数,则需要抑制>300 kHz的输入频率。提高采样速度会增加功率,如果实现双倍速度,需要的功率也会翻倍。由于采样频率远高于输入带宽,因此以功率为代价进一步提高过采样会进一步放宽抗混叠滤波器的要求。 在Σ-Δ ADC中,以更高的OSR对输入过采样,由于采样频率远高于输入带宽,因而放宽了抗混叠滤波器的要求,如图8所示。 图8.∑-Δ 架构中的抗混叠滤波器要求 图9显示了SAR和离散时间Σ-Δ(DTSD)架构中AAF的复杂程度。如果我们要使用100 kHz –3 dB输入带宽在采样频率fS下实现102 dB衰减,则DTSD ADC将需要使用二阶抗混叠滤波器;而采用SAR ADC时在 fS 下获得相同衰减,则需要使用五阶滤波器。 对于连续时间Σ-Δ(CTSD) ADC,它本身具有衰减功能,所以我们无需使用任何抗混叠滤波器。 图9.各种架构的AAF滤波器要求 这些滤波器对系统设计人员来说都是难题,他们必须优化这些滤波器,以便在目标频带内提供衰减,并且尽可能提供更高的抑制性能。它们还会增加许多其他误差,例如失调、增益、相位误差和系统噪声,进而降低其性能。 而且,高性能ADC本身是差分式,所以我们需要使用双倍数量的无源组件。要在多通道应用中实现更好的相位匹配,信号链中的所有组件也必须匹配。因此,需要使用公差更严格的组件。 开关电容输入 开关电容输入采样取决于电容上采样输入的建立时间,因此在开关采样开关时,需要充电/放电瞬态电流。这称为输入反冲,要求使用支持这些瞬变电流的输入驱动放大器。此外,要求在采样时间结束时建立输入,而且采样输入的精度决定ADC的性能,意味着驱动放大器需要在反冲事件后快速稳定建立。因此需要使用支持快速建立并能吸收开关电容操作反冲的高带宽驱动器。在开关电容输入中,每当采样开启,驱动器必须立即为保持电容提供电源。只有当驱动器具备足够的带宽能力时,才能及时提供这种电流激增。由于开关寄生,采样时驱动器上会出现反冲。如果反冲在下一次采样前未能稳定下来,会导致采样误差,从而影响ADC输入。 图10.采样反冲 图10显示了DTSD ADC上的反冲。例如,如果采样频率为24 Mhz,那么数据信号需要在41 ns内建立。因为基准也是一个开关电容输入,所以基准输入引脚上也需要一个高带宽缓冲器。这些输入信号和基准电压缓冲器也会增加噪声,使信号链的整体性能下降。此外,输入信号驱动器的失真分量(在S&H频率附近)会进一步提高抗混叠要求。对于开关电容输入,采样速度的变化会导致输入电流变化。这可能导致重新调谐系统,以减少驱动ADC时驱动器或前一级产生的增益误差。 连续时间Σ-Δ ADC CTSD ADC是另一种Σ-Δ ADC架构,利用过采样和噪声整形等原理,但提供另一种实施采样的方法,具有显著的系统优势。 图11将DTSD架构和CTSD架构进行了比较。可以看到,DTSD架构在环路之前对输入采样。环路滤波器H(z)在时间上是离散的,并使用开关电容积分器实现。反馈DAC也是基于开关电容。由于进行输入采样会导致fS中产生混叠问题,所以对输入采样之前需要在输入端使用抗混叠滤波器。 图11.离散时间和连续时间调制器框图 CTSD未在输入端配置采样器,而是在环路内的量化器上采样。环路滤波器使用连续时间积分器实现了时间连续性,反馈DAC也是如此。与量化噪声受到整形一样,因采样导致的混叠也会被整形。由此得出了几乎无采样混叠的ADC,使其自成其类。 CTSD的采样频率是固定的,这与DTSD不同,后者的调制器采样频率可以轻松扩展。此外,CTSD ADC对抖动的容忍程度也低于开关电容ADC。现成的晶体或CMOS振荡器为ADC提供本地低抖动时钟,有助于避免在隔离状态下传输低抖动时钟,并降低EMC。 CTSD具有两大优势,它本身具有混叠抑制能力,并且为信号和基准提供阻性输入。 固有的抗混叠能力 把量化器移到环路内会产生固有的混叠抑制。如图12所示,输入信号在采样前通过环路滤波器,在量化器上产生的折返(混叠)误差也会经此滤波器去除。信号和混叠误差与Σ-Δ环路具有相同的噪声传递函数,并且在Σ-Δ架构中实施与量化噪声相似的噪声整形。因此,CTSD环路的频率响应自然会抑制约为采样频率整数倍的输入信号,充当抗混叠滤波器的作用。 图12.CTSD调制器的频率响应 阻性输入 与采样保持配置相比,在信号和基准输入中采用阻性输入会更易于驱动。提供恒定阻性输入时,不会产生反冲,可以完全移除驱动器。输入不会产生失真,如图13所示。而且因为输入阻抗恒定不变,也无需因增益误差重新调谐系统。 图13.CTSD的输入建立 即使ADC提供单极性电源,模拟输入也可能是双极性的。因此无需在双极前端和ADC之间实施电平转换。ADC的直流性能可能与输入电阻现在具有输入共模相关电流和输入电流时的情况不同。 基准负载也具有阻性,可以减少开关反冲,因此无需使用单独的基准电压缓冲器。低通滤波器的电阻可以在片上,以便随片上电阻负载一起跟踪(因为它们的材料可能相同),以减少增益误差温度偏移。 CTSD架构并非新生事物,但工业和仪器仪表市场的大趋势要求在更高带宽下具有直流和交流精度性能。此外,客户更喜欢适用于大部分解决方案的单一平台设计,以帮助他们缩短上市时间。 CTSD架构相对于其它类型ADC具有多方面优势,成为高性能音频和蜂窝式手机射频前端等众多应用的首选。这些优势包括更容易集成和功耗更低,但更重要的是,使用CTSD能够解决多个重要的系统问题。由于存在许多技术缺陷,CTSD的使用以前局限于音频/带宽和较低的动态范围。因此,高精度、高性能/中等带宽应用的主流解决方案一直是高性能奈奎斯特速率转换器,例如逐次逼近型ADC和过采样DTSD转换器。 然而,ADI公司最近取得的技术突破能克服之前的许多限制。AD7134是首款基于CTSD的高精度直流至400 kHz带宽ADC,可以实现更高的性能规格,同时提供直流精度,进而能够解决高性能仪器仪表应用中的多个关键的系统级问题。AD7134也集成了一个异步采样速率转换器(ASRC),能够通过CTSD的固定采样速度,以不同的数据数率提供数据。输出数据速率可以不受调制器采样频率影响,且可以确保成功使用CTSD ADC实现不同粒度的吞吐量。还可以在粒度级别灵活改变输出数据速率,从而支持用户使用相干采样。 AD7134的信号链优势 无混叠 固有的混叠抑制消除了对抗混叠滤波器的需求,由此减少了组件数量,且使解决方案尺寸更小。更重要的是,与抗混叠滤波器相关的性能问题都不复存在,例如下降、失调、增益误差、相位误差,以及系统中的噪声等。 低延迟信号链 抗混叠滤波器会根据抑制需求显著增加信号链的整体延迟。移除滤波器可以完全消除这种延迟,并在嘈杂的数控环路应用中实施精密转换。 出色的相位匹配 无需在系统级配备抗混叠滤波器,使多通道系统的相位匹配性能得到了大幅提升。非常适合要求提供通道间低失配的应用,例如振动监测、功率测量、数据采集模块和声呐等。 可靠抵御干扰 因为本身具有滤波功能,所以CTSD ADC不受任何系统级干扰,以及IC内部干扰影响。对于DTSD ADC和SAR ADC,则必须注意减少ADC采样时的干扰。此外,因为本身具有滤波功能,所以电源线路也不会受干扰。 阻性输入 因为具备恒定的阻性模拟输入和基准输入,所以完全无需再使用专用的驱动器。此外,所有与性能相关的问题,例如失调、增益、相位误差和系统噪声误差等都不复存在。 易于设计 因为设计元件的数量大幅减少,所以实现精密性能的难度也大大降低。从而可缩短设计时间,加快产品上市,简化BOM管理,并提高可靠性。 尺寸 无需使用抗混叠滤波器、驱动器和基准缓冲器,使系统电路板的尺寸大幅减小。可以使用仪器仪表放大器来直接驱动ADC。对于AD7134,因为它只是一个差分输入ADC,所以可以使用差分仪表放大器(例如 LTC6373 )作为驱动器。图14中比较了离散时间信号链和连续时间信号链。实验结果显示,与等效离散时间信号链相比,连续时间信号链可以节省70%的面积,因而非常适合高密度多通道应用。 图14.离散时间(左)信号链和连续时间(右)信号链比较 图15.离散时间信号链和连续时间信号链尺寸比较 总之,AD7134可以轻松实现设计导入,大幅缩小系统尺寸,简化信号链设计,提高系统的可靠性,并缩短整体上市时间,且不会降低精密仪表应用的性能参数要求。

    时间:2021-02-01 关键词: 数据采集 ADI 信号链

  • 立足整个信号链需求 意法半导体音频解决方案

      中国北京,2013年3月7日 – 高集成电源管理、音频与短距离无线技术提供商Dialog 半导体有限公司(Dialog Semiconductor,法兰克福证券交易所代码: DLG)今天宣布, 进达电子制品有限公司(Avantec Manufacturing Limited)已采用其超低功耗绿色VoIP芯片组,将之应用于亚洲度假酒店和酒店式公寓市场。进达电子在其酒店用 VoIP PH656 和 Trimline VoIP PH658 有线话机中使用了Dialog的SC14461处理器和Rhea™软件。   Dialog 的技术可将 VoIP 电话的功耗减半,与市场同类解决方案相比,每台设备最多可节省 2 瓦。其多核心架构配有三颗时钟频率较低、根据实际使用需求而被激活的处理器。一颗 16 位 CompactRISC™ 处理器用于管理 VoIP 软件、网络堆栈和用户界面,两颗可编程数字信号处理器(DSP)用于处理实时音频信号。此外,该芯片组还包含一个 D 类功放,用于支持免提话机扬声器。   进达电子制品有限公司产品经理李亦轩表示:“Dialog 的绿色 VoIP 处理器拥有业内最低的功耗和卓越的音质。我们相信,这些特性将使我们的亚洲酒店业客户受益匪浅。Dialog 操作简单的 Rhea 软件、工具和全面的支持服务,能让我们更快地推出一系列新款VoIP 电话。”   通过采用高清(HD)宽带语音标准 G.722,Dialog 的 DSP 能够压缩音频信号,同时将它们的频率范围扩展至16kHz,从而达到提高音质、减少带宽使用量的目的。结合高级声学回声消除软件算法,它们将能提供十分清晰的音质。   Dialog 半导体有限公司连接、汽车与工业业务集团副总裁 Sean McGrath 表示:“与市场上其它同类解决方案相比,Dialog 绿色 VoIP 技术的能效极高,让我们的客户能够通过一个网络同时处理语音和数据业务,从而节省金钱,最大程度降低运营成本,并确保卓越的呼叫音质。我们相信,它将给进达的亚洲客户带来巨大效益。”由于标准的酒店 PBX(用户交换机)能够提供的功能有限,且购买和维护成本昂贵,所以这一市场具有相当大的增长潜力。   关于于Dialog 半导体有限公司(Dialog Semiconductor)   Dialog 半导体有限公司致力于针对个人便携式应用、低功耗短程无线应用以及照明、显示和汽车应用等领域,制造与优化高度集成的混合信号集成电路(IC)。公司为现有业务合作伙伴提供灵活、动态的支持、世界一流的创新技术和保障服务。   凭借其在高能效系统电源管理领域积累的丰富经验和知识,以及包括音频、短距离无线和VoIP技术在内的技术积累,Dialog 半导体有限公司能够在其几十年的经验基础上迅速开发出面向各类个人便携式应用的IC,包括智能手机、平板电脑、数字无线和游戏设备。   公司的电源管理处理器辅助芯片对于延长电池的续航时间、增强用户的多媒体体验至关重要。由于拥有众多世界级制造商合作伙伴,公司采用了一种无晶圆厂的商业模式。   Dialog 半导体有限公司的总部靠近斯图加特,设有一个全球销售、研发和营销部。2012年,公司实现了约7.74亿美元的营业收入,是欧洲增长速度最快的公共半导体公司之一。截至2012年9月,公司拥有约800名员工。公司在法兰克福证券交易所上市(FWB:DLG),其股票是德国技术股指数(TecDax)的组成部分。   关于进达电子制品有限公司   进达电子制品有限公司成立于1983年,致力于设计并制造通信和网络电话产品。公司总部位于香港观塘。更多信息,请登录:http://www.avantec.com.hk

    时间:2020-09-05 关键词: 音频 意法半导体 信号链

  • 如何打造世界一流的模拟IC?

    如何打造世界一流的模拟IC?

    众所周知,模拟IC设计具有较高起点,需要丰富的设计经验。能够将模拟器件的性能做到极致的模拟厂商也是凤毛麟角,而美信(Maxim)正是在模拟与混合电路领域始终保持领先地位的半导体厂商之一。美信近期推出的一组全新模拟产品也再次证实了该公司在模拟设计领域的超强实力,这些器件不仅能够做到行业第一的水准,而且大幅领先于同类竞品,这背后的秘诀何在?在近日召开的美信模拟产品发布会上,美信核心产品事业部管理执行总监David Andeen进行了精彩的分享。 图:美信核心产品事业部管理执行总监David Andeen 追求单芯片单功能的极致突破 据David先生介绍,随着技术渗透到生活的方方面面,对半导体器件的功能、性能提出了更高要求。例如,工业智能化发展需要随时感知周围环境并进行数据交互,既带动了传感器数量和种类的增长,也对嘈杂环境下的信号传输提出了新的挑战,因为系统之间的频繁交互要求构建更加稳固的通信链路;消费类产品在整合更多功能的同时,则对体积、电池寿命提出了更加严苛的要求;通信及工业设备的不间断运行使产品的可靠性上升到新的标准;可穿戴、医疗产品对人体体征信号的检测则为精密测量提出了新的挑战…… 这些变化归结于对高性能模拟产品的需求体现在四个方面:高能效、精密测量、稳定互联和可靠保护。针对这些需求,美信于4年多前成立的核心产品事业部将模拟基础功能器件的性能做到了极致。 核心产品事业部的宗旨即创新,这个创新是指在单芯片基础模拟功能上实现突破,追求世界最高水平。“Push innovation as hard as we can.” David先生如是说到。设计者在开发新型及下一代系统时,对性能、小尺寸和创新能力提出了更高要求,这需要可靠的模拟方案来提供基础支持,例如精密测量与可靠保护。Maxim凭借世界一流的电路设计专业团队、独有的先进工艺以及良好的客户合作关系,提供高品质基础功能IC,推动多应用领域的系统发展。 在此次模拟产品发布会上,美信推出的三款基础模拟产品也绝对称得上世界一流水准。能够帮助设计者进一步降低功耗和方案尺寸,同时提高测量精度。MAX6078A电压基准IC、MAX16155 nanoPowe监控器和MAX16160电压监测器及复位IC拥有业界最佳的性能,适用于云基础设施、IoT、智能前沿、设备端AI ,以及消费、通信、工业和医疗领域的智能与新兴应用。 几乎不消耗任何功率的监控器——MAX16155 MAX16155的耗流典型值仅为400nA,是竞争方案所需供电电流的4%,在几乎“零功耗”的前提下提供可靠的系统保护。器件通过监测系统电路的欠压故障,并利用看门狗定时器在故障状态下使系统保持复位状态,确保便携式、低功耗设备在发生电源故障或软件故障时安全工作。IC采用微型、6引脚SOT23封装。 四通道电压控制器及复位IC —— MAX16160 MAX16160是业内唯一一款当四路电源轨的任何一路高于1V时即可保持低电平复位的四通道电压监测器及复位IC。器件凭借确定的低电平复位输出,提供业界最可靠的多电源系统上电启动和连续工作模式。这种“无供电上电”特性避免了系统的不确定状态,工程师可以轻松配置各路电源的上电顺序。所有输入电压监测精度为±1%,比竞争产品 (通常所有输入的精度为±1.50%) 提高50%。器件采用6焊球WLP (1.408mm x 0.848mm) 封装,比最接近的竞争产品减小85%。 实现精度与功耗的最佳平衡——MAX6078A MAX6078A具有±0.04%初始精度,精度比同类竞争产品提高20%。MAX6078A的静态电流仅为15µA,使得电池供电和能量收集等低功耗系统的精密测量成为可能。器件的工作电流比最接近的竞争产品低6.6倍,方案尺寸仅为1.458mm x 1.288mm,比竞争方案小58%。该产品是高精度工业应用的理想选择,可以工作在-55°C至+125°C的温度范围。 在此次模拟新品发布会上,David先生还展示了Maxim的一个模拟产品套件,在该套装内提供了4类共计20种极具特色的高性能模拟产品,方便工程师的选型与试用。 高度集成是近年来半导体器件的发展趋势之一,美信同样提供整合了数字处理器与模拟信号链的单芯片方案,这种融合能够满足客户针对某一特定应用的需求,降低系统设计复杂度,缩短系统开发时间。但这些高集成度器件并不能覆盖所有应用需求,而应用场景的多样化也会导致SoC等高度集成器件造成资源浪费。另一方面,市场对基础模拟功能的高性能追求是无止境的,Maxim核心产品事业部推出的高性能模拟器件恰好满足了这些用户的需求。 了解更多: MAX6078A 低功耗、低漂移、低噪声电压基准 - Maxim 美信 https://www.maximintegrated.com/cn/products/analog/voltage-references/MAX6078A.html MAX16160 High-Accuracy 4-Channel, Any-Input Supervisory Circuits - Maxim https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/MAX16160.html MAX16155 nanoPower Supervisor and Watchdog Timer - Maxim 美信 https://www.maximintegrated.com/cn/products/power/supervisors-voltage-monitors-sequencers/MAX16155.html/tb_tab0    

    时间:2019-11-27 关键词: 美信 模拟 adc 技术专访 信号链

  • 更高的集成度、更低的成本需要更深入的系统理解

    更高的集成度、更低的成本需要更深入的系统理解

    行业分析师们一致认为未来系统的发展趋势是移动便携、“绿色”节能,以及在终端设备中集成更多的传感器。这种发展趋势,要求模数 (ADC) 转换器和数模 (DAC) 转换器具有更多的通道数、更高的速度和性能,同时还要求更低的功耗预算、更小的尺寸以及更低的成本。各大数据转换器厂商通过制造更多集成了其他电路组件的数据转换器对这些需求做出了积极的响应。尽管在许多微处理器内核周围有大量的外围设备,一些性能需求正推动许多特殊模拟前端或者其他模拟“配套”芯片的发展,其与一颗单独的处理器一起工作。例如,TI 最近推出了 ADS1298,其为一款完整的心电图(ECG)系统前端。它将八个具有可编程增益放大器和大量辅助电路的 24 位 ADC 封装到一个单 BGA 或者 TQFP 封装中。由于数据转换器成为单封装集成系统的组成部分,因此它们往往变得更加实用;ADS1298 的产品说明书涉及了许多具体的功能和术语,ECG 设备领域以外的一些制造厂商对此可能并不熟悉。是否这就意味着您只能将ADS1298 用于 ECG 应用呢?若想研究这些集成器件并了解其如何使您的系统受益,只需将它们拆分开来,看其如何实现所谓的信号链,如图 1 所示。图 1 信号链结构图图 1 所示结构图可代表信号处理的所有系统。如果它是一个测量或者数据采集系统,则信号链开始于传感器,经过信号调节电路,进入一个 ADCr,然后结束于处理器。如果它是一个控制系统、一个音频处理系统亦或是一个软件定义无线电设备则可能存在一些必须变回到模拟信号的处理器输出;这种情况显示在结构图的右手侧二分之一处。不管您要设计的系统是什么类型,都有一种较好的方法来确定实现您信号链的一些组件。一般而言,处理器是首先要选择的第一种组件。这种选择,一般基于对器件的熟悉程度(其为您的公司在先前设计中已经使用过的处理器),或者针对某些外围设备以及其拥有的功能来做出选择。因此,您在图 1 所示结构图的中心位置开始,然后向外层层发展。这就意味着,下一个选择的就是数据转换器,而以模拟电路作为开始是符合逻辑的。假设我们正在设计一个测量系统,则我们只需与一个ADC 打交道。确定您的测量需要多高的分辨率以及需要多快的测量速度是一个重要的决定。当然,还有许多其他方面需要考虑,但是两个重要的方面是速度和分辨率。请注意,我并没有说过数据转换器有多少位之类的话——只是说您的测量需要多高的分辨率,它是一些物理参数。因此,最好是说您的测量需要至少 250ppm 的分辨率,而不是说选择一个 12 位的转换器。如果我们的设计过程真的是自内向外,下一个便是信号调节,但其目的是使用传感器提供的所有信号,然后让其与数据转换器的输入范围匹配。因此,我们首先必须理解传感器提供给我们的是什么样的信号。我们假设传感器最大可输出 2V,则 2*250ppm = 0.5mV 便是您希望在传感器能够测量到的结果。现在,您可以考虑如何测量 0.5mV 变化。解决这一问题的一种方法是,使用一个放大器对信号进行增益,以匹配您转换器的满刻度范围—我们假设为 5V。增益 2.5 以后,传感器的 0.5mV 变为 1.25mV,因此转换器需要从 5V 中解析出1.25mV,即 1/4000。所以,一个 12 位的转换器便可以胜任。另一种方法是,使用一个更高分辨率的转换器,可以直接测量 0.5mV,不再需要信号调节。使用哪种方法,具体取决于去除放大器而使用高分辨率转换器以后,所节省功耗和体积的大小,以及节省成本的多少。还存在另外一种情况,即传感器阻抗如此之高以至于其无法直接进入到转换器中,因此去除放大器便不是一种选项。理解系统信号链并了解每个模块的需求可以帮助您确定这些高度集成的转换器中,是否真的有一种转换器对您的设计有所帮助。您当然可以将 ADS1298 用于 ECG 以外的系统,但仅当您的信号链需要所有器件内部模块时,它带来的诸多好处才具有吸引力。在以后的文章中,我们将介绍准确采集信号并以数字域表示的一些基础知识。许多我们想当然的经验法则或者建议都需要具体情况具体分析,目的是理解给出这些建议的原因,以便在给定具体系统要求的情况下帮助您了解如何运用这些法则和建议。

    时间:2018-10-18 关键词: 德州仪器 dac adc 电源技术解析 ads1298 信号链

  • 设计一个属于您自己的简易I2C隔离器

    设计一个属于您自己的简易I2C隔离器

    通常产品设计时间非常紧张,用于新产品设计的资金也并不宽余。但不管怎样,我们都必须要在不增加成本的前提下设计出能够运行于恶劣环境下的稳健系统。一般而言,这会要求使用电流隔离,用于保护敏感控制电子组件免受外部突入和瞬态浪涌电流的损害。如果您的设计涉及许多工业接口,那么当您在各大半导体厂商的官方网站上看到琳琅满目的RS-485、RS-232、CAN和I2C信号隔离器时,您会发现自己像一个进到糖果店里的小孩一样兴奋不已。但是,当您想要采购经理批准购买这些产品时,他会立马给您泼上一盆冷水:“不能利用一些已有的标准组件吗?不管用什么方法,把它们都利用起来?”今后碰到这种情况,您可以热情洋溢的回答“没问题”了,因为本文将为您介绍一小部分工业接口电路,它们几乎都只使用一个标准隔离器。图 1-4 显示了工业应用中最为常见的数字接口的简化示意图。图 1 隔离式 RS-485总线接口图 2 隔离式 CAN 总线接口图 3 隔离式 RS-232线路接口图 4 多主机应用隔离式 I2C 总线接口请注意,为了便于说明,我们省略了旁路电容器和上拉/下拉电阻器。首批三个电路都有一个异步数据传输模式,其使用两条数据线路和一条控制线路,用于驱动器/接收器激活。这样,在节点控制器和标准兼容收发器芯片之间便只需一个三重隔离器了。图 4 所示隔离式 I2C(inter-integrated circuit,IIC)表示一种特殊情况,因为它支持仅有几英寸长的短通信链路,因此不需要线路收发器。在一些多主机应用中,两个节点会同时访问总线。为了防止信号转回其源,我们使用一个双向缓冲器来支持从R(x,y)到 S(x,y) 的接收传输以及 S(x,y) 到 T(x,y)的发送传输,而非R(x,y) 到 T(x,y)的直接回环。幸运的是,多主机设计只是少数情况,大多数都是单主机应用。因此,我们可以极大地简化图 4 所示电路。由于是单主机,时钟信号 (SCL) 仅需单向传输,从而将时钟隔离减少至一条通道。然后,用一个晶体二极管开关代替双向缓冲器,这样隔离层(图 5)每端将电路简化至我们的标准三重隔离器(图 6)。图 5 利用晶体管开关隔离发送和接收路径在待机模式下,隔离器输入 A 和 C 通过 R2 和 R4 被拉至高电平,推高输出 B 和 D。另外,主和从数据线路(SDA1 和 SDA2)通过 RPU1 和 RPU2 被拉至高电平。当主机通过拉低 SDA1 开始通信时,Q1 发射极结点被正向偏置,而 Q1 将输入 A 拉至低电平。输出B 跟着变为低电平,并正向偏置 D2。D2 拉低 SDA2。与此同时,Q2 发射极结点被反向偏置,并且 Q2 保持高阻抗。开关顺序相同,仅在从数据线路响应时反向。图 6 单主机应用隔离式I2C总线接口图 6 显示了最终的电路情况。至少使用 0.1Μf 电容器来对芯片电源进行缓冲。通过 1k 到 10k电阻器,始终将激活输入端连接至各个电源轨。这些电阻器可控制进入电源线路的浪涌瞬态所引起的芯片突入电流。利用滤波器电容(此处为 220pF)来抑制敏感的 CMOS 输入噪声,是一种较好的模拟设计方法。没有隔离电源,隔离设计便不完整。图 7 显示了一种低成本、隔离式 DC/DC 转换器设计,用于替代昂贵的集成 DC/DC 模块。主副电源均可以在 3.3V 和 5V 之间变化。下列表格列出了三种电源组合的相应组件。图 7 隔离式DC/DC转换器下次,我们将讨论如何利用 SPICE 设计一种低功耗、高精度 PID 温度控制环路,敬请期待。深入阅读:电源设计小贴士32和33:注意SEPIC耦合电感回路电流电源设计小贴士 42:可替代集成MOSFET的分立器件电源设计小贴士38:使用简易锁存电路保护电源电源设计小贴士 40:非隔离式电源的共模电流电源设计小贴士 41:DDR内存电源[视频]电源设计小贴士31:同步降压MOSFET电阻比的正确选择立即加入德州仪器技术社区

    时间:2018-10-15 关键词: 德州仪器 can 电源技术解析 rs-485 rs-232 i2c隔离器 信号链

  • 信号链基础知识:用子系统过流检测和监视重新审视系统级管理

    信号链基础知识:用子系统过流检测和监视重新审视系统级管理

    系统管理如果设计师想要尽可能地提高性能和用户体验,那么管理系统的热性能是现代电子系统中十分关键的内容。随着系统功能变得越来越强大,并且在很多情况下尺寸也越来越小,管理散热系统配置已经成为一项越来越具有挑战性的任务。对电流的监视能够很好地指示出可能存在的散热问题。目前,很多的集成商使用单个系统级熔丝或过流检测器来监视为系统供电的主电源,从而在供电时做出涉及整个系统运行的决定,或者采取某些会影响系统运行的操作。虽然这种做法成本较低,但也使得系统无法优化性能。替代方法是在子系统或模块级执行分布式过流检测。这样可以使决策变得更加高效。这个分布式监视打消了用户在三方面的顾虑:系统利用率和效率的问题确定故障识别减轻系统控制器在事件检测方面的负担系统利用率和效率在这里,系统集成商在通过监视子系统级电流来尽可能降低功耗的同时,想要最大限度地提高系统性能。为了更好的说明,我们以一个中央办公室的情景为例。Figure 1一个特有多个刀片服务器的服务器群示例通过监视通信系统中某个服务器或通道内的每一台刀片服务器的负载电流,你能够了解那个模块的使用量何时增加或减少。在非峰值时间内,只启用一个单个卡片可以最大限度地降低功耗。在你监视单个卡片所消耗的电流时,你可以检测负载何时增加,并且相应地启用其它模块来提高系统功能,而同时也增加了功耗。通过监视每个子模块的负载电流,你可以在尽可能减少有源功耗的同时,启用合适数量的通信卡来优化用户访问体验。确定故障识别当任一故障被视为增加整个系统电流的原因时,可以使用一个系统范围的故障识别方法来关闭整个系统。虽然这也许对于关键系统保护或用户安全很重要,但它并不能够实现确定性模块关断和调试。确定性故障识别与系统级保护之间对比关系的一个示例就是接地故障断路器,或称为GFCI。在GFCI系统中,单个插座具有内置的故障识别和保护功能。这样可实现特定插座被禁用,而不是禁用熔丝或断路器上的整个电路。这样可实现更加快速和简单的故障识别,并有可能缩短调试周期时间,以及停机时间。Figure 2GFCI插座实现分布式故障识别的示例本地化过流检测可以使系统管理控制器精确定位故障所在。这个控制器能够决定只关闭一个模块,还是关闭系统的绝大部分,又或者在最差的情况下关闭整个系统。由于维修人员知道问题所在,而不是逐一检查每个子系统,这些信息还可实现更快速的调试,并尽可能减少停机时间。此外,这还可以使一部分系统关闭等待维修的同时,剩余的系统仍然可以继续正常运行。Figure 3这幅图显示的是系统平衡仍然保持有效的同时,对一个刀片服务器的一部分进行维修减轻事件检测负担诸如德州仪器 (TI) INA300的经简化过流检测器件可被用作系统管理控制器的简单执行中断发生器。这就使系统管理控制器从不断轮询单个子系统的电流电平,并根据轮询结果进行决策的工作中解放出来。这就降低了对于系统管理控制器的总体处理要求,从而实现了更低的成本和功耗。总结分布式过流检测为系统集成商提供了更好的系统利用率和效率、更快速和准确的故障识别,并且能够减轻系统控制器的事件检测负担。为了将影响降到最低,需要实现方式非常简单、易于管理,并且要求极小封装。小型化和简化实现方式是在不增加系统复杂度或者不使系统变得更加庞大的同时,实现多个测量点的关键所在。我们将在下次介绍采样率控制信号内的抖动是如何减少SAR-ADC ENOB的。我们期待着你的参与。

    时间:2018-10-12 关键词: 电源技术解析 过流检测 散热系统 刀片服务器 信号链

  • 信号链的集成与去集成

    信号链的集成与去集成

    混合信号解决方案是不可阻挡的趋势。我们希望电子设备能够与我们交互,当我们靠近时,车门应当自动开锁,当我们坐在电脑前,电脑应当能自动开启,或者至少,屏幕保护程序应当有所动作,表示它很高兴我们回来了。当我们身处低光照条件下时,手机屏幕应当变暗以节约能量,温度调节装置应当把房间温度保持在一个舒适范围内。人类是模拟的,意味着他们的变化是无穷的,而电子产品用电压和电流做为它们自己的语言来与人类沟通。在电领域,从传感器最初读到的通常是由输入电路调节、转换成数字信号、处理,再转换回模拟信号,经过适当调节后再与我们交互。简化的功能框图如图1所示。图1. 简化的混合信号链基本的功能框图是相对不变的,只是在工作频率、通道带宽、处理功耗和技术上会有所变化。在开始讨论系统级的问题之前,让我们多看看每个功能块(从左至右)的细节。混合信号链中的级传感器在物理世界和电信号世界之间架起了沟通的桥梁,在概述里举的所有示例都需要用到传感器,它们可以是射频、接近、环境光或温度传感器。温度和压力传感器是最常见的两种传感器。在行业市场中,人们对使用精确的流量传感器的兴趣正日益高涨。当有物体接近时,接近传感器会将紫外光反射到电信号中。在带有屏幕的便携式设备中,环境光传感器是一个必备的器件,可起到节约能量并延长电池寿命的作用。混合信号链中的下一级是输入放大器。输入放大器必须正确接收来自传感器的信号,不能装载信号或使信号失真。由于传感器的种类很多,因此可能需要许多种放大器来与传感器正确匹配。比较时髦的是仪表放大器、斩波稳定放大器、低噪声放大器和输入偏置消磁放大器。每个系统解决方案都有不同的需求,应当与针对方案进行优化的放大器匹配使用。如果需要滤波(多数情况下是需要的),可以把滤波电路放在放大器周围,或是串接到系统中。滤波本身就是一门艺术。有上百种在线程序能够帮助你设计系统所需的电路。有一个新工具组合了实际的电路设计技巧和滤波器设计上的多年经验,这就是Intersil的iSim Active Filter Designer 。这个工具非常强大,而且是免费的。我认为, 模数转换器(ADC)是信号链中最重要的选择,通常也是第一个被选定的模块。选用什么样的ADC将决定系统的比特数、系统速度和主耗能模块之一。选定拓扑会产生不同的折中,这要依需求而定。只要说上几个拓扑的名字,就足以把一个正常人搞晕了:∑△型,流水线型,逐次接近型,快速型(Flash)和积分型。最难理解的拓扑可能是∑△型。这是一种过采样的模数转换器,通常工作在低频,不过也有几种产品的频率突破了1MHz。∑△ ADC具有最高的分辨率,比如24位,这种ADC可用于称重、温度控制和仪表当中。逐次逼近型ADC也被称为“SAR”ADC,因为这种ADC使用一个逐次逼近寄存器,在分辨率和速度上做了折中,工作频率从1kHz到几兆赫兹,并提供中等精度。积分型转换器是低速转换器,原因是这种转换器需要花时间对输入信号进行平均。由于这种转换器可以滤掉电源噪声(50Hz或60Hz),因此对直流测量来说是非常好的选择。快速型ADC的工作频率可以超过1GHz,但精度只有10位。为实现这么高的速度,快速型ADC要消耗大量的能量,因为ADC要在一步内计算出转换结果。如果你选择在功耗上做出让步,使用一个两级方案,就被称为多级转换器。如果你选择3级甚至更多级方案,那你通常可以称之为流水线型转换器。流水线型ADC的工作频率从55kHz到500MHz,分辨率可以高达16位。数字信号处理通常是由微控制器或FPGA完成的。可以根据分辨率、速度、占位(尺寸)和功耗来选择这些功能块。很多时候,选择器件的理由是设计者以前使用过这些器件,对器件很熟悉。设计者还要让ADC产生的信号或DAC需要的信号保持一致。事实上,有许多内建ADC和DAC的此类器件可供使用。这些内建的转换器对简单的解决方案来说已经足够了,但不少无法提供分立ADC和DAC所具有的性能。如果你决定使用一个分立DAC封装,你还会碰到一系列的速度、分辨率、功耗和性能问题,就象ADC一样。DAC有一种∑△拓扑,其过采样类似于对应的高质量ADC。两个更简单的DAC是R-2R和电阻串。而R-2R配置依赖于匹配程度,电阻串可以保证单调性(输入电压每增加一点,输出电压会相应地增加)。无论要驱动的负载是什么,都要用输出放大器对DAC进行缓冲。在某些情况下,根据DAC的输出信号,这个放大器还必须把电流转换成电压。在这一级里可能需要滤波,对滤波的需求类似于输入部分。为了让讨论相对简单一些,我们没有涉及系统中的其他部件。记住,每个功能块都需要干净的电源轨,许多还需要一个来自电压参考或数字电位计的电压。此外,良好的电源旁路和出色的布线技巧也会增加成功的机会。混合信号系统问题现在,我们已经研究了混合信号链中的每一个模块,让我们看看怎么把它们合到一起。成本决定了许多设计的选型。如果成本是首要的考虑因素,那么使用内置ADC和DAC的微控制器也许是你的最优选项。设计者更喜欢选择的次优选项是成对工作的ADC和DAC,ADC和DAC要具有近似的特性,而且通常来自于同一家供应商。制造商一般会提供演示板,以便减少调试时间。许多设计者正想办法把信号链的两端进行集成。如果不要求象转换器那样把这些功能做在一个硅片上,现在的技术已经足以把运放和一些滤波器件封装在一起。很显然,这么做在占位和易用上都是有好处的,在商用产品中看来是肯定会这样做的。如果一个系统设计者想选用一个组合运放和转换器功能的器件来节省空间,为什么他或她不会希望把整个混合信号路径整合到一个路径中呢?没有这回事。这就是为什么专用标准产品(ASSP)被广泛使用的原因。但你为什么要选择去集成呢?原因有很多。产品或应用可能比较新,还没到有必要投资开发一个ASSP设计的地步。其次是没有一点灵活性。万一你想升级到更高阶的滤波器,以补偿一个新的强干扰?万一你想尝试一个新的转换器配置?万一你必须快速建立一个原型产品?万一小的设计改动能让你的系统设计更加灵活并且能容纳更多的应用和更多的客户?我个人特别喜欢的情况是:万一你希望得到更低的功耗呢?许多转换器需要1.8V电源,而许多运算放大器可能需要3.3V或5V来达到系统所需的动态范围/CMRR。分立方案的选择更多,对应用的优化也更多。许多有经验的系统设计者对电路布板和电源旁路十分精通,他们倾向于选用分立方案,这样可以保留进一步选择的便利。然而只要集成没有限制我们能力的发挥,通过系统设计,它就会让我们的生活变得更加轻松。发布者:小宇

    时间:2018-10-11 关键词: 传感器 模拟信号 电源技术解析 信号链

  • 初步了解信号链中的数据转换器

    初步了解信号链中的数据转换器

    信号链由多个组件构成,如放大器、数据转换器、接口、时钟和定时等。信号链的用途是采集和处理数据,或者根据对实时信息的分析应用系统控制。本文中,我们将关注信号链的一部分:数据转换器(参见下图1),但首先必须了解模拟和数字世界。图1:采用外部基准电压的基本ADC信号需要经过处理,才能显示其中所含的信息、进行信号分析或转换成另一种能够使用的信号类型。在实际应用中,模拟产品检测声、光、温度或压力等信号,然后进行操作处理。接着由模数转换器(ADC)等转换器接收真实信号,将其转换为1和0的数字格式。随后,由数字信号处理器捕获数字化信息并加以处理,最后反馈供现实世界使用。这个过程可通过两种方式来实现,一是数字方式,二是经过数模转换器(DAC),转成模拟格式。二者均以高速完成。模拟信号是连续信号,而数字信号仅捕捉部分信号。在学习数据转换器(ADC或DAC)时,需要了解一些基本知识。例如,为什么首先要对模拟信号进行数字化?原因有多个,其中包括:改善信号分析能力、更鲁棒的存储和更精确的传输。但另一方面,信号变得更为复杂,而且需要更长的处理时间。有利就有弊,但好消息是:高性能转换器有助于消除复杂性并增强性能。ADC的用途涉及输入信号的量化,这意味着转换器会引入少量误差。ADC的整体性能涉及许多参数,如热噪声、抖动和量化噪声-即指定带宽(BW)内的信噪比(SNR)。转换器数据手册中报告的信噪比可为设计人员提供实际的期望,帮助其了解转换器在被采样信号中的最低可分辨"步长". ADC并非仅执行一次转换,而是周期性地执行转换,即采样。最终获得的是将连续模拟信号转换为离散或不连续信号的信号样本或数字值序列。你会看到,这一过程对捕捉到的信号质量有重大影响。图2.采样数据系统:采样和量化。此处,采样是时域上的影响,而量化则是幅度域上的影响。采样这一行为导致二者同时发生,并把信号分为两个轴。

    时间:2018-10-05 关键词: 数据转换器 adc 电源技术解析 信噪比 信号链

  • 信号链基础知识 # 50:弥合高速数据转换器连续波和调制信号测量之间的差异

    信号链基础知识 # 50:弥合高速数据转换器连续波和调制信号测量之间的差异

    我们一般使用连续波 (CW) 信号来描述高速模数转换器 (ADC) 和数模转换器 (DAC)。这样做的原因是:1)就 ADC 而言,CW 信号更易于通过 CW 生成器和窄带通滤波器无噪生成;2)就 DAC 而言,CW 信号更容易分析;3)它们具有许多标准参考测试,可在各种器件之间清楚地比较。然而,大多数现实系统都将高速数据转换器用于采样调制波形。弥合基于 CW 测量的各种规范和调制信号的系统要求之间存在的差异具有一定的挑战。CW 信号和调制信号之间存在两种差异,会影响高速数据转换器的行为。首先,CW 信号没有带宽——能量被限定在某个单一频率;而调制信号有带宽,能量分布于某个频率范围。其中的一个结果便是 CW 信号失真在另一个频率引起 CW 谐波,而调制信号失真引起该信号之外更宽频率范围的谐波和交叉调制:二次谐波 2x、三次谐波 3x 等。在带宽与调制信号相同的某个频段能量的传播带来更低完整度的失真能量。其次,大多数调制信号(只有如 GSM 中使用的 GMSK 等调制方案除外)均是对振幅进行调制,其产生比最大功率要低的平均功率。为了对比方便,CW 信号的功率恒定。图1 显示了存在的差异,其表明了调制长期演进 (LTE) 信号的功率与时间的对比关系。平均功率约为最大功率的 7%,即比最大功率低 11 dB。图1调制LTE 信号的功率与时间的对比关系大多数器件中,谐波失真结果随信号功率增加而增加。例如,信号功率每增加 1dB,三阶谐波结果便增加 3dB。因此,相比较低平均功率的调制信号,最大功率的 CW 信号具有更加明显的失真。图2 描述了这种情况,其将最大功率的 CW 信号三阶谐波失真同调制 LTE 信号进行了对比。所用失真模型是一个简单的多项式:Vout = Vin + coeff*Vin3其中,谐波失真系数 coeff为任意选取,旨在说明巨大的失真量。CW 信号生成 CW 信号以下三阶失真结果 42 dB,而 LTE 信号生成 LTE 信号以下三阶失真结果 56 dB。请注意,图2 所示功率已被标准化为每个信号的最大功率。图2谐波失真CW 和调制LTE 信号因此,使用最大功率 CW 信号来估算我们理论器件中调制 LTE 信号的谐波失真将 LTE 信号失真高估算了 14 dB。什么是更精确的 CW 测试呢?一次 CW 测试永远都无法捕获完全一样的调制信号效果,而调制信号失真取决于信号功率的统计分布。在我们的例子中,一个最大功率以下 –7 dB的 CW 信号会产生与 LTE 信号相同的三次谐波失真水平(请参见图2)。由于调制 LTE 信号的平均功率为最大功率或者峰值功率以下 ~11 dB,这相当于将 CW 信号功率设置为调制信号平均功率以上 4 dB。对调制信号性能进行更精确评估的一个快速法则是使用调制信号峰值功率与平均功率的 dB 比,然后设置 CW 功率为最大功率以下 2/3。例如,如果调制信号 PAR 为 6dB,则应将 CW 信号设置为最大功率以下 -4 dB,然后测得相对于信号功率的谐波失真。这种法则对各种调制信号类型(例如:OFDM、WCDMA 和 QAM 等)都很有效。下次,我们将讨论更多详情,敬请期待。参考文献如欲了解数据转换器的更多详情,敬请访问:www.ti.com.cn/dataconverters。作者简介Robert Keller 现任高速数据转换器系统与应用经理。他在无线基础架构通信、测试与测量以及军用系统的高速产品技术支持方面拥有长达 9 年的工作经验。他毕业于圣路易斯华盛顿大学 (Washington University, St. Louis),获物理与数学学士学位,后又毕业于斯坦福大学 (Stanford University),获应用物理学博士学位。他拥有 10 项网络与传感器应用美国专利。

    时间:2018-10-05 关键词: 德州仪器 adc 电源技术解析 数模转换器 连续波 高速模数转换器 信号链

  • 信号链基础知识   RS-485:总线电流要求与收发器驱动能力

    信号链基础知识 RS-485:总线电流要求与收发器驱动能力

    越来越多的人在问关于 EIA/TIA-485(俗称 RS-485 数据传输标准)基本概念的一些问题,这一事实表明未来数年 RS-485 仍会在各种工业接口中起到举足轻重的作用。本文中,我们将为您解答许多常见和最新的问题,例如:1)RS-485 收发器可以驱动多大的总线电流?2)可以驱动 32 以上单位负载吗?要回答第一个问题,我们需要研究图1 所示典型 RS-485 数据链路。我们看到,除驱动通过端接电阻器的差分电流以外,驱动器还必须驱动通过许多接收机输入阻抗的电流,以及通过位于总线上的故障保护网络的电流。这些阻抗在差分信号线路和接地之间形成电流通路,同时影响了 A 和 B 信号线的电流,且影响程度相同。因此,可以将它们表示为共模阻抗 RCM。图1典型RS-485 数据链路为了对最大共模负载进行定义,RS-485 使用了一个单位负载的理论概念,其定义了一个 12kΩ 共模负载电阻。这样一来,一个单位负载 (1UL) 收发器便代表在每个接地相关总线端有一个RINEQ = 12 kΩ 的等效输入电阻。RS-485 规定一个收发器必须能够驱动高达 32 单位负载的总共模负载,同时能够给 RD = 60Ω 差分电阻提供 VOD = 1.5 V 的差分输出电压。另外,该标准还要求在 VCM = –7 V 到 +12 V 共模电压范围保持这种驱动能力,以便允许驱动器和接收机接地之间的大接地电位差,其一般会出现在远距离数据链路中。60 Ω 差分电阻代表两个并联 120 Ω 端接电阻器的电阻值,而 32 单位负载得到的总共模负载电阻为 RCM = 12 kΩ / 32 = 375 Ω。共模负载条件下收发器驱动能力测试的相应测试电路也指定为 RS-485 标准,其如图2 所示。图2共模负载的驱动器测试电路假设非反相驱动器输出 A 具有更高的正总线电压,则其电流计算方法为:,而反相输出 B 的电流计算方法如下:.由于数据传输期间 A 和 B 输出不断改变极性,因此最好是使用一些通用术语来表示输出电流方程式。所以,更多正输出(或者高输出)必须拉出电流:,而更少正输出(或者低输出)必须注入电流:.图3 显示了在规定共模电压范围,驱动 RCM = 375 Ω 最大共模负载 (32 UL) 的一个 5V 收发器的最小输出电流要求。用于绘制该图的参数假设为 VOS = 2.5 V、VOD = 1.5 V、RD = 60 Ω 和 RCM = 375 Ω。图35V 收发器的总线电流要求该图表明,一个符合标准的 5V 收发器必须能够拉出和注入高达 53 mA 的输出电流。实际上,市场上销售的大多数 RS-485 收发器,都具有 60 mA 及以上的最小注入和拉出能力。就此而言,需要对 32 单位负载的最大共模负载进行一些重要的澄清,以消除许多普遍存在的误解。RS-485 中规定的 32 单位负载的最大共模负载,指的是存在于差分信号对和信号地线之间的任何共模负载,不仅仅只是接收机输入。例如,一个外部故障保护电阻器网络已经使用了 22 UL 的总负载,从而使得仅有 10 UL 可用于接收机输入。剩余的 10 UL,可以通过使用 10 x 1 UL 收发器或者至多 80 x 1/8 UL 收发器,来让其得到利用。32 UL 最大负载的规定,针对 –7 V 到 +12V 的整个 VCM 范围。如图3 所示,让 VCM 范围变窄会降低输出电流,并让驱动器储存一些电流。之后,可以利用这些储存电流来驱动更多的单位负载。驱动器和接收机接地之间地电位差 (GPD) 较小的数据链路中,可以应用这一原则,其解答了我们在一开始提出的第二个问题。图4 显示了单位负载数,其为 GPD 振幅的函数。请注意,GPD 并非为 DC 电压,而是 AC 电压,其在系统电源电源频率的第三谐波变换。图4单位负载数为GPD 振幅的函数小结本文介绍了 RS-485 标准收发器的最小总线电流要求约为 60 mA,并表明在更低共模电压下工作时可以增加 32 UL 规定共模负载。接下来,《信号链基础知识》将讨论如何满足检验可编程仪表放大器增益级中参考引脚的动态要求。参考文献《RS-422 和 RS485 标准概述与系统配置》,2010 年 5 月修订,2002 年 6 月刊 TI《应用手册 SLLA070D》。

    时间:2018-10-01 关键词: 德州仪器 电源技术解析 rs-485收发器 信号链

  • 信号链基础知识57:工业远距离通信使用的RS-232至RS-485转换器

    信号链基础知识57:工业远距离通信使用的RS-232至RS-485转换器

    要求远距离或者在多个RS-232应用之间实现RS-232数据传输的一些工业用数据链路,通常都使用RS-232到RS-485转换器。尽管存在高达±13V的高信号摆幅,但RS-232仍然是一种非平衡或单端接口,而且本身极易受噪声影响。它的总线最大长度被限定在20米(60英尺)左右。尽管允许进行全双工数据传输(通过一些单独的信号导线同时发送和接收数据),但是RS-232并不支持在同一条总线上连接多个节点。与之形成鲜明对比的是,RS-485是一种使用差分信号传输的平衡接口,从而让其拥有较高的共模噪声抗扰性。因此,延长RS-232数据链路传输距离和实现多总线节点连接,要求通过接口转换器将其转换为RS-485信号(参见图1)。图 1 短距、点对点数据链路到远距、多点网络的转换图2显示了一个低功耗、隔离式转换器设计的原理图。这里,一台个人计算机(PC)的RS-232串行端口连接至左侧的SUB-D9接口。图2 使用自动选向控制的隔离式RS-232到RS-485转换器。个人计算机串行端口包含一个RS-232驱动器和接收器芯片,芯片将其内部5V逻辑信号转换为接口处更高的±8V到±13V电平。这些高压总线信号再通过另一个RS-232芯片转换回标准逻辑电平,以同RS-485收发器进行通信。在发送方向,485收发器将来自RS-232接收器输出的逻辑信号转换成差分总线信号。在接收方向,它将差分总线信号转换成进入RS-232驱动器输入端的单端、低压信号。RS-485收发器包括一个电容式隔离层,其实现总线端与逻辑控制端之间的电流隔离,从而消除了总线节点之间的接地电流。在总线端,这种转换器设计拥有数个确保可靠数据传输的元件。跳线J1和J2在总线空载期间激活故障保护偏压网络。如果这种转换器安装在总线端,则通过跳线J3可以实现一个120欧姆端接电阻器。一个瞬态抑制器通过钳制接地电位,保护收发器免受危险瞬态过电压的损害。为了将瞬态电流分流至地电位,要求使用一个高压电容器,以在浮动总线接地和保护接地(PE)之间提供AC耦合。一般而言,我们使用一条短单芯导线(18 AWG)来实现到PE端或机壳接地的连接。信号通路隔离还要求电源隔离。这里,我们通过一个低压降电压调节器(LDO)对总线电源(3.3V到10V)进行调节。然后,把它用于收发器总线电源(Vcc2)和一个隔离式DC/DC转换器。这种转换器由变压器驱动器、隔离变压器和一个次LDO(为逻辑端电路供电)组成。更老一点的转换器设计有时会使用一个请求发送信号(RTS)来将RS-485收发器从接模式切换到发送模式。但是,在一些计算机应用中,RTS生成接口软件运行在Windows®下,并非实时。因此,如果Windows决定将其处理时间用于另一个应用程序、屏幕保护程序或者杀毒软件,则RTS可能就无法实时地将收发器切换回接收模式,因此另一个总线节点所发送的数据便可能会丢失。图2所示转换器设计通过实现一种自动选向功能消除了出现上述状况的可能性。这种自动选向检测通过一个单稳态触发器实现。触发器的输出由232接收器输出触发为高。默认情况下,RS-485收发器处于接收模式。当单稳态输出变为高时,它便将收发器切换到发送模式。该单稳态输出的时间常量由一个R-C网络定义。数据速率为9600 bps,2ms高态时间时,C = 220 nF,而R = 10 kOhm;数据速率为1200 bps,20ms高态时间时,R = 100 kOhm。当高态时间结束后,单稳态输出再次回到低,从而将收发器切换回接收模式。尽管自动选向功能依赖于数据速率,但其仍然是防止数据丢失的一种可靠方法。下次,我们将讨论多协议电路。这种电路允许在同类型接口线路之间实现RS-232或者RS-485数据传输。另外,下个月我们将介绍如何使用SPICE优化右腿驱动放大器,以降低心电图(ECG)前端的共模噪声,敬请期待。如欲了解更多详情,敬请访问: www.ti.com/rs485-ca。

    时间:2018-09-05 关键词: TI 电源技术解析 rs-485 工业通信 rs-282 信号链

  • 信号链基础 #38:单电源高精度整流器

    信号链基础 #38:单电源高精度整流器

    在需要某个信号的绝对值时,我们常常使用高精度整流器电路,其作为计量应用中信号大小测量电路的组成部分。针对这类电路的设计不计其数,但在单电源系统中实现这一功能却具有一定的挑战性。最近的许多设计都依靠单电源运算放大器 (op amp) 的饱和行为来实现整流。在许多情况下,这样做是可以接受的,但如果您想避免出现运算放大器饱和以及这种饱和带来的许多固有问题(缓慢的恢复时间、潜在的非理想相位反向),则图 1 所示电路是一款较好的解决方案。图 1 单电源高精度整流器图 1 所示电路接受负信号(高达器件的电源轨;本例中为 5V)。利用一个 +5V 电源,该电路可以接受高达 10vp-p 的零伏集中信号(即 ±5V)。就正信号 (Vin > 0V) 而言,U1 起到一个加法器放大器的作用,而 U2 和 U1 则不相干。就负信号 (Vin <0V) 而言,D1 和 U2 形成一个接地钳位,将 U1 的非反相输入保持在 0V。现在,U1 仅起到一个反相放大器的作用。结果是 VOUT 时的全波整流正弦波,如图 2 所示。图 2 图 1 所示电路的 SPICE 仿真为了让该电路能够正常工作,运算放大器输出必须在没有相位反相的情况下摆向输入和输出的负电源轨。相同电路可用于没有在接地参考电压以下摆动的输入信号,但只需将 U2 的参考点(非反相输入)变为中间电源电压参考,便可使电路参考 VCC/2,如图 3 所示。图 3 改变 U2 的参考电压对整流器输入范围的改变情况图 4 显示了图 3 电路的运行情况。图 4 中,顶部轨迹线 (Vin) 参考中间电源电压,因此它似乎为双极—标识为 Vin_ref 的轨迹线为参考电压的实际输入电压,其在所有时间都明显地维持在参考电压以上。图 4 图 3 所示电路的 SPICE 仿真图 1 和图 3 的电路都逐渐达到所用运算放大器的电压摆动限制。轨至轨输入和输出运算放大器一般允许在几十毫伏的电源轨范围内工作,其在这类应用中可以获得最佳的结果。在以后的文章中,我们将讨论 G 类音频放大器的构架,敬请期待。参考文献《高精度绝对值电路》,作者:Jones, D. 和Stitt, M.

    时间:2018-08-31 关键词: 高精度 电源技术解析 整流器 单电源 信号链

  • 在MCU中可以随意配置模拟信号链?TI MSP430FR2355发布

    在MCU中可以随意配置模拟信号链?TI MSP430FR2355发布

     高度集成是目前MCU发展趋势,为了节省整体PCB空间,降低系统设计复杂度,提升MCU产品竞争力,不少MCU都会在内部集成很多资源。而有些时候,这种高度集成的MCU在系统设计的灵活度方面会大打折扣,复用性也较差。TI最新推出的MSPFR2355,在内部集成了4个可配置的智能模拟组合模块(下文简称SAC:Smart Analog Combo),可以在内部任意构建DAC、TIA、OpAmp、PGA等多种模拟器件,并且可以相互组合。从而极大地节约了一些需要外围模拟电路得设计得复杂度和成本。 近日,TI 专门为此款全新得MSP430FR2355在北京召开了新品发布会,德州仪器超低功耗MSP微控制器事业部总经理Miller Adair先生对于MSP430超值系列中的这一新成员进行了详尽的介绍。 德州仪器超低功耗MSP微控制器事业部总经理Miller Adair MSP430作为TI的一条畅销多年的16位MCU产品线,市场反响一直非常不错,而此次MSP430FR2355的产品发布,也带来了十足的诚意,主要带来了三大提升。首先在性能上得到了提升,主频从16MHz提升到了24MHz;然后在工作温度范围上实现了提升,目前达到了-40°C~105°工业级水准;最重要的就是在文章开头所提及的内部集成4个SAC。 高度灵活的SAC可在MSP430内配置成多种信号链 SAC是一种灵活度非常高的模拟模块,根据发布会提供的信息来看,智能模拟组合可以配置成如下如所示的多种不同的模拟信号链。 根据TI的官方手册来看,SAC模块功能包括: OA(运算放大器) • 轨到轨输入 • 轨到轨输出 • 多个输入选择 PGA(可编程增益放大器) • 可配置模式包括缓冲模式和PGA模式 • 可编程PGA增益高达33倍 • 支持反相和非反相模式 DAC(数模转换器) • 12位DAC内核 • 可编程设置时间 • 内部或外部参考选择 • 软件可选数据加载 SAC模块通过LPM4在AM中工作,并可通过用户软件进行配置。它的内部集成了高性能低功耗轨到轨输出运算放大器。 这个OA可以配置为在通用(GP)模式下独立工作。 OA输出摆率可以是配置为通过OAxPM位优化建立时间和功耗。 SAC OA在放大器的同相和反相输入端均包含3通道输入选择。为此,NSEL和PSEL分别选择输入。 反相输入包括OAx引脚,PGA,和配对OA的输出。 非反相输入包括OAx +引脚,12位DAC内核和DAC配对OA的输出。 反相OAx也可以与PGA连接以支持反相PGA模式。 SAC DAC模块是一款12位数模转换器。 DAC只能配置为12位模式。 它可以用作参考电压,也可以与OA和PGA一起工作来驱动输出焊盘。 关于SAC的具体的配置模式和参数,可以登录TI的官网进行查询。 据Miller先生介绍,这种SAC的技术来源于TI的模拟部门,MSP430FR2355可以看成是两个部门通力合作的结果。MSP430如何可以帮助客户节省PCB面积,降低系统成本?Miller介绍了两个简单的例子。 据Miller介绍,以烟雾探测器为例。将烟雾探测器拆开,内有一个单片机控制整个系统。一般的单片机都会用ADC做信号采样,外设有一个普通的运放做信号,因为烟感的信号相对比较小,普通的运放将信号放大。在普通运放前还会置有一个跨阻放大器。因为烟感的信号是电流信号,它需要把电流信号转成电压信号,所以前期需要跨阻的放大器。烟感是一个比较典型的系统,有三个主要元器件。利用FR2355的智能模拟组合,跨阻放大器、运放和ADC都可以用FR2355单片实现,这样减少了开发设计难度、节省了成本,并简化PCD的布板。 Miller还介绍了一个工厂中常用的温度变送器的案例,在一个典型的温度变送器中一共包含5个元器件:前端做信号的放大,ADC做信号的采样,变送器需要MCU做信号处理,处理完以后会有4-20mA的电流回路。用智能模拟组合可以把温度变送器外部需要的信号链路上的ADDA运放,一颗FR2355智能模拟组合集成。据悉,TI还专门推出了一个4-20mA电流环温度变送器参考设计,用户可以在TI官网进行购买。 持续拓展超值产品线,继续投资铁电MCU 日常消费品市场对价格的要求较高。现在TI的40个超值系列的单片机具有非常有竞争力的价格优势。TI的超值系列中最低端的产品FR2000和2100以25美分的价格支持25个不同功能。而此次最新推出的,SP430FR2355则又在多个方面实现了提升,可以说是加量不加价。 虽然价格较低,但在性能方面MSP430FR系列并没有妥协,这主要得益于其铁电存储的优势。据Miller先生介绍:“FRAM是TI独立生产与设计的。本着TI对可靠性的高要求,在不降低可靠性的原则下达到105度温度范围。FRAM是TI未来重点投入的领域,以后的FRAM产品肯定也都会支持105℃耐热性。 FRAM主要有三个优势:第一是可以保证低功耗并延长电池寿命;第二是高可靠性,写入次数可以达到10的15次方;第三是灵活性,读写速度快,掉电也不会丢失,用户可以灵活地把它配置成代码、变量或者是数据。据Miller介绍:“现在用户的MCU需要用flash、RAM,而以后只用TI的FRAM就可以全部搞定。” 据悉,MSP430FR2355将于7月份进入量产。同时会提供相应的的launch pad开发板。 Miller先生对于MSP430FR2355未来的的市场表现非常地有信心,用中国话来说应该会出现一种门槛踏破的场景。不少客户对于这种可配置模拟信号链的MCU有着强需求。小编对于MSP430的此次创新也非常兴奋,期待未来TI将会在MSP430上给我们带来更多惊喜。

    时间:2018-06-15 关键词: TI 模拟 技术专访 sac msp430fr2355 超值mcu 信号链

  • 更小更智能的电机控制器推进HEV/EV市场

    更小更智能的电机控制器推进HEV/EV市场

    摘要 随着混合动力车辆/电动车辆(HEV/EV)市场不断扩大,人们对于更高效和智能的电机位置控制的需求也变得更为关键。今天,原始设备制造商(OEMs)比以往任何时候都更专注于如何增强电机的能力(例如:扭矩控制),同时通过诊断维持高度的系统可见性,以此保证时刻知晓系统的健康状况。为了达到这些目标,电机位置控制的高度集成解决方案,尤其是电机效率和扭矩控制的解决方案变得至关重要。 前言 随着世界范围的人们对更高能源效率的交通方式的需求增加,HEV/EVs将首当其冲,成为人们的首要选择的交通方式。为了更好的了解电动与混合动力车辆市场的潜力与发展情况,我们不可避免的要知道在本文中提到的是什么类型的车辆。在Strategy Analytics[1]的报告中:“2007年到2021年混合动力车辆系统的需求预测,”将HEV/EV分为四类: 1. 轻度混合动力 2. 完全混合动力 3. 插电式混合动力 4. 纯电动 这些分类的每一种均考虑车辆电机的功率以及电机在系统中准确负责的任务。例如,在上述报告中,Strategy Analytics将轻度混合动力车辆归到电机功率小于20kW的那一类。此种电机用于配合内燃发动机的刹车恢复和扭矩辅助功能。一旦你理解了轻度混合动力与纯电动的权衡,就更容易理解电机位置传感器在该领域的总体有效市场。表1列出了Strategy Analytic报告中定义的系统分类,这些会贯穿全文。 表1:Strategy Analytics使用的电动车辆的不同分类。 由Strategy Analytics提供的表格[1] 既然我们已经了解正讨论的车辆类型,那就深入研究市场,以此来更好得了解正在投资HEV/EV车辆的汽车制造商的潜在目标市场。 如表1所示,每部车辆都可能搭载1到4个电机。(搭载4个电机是出于每个轮胎都需要一台电机)。每台使用的电机都将需要搭配合适的系统,以安全高效地驱动与控制这些电机。这些系统需要具备控制可见性和粒度,以实现合适的扭矩与电机控制。牢记电机与其控制系统需要的知识,表2(同样来自Strategy Analytics的报告)给2015-2021期间市场上的每种类型车辆的数量一个估计值 表2:Strategy Analytics使用的每种类型车辆的数量 由Strategy Analytics提供的表格[1] 表2显示出HEV/EV市场的稳定增长以及汽车市场对电动解决方案的兴趣。随着需求的增加,原始设备制造商将继续寻找提升这些车辆性能,并同时增加使用内置诊断、保护和监控设备增加系统自诊断容易性的方法。 为了了解这一新兴且发展迅猛的市场,了解该领域的汽车制造商所关注的主要驱动因素是至关重要的。首先是使这些车辆能够为他们的电机驱动器(逆变器)提供精确精准的电机控制非常重要。其次是为什么系统在设备层面的集成对为HEV/EV提供更小、更智能和更有效的解决方案非常关键。 精确精准的电机控制 对于任何车辆,不管电动与否,电机是驱动车辆前进的动力系统的中心部件。特别是电动车辆,需要电机的位置信息,包括角度和速度数据,以保证电机控制系统能够高效精确地工作。由逆变器收集的数据被积极用来控制和监控每个电机相中的电流情况。控制和调节电机电流的过程就是用来为电机创造扭矩的过程。电动车辆的扭矩控制对客户和汽车制造商均至关重要。扭矩至关重要的主要领域包括: 1. 在以低速启动电机和爬坡时需要高扭矩 2. 扭矩控制保证车辆高速度巡航时的高功率 3. 加速时的快速的扭矩响应要求精确的电机控制 4. 精确的电机和扭矩控制实现回馈制动需要的高频率 控制和理解电机中的扭矩使车辆可以为驾驶者向车轮提供更顺滑的动力。准确地了解电机位置是保证合适扭矩控制的关键。通过了解电机轴的准确定位以及搭载可以根据电机数据做出决策的智能系统,电动车辆的控制系统能够精确地计算出驾驶者需要的扭矩。控制越精确,用户在处理所列的任意一种情况时将获得更好的体验。 电动和混合动力车辆使用的电机控制系统的简单结构,见图1。预想该系统如何工作的,您可以想象一下作为驾驶员您在驾驶的时候决定改变速度的场景。当你使发动机/电机控制单元(逆变器)加速(或减速)时,车辆的电池提供驱动电机运行的动力。然后,位置感测器(旋转变压器)会读取电机的角度信息并将其转化成逆变器系统的微控制器可操作的格式。该数据一旦传输到微控制器,电机控制系统就可以增加或降低电机扭矩。这些速度的增加或降低以同样的方式被处理,而且合适的扭矩会根据用户的原始输入传递到系统。   图1:电动机控制单元与位置感测器装备地点 集成 了解了电机控制在HEV/EV驱动系统中的重要性后,我们现在可以调查多种当今市场上用来增强控制车辆扭矩系统的方法。 电机控制系统的中心部件是一个逆变器电路板。该部件用来向微控制器、电机驱动器和用来读取和操作收集到的电机信息的传感器接口提供动力。为了能够做到这一点,在车辆的引擎盖下靠近电机的地方为系统装备该电子产品。该电路板的位置给混合动力和电动车辆制造商带来一对挑战。 由于每辆车的引擎盖下方的空间已然很有限,因此保证一个方案具有小型化的结构与封装是至关重要的。为了实现更小的解决方案,电子元件供应商正专注于如何在一个封装板内集成更多的功能甚至更多的器件。现在正引入市场的汽车器件集成一部分实现系统功能所需的元件在一个芯片上(例如信号链、通信或电源)。然后将集成的芯片组合起来用于降低电路板上用来控制电机的元件的数量。 通过在一个封装板中集成更多的功能和器件,混合动力和电动车辆制造商可以缩小逆变器系统的整体板子尺寸以及省去一些不再需要的电子元件的成本。更小和更具成本效率的电子元件层面的解决方案给予原始设备制造商们有利优势,使其不必再为顾客增加成本。 随着市场趋向于集成化,另一个解决的因素是系统的整体智能和连接性。这到底意味着什么?当车辆内部的各模块变得更加复杂时,进行系统诊断和健康检查是有必要的,以确保他们正常工作。对于HEV/EV电机控制系统,做这些类型的检查将会使电机、驱动电路以及位置感测器的健康状况成为已知变量,而系统的运行依靠这些变量。凭借电机系统内部的可见性,如果误差或问题发生,对驱动的评估将更智能与更迅速。更智能的电机控制可以报告控制系统的状态并采取行动。这样的电机控制系统是HEV/EV市场成功的必要条件。 总结 为汽车系统供应商和汽车制造商够提供更智能、更小型与更节约成本的解决方案是HEV/EV市场的关键。随着该市场迅速扩张,电机控制高度集成化的解决方案成为电动车辆增长的核心所在。最终,以较低的价格向顾客提供高性能的系统才是推动该市场向更成功迈进的真正动力。 这些 HEV/EV解决方案包括:PGA411-Q1旋转变压器接口和C2000™微控制器。

    时间:2016-09-09 关键词: 汽车 电机控制 模拟 ecu 汽车行业 电机驱动 hev ev 扭矩控制 信号链

  • 信号链基础知识:用子系统过流检测和监视重新审视系统级管理

    系统管理 如果设计师想要尽可能地提高性能和用户体验,那么管理系统的热性能是现代电子系统中十分关键的内容。随着系统功能变得越来越强大,并且在很多情况下尺寸也越来越小,管理散热系统配置已经成为一项越来越具有挑战性的任务。对电流的监视能够很好地指示出可能存在的散热问题。 目前,很多的集成商使用单个系统级熔丝或过流检测器来监视为系统供电的主电源,从而在供电时做出涉及整个系统运行的决定,或者采取某些会影响系统运行的操作。虽然这种做法成本较低,但也使得系统无法优化性能。替代方法是在子系统或模块级执行分布式过流检测。这样可以使决策变得更加高效。这个分布式监视打消了用户在三方面的顾虑: ·系统利用率和效率的问题 ·确定故障识别 ·减轻系统控制器在事件检测方面的负担 系统利用率和效率 在这里,系统集成商在通过监视子系统级电流来尽可能降低功耗的同时,想要最大限度地提高系统性能。为了更好的说明,我们以一个中央办公室的情景为例。 Figure 1   一个特有多个刀片服务器的服务器群示例 通过监视通信系统中某个服务器或通道内的每一台刀片服务器的负载电流,你能够了解那个模块的使用量何时增加或减少。在非峰值时间内,只启用一个单个卡片可以最大限度地降低功耗。在你监视单个卡片所消耗的电流时,你可以检测负载何时增加,并且相应地启用其它模块来提高系统功能,而同时也增加了功耗。通过监视每个子模块的负载电流,你可以在尽可能减少有源功耗的同时,启用合适数量的通信卡来优化用户访问体验。 确定故障识别 当任一故障被视为增加整个系统电流的原因时,可以使用一个系统范围的故障识别方法来关闭整个系统。虽然这也许对于关键系统保护或用户安全很重要,但它并不能够实现确定性模块关断和调试。确定性故障识别与系统级保护之间对比关系的一个示例就是接地故障断路器,或称为GFCI。在GFCI系统中,单个插座具有内置的故障识别和保护功能。这样可实现特定插座被禁用,而不是禁用熔丝或断路器上的整个电路。这样可实现更加快速和简单的故障识别,并有可能缩短调试周期时间,以及停机时间。 Figure 2   GFCI插座实现分布式故障识别的示例 本地化过流检测可以使系统管理控制器精确定位故障所在。这个控制器能够决定只关闭一个模块,还是关闭系统的绝大部分,又或者在最差的情况下关闭整个系统。由于维修人员知道问题所在,而不是逐一检查每个子系统,这些信息还可实现更快速的调试,并尽可能减少停机时间。此外,这还可以使一部分系统关闭等待维修的同时,剩余的系统仍然可以继续正常运行。 Figure 3   这幅图显示的是系统平衡仍然保持有效的同时,对一个刀片服务器的一部分进行维修 减轻事件检测负担 诸如德州仪器 (TI) INA300的经简化过流检测器件可被用作系统管理控制器的简单执行中断发生器。这就使系统管理控制器从不断轮询单个子系统的电流电平,并根据轮询结果进行决策的工作中解放出来。这就降低了对于系统管理控制器的总体处理要求,从而实现了更低的成本和功耗。 总结 分布式过流检测为系统集成商提供了更好的系统利用率和效率、更快速和准确的故障识别,并且能够减轻系统控制器的事件检测负担。为了将影响降到最低,需要实现方式非常简单、易于管理,并且要求极小封装。小型化和简化实现方式是在不增加系统复杂度或者不使系统变得更加庞大的同时,实现多个测量点的关键所在。 我们将在下次介绍采样率控制信号内的抖动是如何减少SAR-ADC ENOB的。我们期待着你的参与。 参考文献 ·接地故障断路器 (GFCI),OSHA,美国劳工部 ·下载INA300数据表 ·TI过流检测产品—在多个应用中防止过流,2014 关于作者 Dan Harmon是TI感测产品组的感测业务拓展经理。在他为TI服务的29年中,他支持了很多种技术与产品的开发,其中包括接口产品、成像模拟前端 (AFE)、以及电荷耦合器件 (CCD) 传感器。他还作为TI的USB-IF代表和TI USB 3.0推广小组主席。Dan获得了Dayton大学电子工程学士学位,以及阿灵顿德州大学电子工程硕士学位。

    时间:2015-11-23 关键词: 德州仪器 过流检测 信号链

  • 征服恶劣环境—面向极端高温应用的低功耗、精密、高温器件

     简介 提到恶劣环境,世界上最具挑战性的应用之一无疑是井下钻探。油田服务公司正在挑战技术极限,设计必须能承受极端压力、冲击和振动的精密设备,同时该设备需要具有较长的电池使用寿命且尺寸极小。但是,对于在此环境中使用的电子设备,最大挑战也许是极端温度。这里的高温与深度成函数关系;而地热梯度平均约为25°C/km,在某些地区,还可能更高。随着全球能源需求日益增大,推动着人们去钻探和开发这些过去一直无从下手的热井。不幸的是,在这种环境中根本无法冷却电子设备。正因如此,行业需要必须能在200°C以上的环境中可靠工作的精密仪器。确实,较高的故障成本更是突显了可靠性的重要。在地下数英里作业的钻柱如果出现电子组件故障,需要一天以上的时间来检修及更换,操作复杂深水海上钻井平台每天大约需要花费50多万美元。 除了石油和天然气勘探外,高温电子器件还有其他的新兴应用。航空业正日益向“多电子飞机”的趋势发展。这一方案一方面是为了用分布式控制系统取代传统集中式发动机控制器,分布式控制系统将发动机控制系统放置在离发动机较近的地方,显著降低了互连的复杂性,使飞机的重量减轻了数百磅。此方案的另一方面是要用电力电子和电子控制系统取代液压系统,以提升可靠性,减少维护成本。理想状态下,控制电子设备必须离执行器很近,这也会产生较高的环境温度。类似于航空电子喷气发动机,用于发电的重工业燃气涡轮机需要控制系统和仪器仪表。 高额定温度的IC 过去,由于无法获得高温IC,高温电子设备设计人员只能使用超出其额定规格的器件。尽管有些标准温度IC可能具有超出规格的有限功能,但使用起来非常困难,并且十分危险,可靠性或性能毫无保障。例如,工程师必须确定可能选用的器件,充分测试并描述其温度性能,并验证其长期可靠性。器件的性能和寿命经常会大幅递减,并在制造批次之间可能有巨大差异。这一过程充满挑战且昂贵耗时,设计人员都是唯恐避之不及。此外,目标设计温度过渡到175°C,并且需要更先进的封装,即使只是为了在较短的持续时间保持可靠性。 幸运的是,近年来的发展使得能够买到现成的高额定温度IC。ADI公司高温产品组合中的产品采用专门工艺技术、电路设计和封装并经过全面的特性、验证和生产测试计划测试,能够保证以数据手册规格在高温下可靠工作。 高温信号链 尽管我们提到了高温电子设备的一些不同的最终应用,从石油勘探到航空电子再到重工业领域,这些应用在信号链中存在几个共同的要求。其中大多数系统需要从多个传感器获取精密数据或需要高吞吐速率。另外,其中许多应用具有严格的功耗预算,因为它们都是采用电池运行,或无法容忍因电子设备自热而增加的额外温度。因此,需要一个低功耗数据采集信号链,由传感器、精密模拟元件和高吞吐速率ADC组成。 尽管现在可以购买到商用高额定温度IC,如今的电路构建模块选择也仍然有限。特别是,没有低功耗、采样速率高于100 kSPS且额定工作温度超过200°C的商用精密ADC。对于需要采集并处理较宽带宽信号或想要多路复用通道的电路设计人员,这是一个非常令人头疼的问题。为满足这种需求,ADI最近发布了AD7981 ADC;在16位分辨率下,该器件的采样速率可高达600 kSPS,同时维持低功耗和极小的尺寸。现在提供额定温度为175°C的10引脚MSOP封装,以及额定温度为210°C的陶瓷扁平封装,裸片版本也即将推出。作为案例研究,我们将进一步详细探讨此ADC的特性,了解它如何在极端温度下实现突破性能和可靠性。 AD7981高温ADC AD7981是一款16位、低功耗、单电源ADC,采用采样速率高达600 kSPS的逐次逼近型架构(SAR)。它基于ADI成熟的SAR内核,该内核已在大量工业和仪器仪表系统中使用。该架构基于ADI的专有电荷再分配容性DAC技术。CMOS制造工艺之所以可在高温下实现优异性能,其部分原因就在于这些电容在整个温度范围内的匹配和跟踪特性。此外,还对采集电路进行了优化,以提高高温环境下的精度。 AD7981的典型应用信号链如图1所示,其中轨到轨输出、精密、低功耗、双通道高温认证放大器AD8634用于驱动AD7981的输入,并作为基准电压缓冲器与低温度漂移的高温认证ADR225 2.5 V基准电压源配合使用。AD7981需要两个电源:一个模拟和数字内核电源(VDD),以及一个与1.8 V和5 V之间的任何逻辑直接接口的数字输入/输出接口电源(VIO)。VIO和VDD引脚可以连在一起,以减少所需的电源数。 AD7981提供出色的交流和直流性能并具有±0.7 LSB INL、−102 dB THD和91 dB SNR的典型规格,因此即使在175°C的高温下,也能实现高动态范围和更好的精度。AD7981的典型INL与 代码的关系图如图2所示。 AD7981在不同温度下宽输入频率范围内的信纳比(SINAD)性能如图3所示。 AD7981通过使功耗和吞吐速率呈线性变化关系,在600 kSPS满吞吐量时功耗典型值约为4 mW,10 kSPS时为70 μW,最大程度地延长了恶劣环境中的电池使用寿命,如图4所示。AD7981在转换之间会自动关断,以便节省功耗。这使该器件特别适合于低采样速率的应用(即使只有几赫兹),并使电池供电系统实现极低的功耗。 AD7981提供与SPI和其他数字主机兼容的灵活串行数字接口。它可以配置为具有最低I/O计数的简单3线模式,或允许菊花链回读和同步采样选项的4线模式。对于多通道数据采集系统,AD7981可以轻松与多路复用器配合使用,因为它集成了片内采样保持电路,并且SAR架构不存在流水线延迟。 高温封装 拥有能够在高温下工作的高性能芯片时,我们只成功了一半。可靠封装对于必须能承受恶劣高温环境的集成电路至关重要。封装必须能提供对环境的足够保护和与PCB的可靠互连,同时尺寸适合系统的任务剖面。 尽管可靠封装有许多考虑因素,高温环境下其中一个主要故障点是线焊。这种故障在行业中常见的塑料封装中尤其成问题,其中金色焊线和铝焊盘是标准配置。高温会加速金/铝金属间化合物的生长。这些金属间化合物与焊接故障相关联,如脆性焊线和空洞,可能时刻都会发生,如图5所示。为了避免这些故障,ADI使用焊盘金属化(OPM)工艺形成金焊盘表面,以便连接焊线。此单金属系统不会形成金属间化合物,在我们的认证测试中已经证明是可靠的,在195°C条件下预备超过6000小时,如图6所示。尽管ADI在195°C展现出可靠的焊接性能,但是受限于模塑化合物的玻璃化转变温度,塑料封装的额定工作温度最高仅到175°C。 应用示例 上述AD7981重要特性组合,如高性能、稳定性、低功耗和灵活配置,符合恶劣高温环境中精密测量应用的重要性能标准,如地下石油和天然气勘探以及工业、仪器和航空电子应用。 AD7981属于不断增长的高温产品组合,能够实现从传感器到处理器的精密模拟信号处理。AD7981与ADR225 2.5 V基准输出电压源和AD8634/AD8229放大器配套用于信号调理。高额定温度的MEMS惯性传感器,如ADXL206加速度计和ADXRS645陀螺仪,为设计人员提供有关系统方向和运动的信息。使用这些器件的井下钻探仪器仪表的简化信号链 如图7所示。 在此应用中,对各种井下传感器的信号进行了采样,以便收集周围的地质构造数据。这些传感器可能采用电极、线圈、压电或其他传感器的形式。加速度计、磁力计和陀螺仪提供有关钻柱的倾斜、方位角、旋转速率、冲击和振动的信息。其中部分传感器的带宽极低,而其他传感器可能具有音频范围及更高范围的相关信息。AD7981能够从具有不同带宽要求的传感器采样数据,同时保持功效。小尺寸使其可以轻松地在空间受限的布局中容纳多个通道,如井下钻探工具中常用的极窄电路板宽度。此外,灵活的数字接口则允许在要求更苛刻的应用中进行同步采样,同时还允许对低引脚计数的系统进行简单的菊花链回读。 小结 总而言之,极端高温成为恶劣环境系统中的最大挑战之一。但是,新的高额定温度IC(如AD7981)使设计人员能够采用现成的高精度、低功耗且质量可靠的器件,来克服这种挑战。

    时间:2015-06-21 关键词: 井下 恶劣环境 钻探 信号链

  • 信号链基础知识:工业市场过渡到3.3V CAN收发器

    在过去几十年间,控制器局域网 (CAN) 应用已经从主要使用5V协议控制器转变为大部分包含3.3V控制器。然而,5V CAN收发器的使用仍旧很普遍,所以经常看到3.3V控制器与5V收发器配对使用的CAN收发器应用。可以通过在特定应用中采用一个3.3V CAN收发器解决这种设置中出现的一些问题。 在一个应用中将控制器和收发器的电源电压混合在一起需要为每个电压配备至少一个经稳压电源轨。在某些情况下,仅仅是为了支持5V收发器,就会增加成本、电路板空间、以及总体设计复杂程度。对于这些应用,将CAN收发器切换至3.3V电源轨能够缓解这个问题。 图1显示的是采用5V收发器和3.3V控制器的双电源轨应用的方框图。图2显示了在CAN收发器和控制器均由3.3V电压供电运行时有可能实现的更简单设置。 图1:双电源5V CAN收发器应用 : 图2:单电源3.3V CAN收发器应用 一个常有的顾虑就是针对5V和3.3V CAN收发器的共模偏置电压的不同,以及这可能导致的通信问题。幸运的是,这个问题已经由ISO18898-2标准所解决,这个标准需要CAN兼容收发器的接收器部分能够处理-2V至+7V的共模范围。这一要求在ISO11898-5标准发布版本中被进一步扩展至±12V范围。 图3显示了3.3V收发器(通常情况下,偏置到0.7*Vcc,以符合2V和3V CAN标准要求),5V收发器的共模偏置电压范围,以及2个CAN标准所要求的共模输入范围。除了那些由混合5V和3.3V CAN收发器所导致的共模偏移,仍然有很多较大共模偏移裕量。由于共模偏移不是很严重的问题,这就实现了互操作性。 图3 图3:CAN共模范围 在将3.3V CAN收发器的共模偏置电压设定为除了0.5*Vcc以外的任何值时,有一点需要注意,那就是器件在发送时会出现共模位移。这个位移出现的原因在于高端和低端驱动器的驱动强度大体相同,从而使获得的显性位处于Vcc/2的居中位置。每当3.3V收发器在隐性和显性位之间转换时就会出现0.7*Vcc到0.5*Vcc的共模位移(图4)。 共模电压的位移会在总线上形成有害的传导和辐射放射。为了消除这些放射,可以在总线上放置一个分离式端接来过滤共模噪声(图5)。可通过改变电容器的值来调节这个过滤器。 图4:3.3V CAN收发器的共模位移 图5:共模滤波 另外一个添加3.3V CAN收发器的常见问题是它们的输出差分电压要小于5V CAN收发器的输出差分电压,因此抗噪性较低。CAN标准通过要求所有收发器能够驱动最低1.5V的输出差分电压,并要求接收器具有设定在0.9V差分电压上的输入阀值电压来解决这个问题。因此,只要3.3V收发器能够驱动1.5V的最低电压,系统中就会形成0.6V的电压裕量来应对线路损耗和噪声容限。为了补偿电压净空的减少,通常情况下,3.3V收发器内的驱动器的尺寸要大于5V收发器内的驱动器。 总之,很多人错误地认为不能在同一网络中将3.3V和5V CAN收发器混合在一起使用,或者说,无法构建一个稳健耐用的3.3V CAN网络。而事实并非如此。在上市10多年之后,3.3V CAN收发器在诸如大型家用电器、服务器背板、智能电网、和电池供电类器件中仍然受到青睐,就是因为它们能够简化终端产品设计。牢记这一点,并且时刻注意共模放射,那么3.3V CAN收发器就能够在更多不断向前发展的应用中大展拳脚。 下一次,我们将解释RF干扰如何影响诸如运算放大器等线性电路,并且提供如何根据器件技术规格来选择具有更佳RF干扰抗扰度的器件的方法。

    时间:2015-04-15 关键词: 德州仪器 can收发器 信号链

  • 初步了解信号链中的数据转换器

     信号链由多个组件构成,如放大器、数据转换器、接口、时钟和定时等。信号链的用途是采集和处理数据,或者根据对实时信息的分析应用系统控制。 本文中,我们将关注信号链的一部分:数据转换器(参见图1),但首先必须了解模拟和数字世界。 信号需要经过处理,才能显示其中所含的信息、进行信号分析或转换成另一种能够使用的信号类型。在实际应用中,模拟产品检测声、光、温度或压力等信号,然后进行操作处理。接着由模数转换器(ADC)等转换器接收真实信号,将其转换为1和0的数字格式。随后,由数字信号处理器捕获数字化信息并加以处理,最后反馈供现实世界使用。这个过程可通过两种方式来实现,一是数字方式,二是经过数模转换器(DAC),转成模拟格式。二者均以高速完成。模拟信号是连续信号,而数字信号仅捕捉部分信号。 图1:采用外部基准电压的基本ADC。 在学习数据转换器(ADC或DAC)时,需要了解一些基本知识。 例如,为什么首先要对模拟信号进行数字化?原因有多个,其中包括:改善信号分析能力、更鲁棒的存储和更精确的传输。但另一方面,信号变得更为复杂,而且需要更长的处理时间。有利就有弊,但好消息是:高性能转换器有助于消除复杂性并增强性能。 ADC的用途涉及输入信号的量化,这意味着转换器会引入少量误差。ADC的整体性能涉及许多参数,如热噪声、抖动和量化噪声-即指定带宽(BW)内的信噪比(SNR)。转换器数据手册中报告的信噪比可为设计人员提供实际的期望,帮助其了解转换器在被采样信号中的最低可分辨"步长"。ADC并非仅执行一次转换,而是周期性地执行转换,即采样。最终获得的是将连续模拟信号转换为离散或不连续信号的信号样本或数字值序列。你会看到,这一过程对捕捉到的信号质量有重大影响。 图2.采样数据系统:采样和量化。此处,采样是时域上的影响,而量化则是幅度域上的影响。采样这一行为导致二者同时发生,并把信号分为两个轴。

    时间:2015-02-19 关键词: 数据转换器 dac adc 信号链

首页  上一页  1 2 下一页 尾页
发布文章

技术子站

更多

项目外包