当前位置:首页 > 分辨
  • LED显示屏的分辨方法,你知道吗?

    LED显示屏的分辨方法,你知道吗?

    你知道LED显示屏的分辨方法吗?它有什么特点?为了满足客户的需要,生产厂家只能加大力度在LED显示屏制作上更精细和细心的去做好每一步,必须设计出更高可靠、更实用的LED显示屏。基于目前国内技术的发展,对于在LED显示屏行业标准进行可靠性测定试验,实际上很难实现MTBF不低于10000小时这一可靠性要求,更难满足高可靠LED显示屏要求。 不过要做到具有高可靠的LED显示屏,必须要在LED显示屏材料上有很大提高,而在设计方面要求也要时尚、合理、先进。 下面我们就先从LED显示屏产品材料上详细说明: 首先从LED发光管说: LED发光管具体应要实现以下几个关键: 1.稳定性好,离散性小。 2.指标高,衰减幅度小,耐压能力强。 3. 亮度、波长、角度一致性高。 4. 配光效果佳:完美的配光曲线。 5.可抵御温差、潮湿和紫外线,适用于户外环境。 其次是在箱体上: 整体采用钢板或铝材,采用开门结构。必须要充分考虑散热措施和防水措施两方面。 还有在接插件上: 这个也是重要的链接器件,应采用优质接插件产品,以保证接插件的纯金镀层的厚度,保持最佳的电气连接性能。保证系统在高温、高湿环境下良好的电气连接性能,可以使系统长期稳定可靠地运行。 然后是在开关电源上: LED显示屏供电采用通过认证的著名品牌开关稳压电源模块。对于所有的开关电源都经过严格的压力测试、筛选。保证长期稳定可靠要求。 最后是在电路板上和驱动芯片ic器件上: 对于电路板应采用阻燃环氧板材,设计布局合理,走线规范,满足电磁兼容性和电路稳定性的要求。在大温度范围内,保持高精度的恒定电流输出和高可靠性,能使显示屏的均匀性和可靠性显著改善。显示系统主要材料应通过CE、FCC、UL、CCC等认证。以上所诉就是LED显示屏在产品材料上所具有的高可靠的要求,只有这样LED显示屏在品质上越来越提高,才能达到客户的满意度。 也应从上诉5点来选择好LED产品。 做到在LED显示屏产品上符合高可靠的要求,生产厂家还需要发更多时间,更多精力去往这方面发展,我相信,未来的LED显示屏行业技术将越来越精湛,发展将无可限量!以上就是LED显示屏的分辨方法解析,希望能给大家帮助。

    时间:2020-07-31 关键词: LED 显示屏 分辨

  • LED种类繁多的今天,应该如何分辨优秀LED显示屏?

    LED种类繁多的今天,应该如何分辨优秀LED显示屏?

    买产品大家都希望买好的,那么应该如何分辨优秀的LED显示屏呢?为了满足客户的需要,生产厂家只能加大力度在LED显示屏制作上更精细和细心的去做好每一步,必须设计出更高可靠、更实用的LED显示屏。基于目前国内技术的发展,对于在LED显示屏行业标准进行可靠性测定试验,实际上很难实现MTBF不低于10000小时这一可靠性要求,更难满足高可靠LED显示屏要求。 不过要做到具有高可靠的LED显示屏,必须要在LED显示屏材料上有很大提高,而在设计方面要求也要时尚、合理、先进。 下面我们就先从LED显示屏产品材料上详细说明: 首先从LED发光管说: LED发光管具体应要实现以下几个关键: 1.稳定性好,离散性小。 2.指标高,衰减幅度小,耐压能力强。 3. 亮度、波长、角度一致性高。 4. 配光效果佳:完美的配光曲线。 5.可抵御温差、潮湿和紫外线,适用于户外环境。 其次是在箱体上:整体采用钢板或铝材,采用开门结构。必须要充分考虑散热措施和防水措施两方面。 还有在接插件上:这个也是重要的链接器件,应采用优质接插件产品,以保证接插件的纯金镀层的厚度,保持最佳的电气连接性能。保证系统在高温、高湿环境下良好的电气连接性能,可以使系统长期稳定可靠地运行。 然后是在开关电源上:LED显示屏供电采用通过认证的著名品牌开关稳压电源模块。对于所有的开关电源都经过严格的压力测试、筛选。保证长期稳定可靠要求。 最后是在电路板上和驱动芯片ic器件上:对于电路板应采用阻燃环氧板材,设计布局合理,走线规范,满足电磁兼容性和电路稳定性的要求。在大温度范围内,保持高精度的恒定电流输出和高可靠性,能使显示屏的均匀性和可靠性显著改善。显示系统主要材料应通过CE、FCC、UL、CCC等认证。以上所诉就是LED显示屏在产品材料上所具有的高可靠的要求,只有这样LED显示屏在品质上越来越提高,才能达到客户的满意度。 也应从上诉5点来选择好LED产品。 做到在LED显示屏产品上符合高可靠的要求,生产厂家还需要发更多时间,更多精力去往这方面发展,我相信,未来的LED显示屏行业技术将越来越精湛,发展将无可限量!做到在LED显示屏产品上符合高可靠的要求,生产厂家还需要发更多时间,更多精力去往这方面发展,我相信,未来的LED显示屏行业技术将越来越精湛,发展将无可限量.

    时间:2020-04-20 关键词: LED 显示屏 分辨

  • 解析:电容屏和电阻屏原理及如何分辨

    随着iphone手机的热销,在我们的身边出现了越来越多的触摸屏手机,而各大手机厂商为了应对苹果iphone手机的冲击,纷纷推出了自己品牌的触摸屏手机。并且屏幕越来越大,功能也越来越多。而在触摸屏中触摸屏的材质又分为截然不同的两种,分别是电容屏屏幕手机和电阻屏屏幕手机。 如何区分电容屏屏幕手机和电阻屏屏幕手机: 方法一:支持多点触摸的必然是电容屏手机。(由于多点触摸需要系统软件的支持,所以不支持多点触摸的也有可能还是电容屏。) PS:不要怪自己的手机是电容屏但是为什么不支持多点触摸,那是因为多点触控不仅需要硬件的支持(电容屏)还需要相应的系统软件支持(比如iphone的系统,Google的Android系统等) 方法二:有触摸笔的必定是是电阻屏手机。(当然部分电阻屏手机并没有随机配置触控笔的) 方法三:用指甲可以触控的是电阻屏手机。 代表手机: 电容屏手机:iphone ,HTC HD2 ,Nokia N8 ,Samsung I9000 ,Sony Ericsson X10 电阻屏手机:HTC Diamond2,Nokia N97,Samsung I8000 ,Sony Ericsson X2 触摸屏原理: 从技术原理角度讲,触摸屏是一套透明的绝对定位系统:因此他必须具备三个特性: 第一是透明性能:透明材质的好坏会直接影响到触摸屏的视觉效果,主要体现在屏幕的反光性和清晰度。 其次是绝对坐标系统:我们传统的鼠标是一种相对的定位系统,定位只参照前一次的鼠标位置的坐标,而触摸屏需要选哪里就指哪里,这是一种相对的坐标系统,两者在坐标的本质上有绝对区别。 第三是检测与定位:触摸屏技术是依靠屏幕下面的传感器工作的,因此定位的原理和所采用的传感器决定了触摸屏的大部分技术指标,包括反应速度、可靠性、稳定性和寿命等。 电容屏和电阻屏区别: 电容屏触控工作方式: 电容式触摸屏利用人体的电应进行工作,其触摸屏由一块四层复合玻璃屏构成,并在表面贴上一层透明的特殊金属导电物质。当手指触摸在触摸屏上时,由于人体电场、用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触摸屏四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息。 电阻屏触控工作方式: 电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO膜),上面再盖有一层 外表面经过硬化处理、光滑防刮的塑料层。它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。当手指接触屏幕时,两层 ITO发生接触,电阻发生变化,在X和Y两个方向上产生信号,控制器根据检测到的电阻变化来计算接触点的XY坐标,再依照这个坐标来进行相应的操作,因此这种技术必须是要使用硬物施力到屏幕上,才能获得触控效果。

    时间:2017-06-02 关键词: 分辨 电容屏 电阻屏

  • 智能电网:如何来分辨光纤光缆的质量好坏

    21ic智能电网:1、油膏。油膏主要有纤膏与缆膏,正常情况下纤膏应充满整个松套管,缆膏则应在压力下充满光缆缆芯的每一个缝隙。现在纤膏有充半满或更少的做法,缆膏则有的只是在缆芯外抹一层,有的则是在光缆两头充中间不充。这样会使光纤得不到好的保护,影响光纤衰减等传输性能,防水性能差达不到国家标准,一旦光缆意外渗水就会导致整条链路渗水报废。而正常情况下,即使意外渗水也只需修补渗水的一段就可以了,不需要重新来过。(国家标准要求阻水性能为:三米的光缆、一米的水柱压力,二十四小时不渗水。)若用差的油膏同样会出现以上问题,且可能会因为油膏的触变性差,会使光纤造成微弯损耗,整个链路传输特性不合格;若油膏带酸性还会与光缆中的金属材料发生析H反应析出氢分子,而光纤遇H衰减会迅速增大,致使整个链路中断传输。 2、护套。光缆护套既要适应许多不同复杂的气候环境,又要保证长期(至少25年)的稳定。光缆护套不但要有一定强度,较低的热变形、磨耗、透水率、热回缩和磨擦系数,还要耐环境应力强,材料加工性能好等特点。少用或用不好的护套料虽然能够通过出厂验收,但因品质存在缺陷使用一段时间后会出现开裂、渗水,若用再生塑料顶替优质聚乙烯护套料则更为严重。优质护套料做成的光缆,成缆后外皮平整、光亮、厚薄均匀、无气泡,否则会出现光缆表皮粗糙的现象,且因原料内有很多杂质,细看能发现光缆外皮有很多极细小坑哇,且因为厚度薄,光缆的整个外径会比优质光缆小得多。室内光缆,一般采用优质阻燃聚氯乙烯,外表应光滑、光亮,柔韧性好,易剥离;否则会出现外皮光洁度差,容易和紧套纤、芳纶粘连的现象。 3、钢带、铝带。光缆中的钢带、铝带主要用以保护光纤免受机械侧压力、防潮等作用,较好的光缆中一般会使用镀铬钢带。劣质光缆以只有一面做过防锈处理的普通铁皮或称黑皮(无镀层钢带),取代镀铬钢带,时间一长,光缆内就会出现锈蚀情况,光纤氢损也会加剧,且因其易与护套分离构不成综合粘结护层,挡潮性能也非常差;有些则以镀锡钢带代替镀铬钢带,镀锡钢带表面的***、气泡等是不可避免的,因此在潮湿大气和表面凝露或浸水条件下,容易发生腐蚀,尤其是酸性条件下腐蚀更快。镀锡层耐热性差,熔点仅摄氏232度,应用中由于挤护套时的高温,使得剥离强度存在不确定性,影响光缆抗潮性能。而铬的熔点达摄氏1900度,化学性质很稳定,在常温下放在空气中或浸在水中不会生锈,耐腐蚀性能非常好,由于表面易氧化形成钝化层所以耐环境性能很好。铝带则一般会出现以不合格的热贴法覆膜铝带代替流延法合格覆膜铝带,这同样也会影响光缆性能。 4、钢丝。光缆中的钢丝主要用于保护光纤免受机械拉力。好的光缆一般会使用高模量的磷化钢丝,短期拉力为1500N或3000N。而劣质光缆则会用铁丝或直径很小的普通钢丝代替,这样一方面容易锈蚀;另一方面,由于抗拉强度远不足1500N,施工的时候就可能拉伤光纤。高模量的磷化钢丝一般呈青灰色,韧性好,不易弯曲;而替代的铁丝等一般捏在手上可以随意弯曲且时间长了,挂光纤盒的两头会生锈断裂。 5、松套管。光缆中装光纤的松套管一般使用高分子PBT材料(聚对苯二甲酸丁二醇酯),这样的松套管强度高,不变形,抗老化。劣质光缆的松套管则有时会用其它材料替代,外径很薄,用手一捏就扁,与饮料吸管无异,无法承担对光纤的保护作用。 6、阻水带。光缆用阻水带或阻水纱通过产品内部呈均匀分布的高吸水性树脂所具有的强有力的吸水性能,在浸透压、亲和性、橡胶弹力的共同作用下,高吸水性树脂能快速吸入数倍于自重的水。并且,阻水粉一旦遇水就会即刻膨胀凝胶,此时不管给其施加多少压力,水分也不会被挤出。因此,用含吸水树脂的阻水带包覆缆芯,万一光缆外壁破损,伤口部分的高吸水性树脂因膨胀而发挥密封效果,可以将水的进入阻止到最小限度。劣质光缆通常使用无纺布或纸带,一旦光缆外皮破损,后果将会十分严重。 7、芳纶。又名凯夫拉丝,是一种高强度的化学纤维,目前在军工业领域用得最多,防弹背心就是这种材料生产的。它是杜邦的专利产品,是室内光缆的主要成本构成,主要用来保护室内光缆中的紧套纤免受机械拉力。但因芳纶成本较高,劣质室内光缆一般把外径做得很细,这样可以通过减少几股芳纶节约成本,或使用一种外观类似芳纶的聚酯纱来代替(已较为普遍),而聚酯纱几乎不能承受什么拉力。这样光纤在铺设的时候很容易被拉伤或拉断。 8、光纤。光纤是光缆中最核心的原材料,好的光缆一般采用大厂的优质纤芯。劣质光缆通常用低级光纤和来路不明的走私光纤,这些光纤因来源复杂,品质难以保证,有时多模光纤里还经常混着单模光纤,而一般小厂缺乏必须的检测设备,不能对光纤的质量做出判断,更使质量难以得到保证。另外,有些则用低价买来短段光纤熔接以后再做成光缆。因肉眼无法辨别这样的光纤,施工中常碰到的问题是:传输速率低、距离短,光纤衰减大,不能和尾纤对接,缺乏柔韧性,盘纤的时候易断,甚至一根光纤一头是多模,另一头却是单模。 9、着色油墨.为了方便施工时区分光纤,国家标准要求光纤与松套管都要着上鲜明的颜色.优质光缆都按标准使用优质油墨着色,颜色十分鲜明且不易脱落.而劣质光缆则会使用劣质油墨着色或干脆不着色.劣质油墨颜色不鲜明且有时易于溶解在纤膏中导致颜色无法区分,不着色则更是给施工带来极大的不便. 10、产品包装。光缆一般采用木盘或铁木盘成轴包装,盘的外面会封上木质封板,以保证笨重的光缆在整个运输途中的受力、弯曲半径等条件在标准要求范围之内。而劣质光缆为了节约成本,一般使用十分差的包装盘,运到目的地时几乎接近散架,有些干脆不用盘,把光缆绕一下就发运了,或者用盘也不用木条封住。 综上所述,光纤光缆真正的优劣之分来源于其结构设计、用材用料与生产工艺的优劣综合之差。因为光缆仍未大量普及,劣质产品虽然隐患多多,许多用户甚至集成商在不懂行的情况下,依然在不分场合地采用。正是由于这个原因,劣质光缆对行业的负面影响会更大,因为就光缆本身来说,其价值并不大,但其敷设过程(直埋、架空、穿管等)的费用却十分惊人,且费时费力,加之其在整个通信链路中是基础介质,所以一旦出现问题,无论你两端的硬件设备多么昂贵、高端,整个系统都将无一例外地完全瘫痪,修复的周期也会很长,造成的损失将千万倍优劣之间的差价。 总的来说,中国的光纤光缆市场经过这么多年的调整,国内优质光缆的性价比已经堪称世界之最,还一味以低价参与竞争必定以牺牲产品质量、损害客户效益为代价,最终的结果将是买卖双方的不欢而散,希望所有从业者及使用者慎而慎之。 更多好文:21ic智能电网

    时间:2012-08-23 关键词: 质量 传感网 智能电网 光纤光缆 分辨

  • 如何来分辨光纤光缆的质量好坏

    标签:光纤  光缆 1、油膏。油膏主要有纤膏与缆膏,正常情况下纤膏应充满整个松套管,缆膏则应在压力下充满光缆缆芯的每一个缝隙。现在纤膏有充半满或更少的做法,缆膏则有的只是在缆芯外抹一层,有的则是在光缆两头充中间不充。这样会使光纤得不到好的保护,影响光纤衰减等传输性能,防水性能差达不到国家标准,一旦光缆意外渗水就会导致整条链路渗水报废。而正常情况下,即使意外渗水也只需修补渗水的一段就可以了,不需要重新来过。(国家标准要求阻水性能为:三米的光缆、一米的水柱压力,二十四小时不渗水。)若用差的油膏同样会出现以上问题,且可能会因为油膏的触变性差,会使光纤造成微弯损耗,整个链路传输特性不合格;若油膏带酸性还会与光缆中的金属材料发生析H反应析出氢分子,而光纤遇H衰减会迅速增大,致使整个链路中断传输。 2、护套。光缆护套既要适应许多不同复杂的气候环境,又要保证长期(至少25年)的稳定。光缆护套不但要有一定强度,较低的热变形、磨耗、透水率、热回缩和磨擦系数,还要耐环境应力强,材料加工性能好等特点。少用或用不好的护套料虽然能够通过出厂验收,但因品质存在缺陷使用一段时间后会出现开裂、渗水,若用再生塑料顶替优质聚乙烯护套料则更为严重。优质护套料做成的光缆,成缆后外皮平整、光亮、厚薄均匀、无气泡,否则会出现光缆表皮粗糙的现象,且因原料内有很多杂质,细看能发现光缆外皮有很多极细小坑哇,且因为厚度薄,光缆的整个外径会比优质光缆小得多。室内光缆,一般采用优质阻燃聚氯乙烯,外表应光滑、光亮,柔韧性好,易剥离;否则会出现外皮光洁度差,容易和紧套纤、芳纶粘连的现象。 3、钢带、铝带。光缆中的钢带、铝带主要用以保护光纤免受机械侧压力、防潮等作用,较好的光缆中一般会使用镀铬钢带。劣质光缆以只有一面做过防锈处理的普通铁皮或称黑皮(无镀层钢带),取代镀铬钢带,时间一长,光缆内就会出现锈蚀情况,光纤氢损也会加剧,且因其易与护套分离构不成综合粘结护层,挡潮性能也非常差;有些则以镀锡钢带代替镀铬钢带,镀锡钢带表面的***、气泡等是不可避免的,因此在潮湿大气和表面凝露或浸水条件下,容易发生腐蚀,尤其是酸性条件下腐蚀更快。镀锡层耐热性差,熔点仅摄氏232度,应用中由于挤护套时的高温,使得剥离强度存在不确定性,影响光缆抗潮性能。而铬的熔点达摄氏1900度,化学性质很稳定,在常温下放在空气中或浸在水中不会生锈,耐腐蚀性能非常好,由于表面易氧化形成钝化层所以耐环境性能很好。铝带则一般会出现以不合格的热贴法覆膜铝带代替流延法合格覆膜铝带,这同样也会影响光缆性能。 4、钢丝。光缆中的钢丝主要用于保护光纤免受机械拉力。好的光缆一般会使用高模量的磷化钢丝,短期拉力为1500N或3000N。而劣质光缆则会用铁丝或直径很小的普通钢丝代替,这样一方面容易锈蚀;另一方面,由于抗拉强度远不足1500N,施工的时候就可能拉伤光纤。高模量的磷化钢丝一般呈青灰色,韧性好,不易弯曲;而替代的铁丝等一般捏在手上可以随意弯曲且时间长了,挂光纤盒的两头会生锈断裂。 5、松套管。光缆中装光纤的松套管一般使用高分子PBT材料(聚对苯二甲酸丁二醇酯),这样的松套管强度高,不变形,抗老化。劣质光缆的松套管则有时会用其它材料替代,外径很薄,用手一捏就扁,与饮料吸管无异,无法承担对光纤的保护作用。 6、阻水带。光缆用阻水带或阻水纱通过产品内部呈均匀分布的高吸水性树脂所具有的强有力的吸水性能,在浸透压、亲和性、橡胶弹力的共同作用下,高吸水性树脂能快速吸入数倍于自重的水。并且,阻水粉一旦遇水就会即刻膨胀凝胶,此时不管给其施加多少压力,水分也不会被挤出。因此,用含吸水树脂的阻水带包覆缆芯,万一光缆外壁破损,伤口部分的高吸水性树脂因膨胀而发挥密封效果,可以将水的进入阻止到最小限度。劣质光缆通常使用无纺布或纸带,一旦光缆外皮破损,后果将会十分严重。 7、芳纶。又名凯夫拉丝,是一种高强度的化学纤维,目前在军工业领域用得最多,防弹背心就是这种材料生产的。它是杜邦的专利产品,是室内光缆的主要成本构成,主要用来保护室内光缆中的紧套纤免受机械拉力。但因芳纶成本较高,劣质室内光缆一般把外径做得很细,这样可以通过减少几股芳纶节约成本,或使用一种外观类似芳纶的聚酯纱来代替(已较为普遍),而聚酯纱几乎不能承受什么拉力。这样光纤在铺设的时候很容易被拉伤或拉断。 8、光纤。光纤是光缆中最核心的原材料,好的光缆一般采用大厂的优质纤芯。劣质光缆通常用低级光纤和来路不明的走私光纤,这些光纤因来源复杂,品质难以保证,有时多模光纤里还经常混着单模光纤,而一般小厂缺乏必须的检测设备,不能对光纤的质量做出判断,更使质量难以得到保证。另外,有些则用低价买来短段光纤熔接以后再做成光缆。因肉眼无法辨别这样的光纤,施工中常碰到的问题是:传输速率低、距离短,光纤衰减大,不能和尾纤对接,缺乏柔韧性,盘纤的时候易断,甚至一根光纤一头是多模,另一头却是单模。 9、着色油墨.为了方便施工时区分光纤,国家标准要求光纤与松套管都要着上鲜明的颜色.优质光缆都按标准使用优质油墨着色,颜色十分鲜明且不易脱落.而劣质光缆则会使用劣质油墨着色或干脆不着色.劣质油墨颜色不鲜明且有时易于溶解在纤膏中导致颜色无法区分,不着色则更是给施工带来极大的不便. 10、产品包装。光缆一般采用木盘或铁木盘成轴包装,盘的外面会封上木质封板,以保证笨重的光缆在整个运输途中的受力、弯曲半径等条件在标准要求范围之内。而劣质光缆为了节约成本,一般使用十分差的包装盘,运到目的地时几乎接近散架,有些干脆不用盘,把光缆绕一下就发运了,或者用盘也不用木条封住。 综上所述,光纤光缆真正的优劣之分来源于其结构设计、用材用料与生产工艺的优劣综合之差。因为光缆仍未大量普及,劣质产品虽然隐患多多,许多用户甚至集成商在不懂行的情况下,依然在不分场合地采用。正是由于这个原因,劣质光缆对行业的负面影响会更大,因为就光缆本身来说,其价值并不大,但其敷设过程(直埋、架空、穿管等)的费用却十分惊人,且费时费力,加之其在整个通信链路中是基础介质,所以一旦出现问题,无论你两端的硬件设备多么昂贵、高端,整个系统都将无一例外地完全瘫痪,修复的周期也会很长,造成的损失将千万倍优劣之间的差价。 总的来说,中国的光纤光缆市场经过这么多年的调整,国内优质光缆的性价比已经堪称世界之最,还一味以低价参与竞争必定以牺牲产品质量、损害客户效益为代价,最终的结果将是买卖双方的不欢而散,希望所有从业者及使用者慎而慎之。

    时间:2012-07-11 关键词: 质量 光纤光缆 分辨

  • 安检员如何从安检仪扫描出的透视图像里分辨违禁品?

    随着城市的发展,地铁成为了缓解交通压力的好方式,于是各大城市的地铁如雨后春笋般的冒了出来。地铁也成为了人员密集的集散地,安全检查就显得格外重要了,地铁口一般都设置了安检仪,以确保不会有人携带违禁品进入造成安全隐患。哪些物品属于地铁违禁品呢?一般来说枪支、军用或警用械具类、爆炸物品类、管制刀具、易燃易爆物品、毒害品、腐蚀性物品以及放射性物品等都属于违禁物品,是不能携带进入地铁的。地铁安检员们的工作就是每天引导旅客接受探测仪检测以及行李的安检。他们的工作其实非常单调,但又非常重要,涉及到安全大事。当乘客们将行李放入安检仪后,安检员就要通过X光机扫描的透视图像,查看屏幕上的色彩来快速判断里面究竟有没有违禁品。屏幕可以显示出行李的透视图像,不同的物品拥有不同的线条轮廓和色彩。看着这些色彩斑斓的图像,我们可能什么都看不出来,但安检员们能够一目了然。橙色代表有机物,包括食品、水、塑料等;书本、陶瓷等显示为绿色;金属会显现出蓝色。安检员必须迅速结合物品色彩以及形状,判断出是否有违禁品。遇到液体还要用液体检测仪对其进行检测,才能保证液体是否安全。从繁乱的色彩和线条中,找出违禁品就是他们的工作,虽然枯燥繁琐,但是却事关重大。正是地铁安检员们兢兢业业的工作,使得人们每天能够安全的乘坐地铁,享受现代化的高速交通。

    时间:2012-05-14 关键词: 安检 分辨 违禁品 安检员

  • 视觉分辨力与Retina Display解读

    如果不考虑盲文和有声书,阅读的基础是「看」。视觉是阅读的最基本条件,优秀的字体与排印产品也主要是通过视觉来取悦读者。但是,就像人耳不能区分音高差异极小的两个声音,视觉也有其分辨极限。十九世纪末人们就通过研究发现,想要在一定条件下将两条明暗相间的细线区分开来,它们之间需要有 0.59 角分(arcminute)的差距。0.59 角分在 10 英寸的距离上大致相当于 0.0017 英寸,取其倒数 583,再考虑到两条细线各自需要至少一明一暗两个点,我们可以合理地推论,当印刷品的墨点密度达到每英寸 1200 点(1200 Drops Per Inch, DPI)以上,就可以满足相当挑剔的阅读要求。所以目前比较优秀的家用打印机,都标称能够达到 1200 乃至 2400 DPI 的分辨率,这样的印刷品质量已经与传统的、墨点密度可以视作无限的凸版印刷相媲美。  眼睛分辨能力的极限是 0.59 角分 十几年前的数码印刷便可以达到 300 DPI 的墨点密度,这一数值虽然并不理想,但对于细节反差相对较小的非文本类图像来说,它基本上达到了要求。这也就是为什么在 Photoshop 等程序中创建用于印刷用的文档时,默认分辨率会被设定为 300 Pixels/inch,这个数值告诉打印机:请在一英寸长度上印刷 300 个像素。作为事实上的日常读物印刷起步标准,300 DPI 这一数值是如此普遍,以至于会有人误认为它就是人眼能够辨识的极限。问题是,如果将像素和墨点一一对应起来,那么 300 个像素在屏幕上有多长呢?以现今 1920 × 1080 的所谓 HD 标准而言,如果显示器的对角线尺寸是 22 英寸,每英寸大约有 100 个像素(100 Pixels Per Inch, PPI),做为参照,Kindle 2 有 167 PPI, iPhone 3G 有 164 PPI,Kindle DX 有 150 PPI,iPad 则有 132 PPI,或者说,即便是在 Kindle 2 上面,图像显示在屏幕上的大小也将接近最普通印刷结果的四倍,这意味着阅读者会更容易地辨识出反差较高的边界,也就是所谓的「锯齿」。锯齿现象在将字体由矢量格式转为点阵显示的栅格化(rasterized)过程中是个严重的问题,为了减少锯齿,人们试着采用在字符的边缘显示灰色像素的「抗锯齿」(anti-aliasing)技术,乃至只使用像素块的一部分彩色分量来代替纯黑色,从而降低字符与周遭空白之间的反差,也即「次像素渲染」(Subpixel Rendering)的技术。 抗锯齿与次像素渲染有效地提高了文本显示的质量,但是屏幕出版的细节效果仍旧无法与打印机相提并论。像素密度是限制显示质量的硬性限界、不同的显示设备界限有所不同、乃至次像素渲染在不同平台上的实现不同等等事实,都要求从传统纸张排版迁移到数码排版的设计师们必须再次考量介质的实体界限,以便重新确定字体的尺寸,从而确保文本的可辨识性(legibility)。 所幸在苹果开发者大会上,我们已看到在新一代 iPhone 上所使用的 Retina Display。验证了此前泄漏的原型机显微镜观察结果,它的分辨率为 960 × 640 像素,对角线尺寸 3.5 英尺,也就意味着它的像素密度达到了史无前例的 326 PPI,略高于印刷品的起始水准。对于平面设计师和出版界来说,这应该是一个具有标志性意义的事件,它意味着电子阅读物的显示质量从此可以在硬性指标上与纸质媒体比肩,排版时应用字体及控制文本也有了更多可行的选择。使用 Retina Display 的 iPad 应该也已经距离我们不远,假设屏幕尺寸保持不变,而像素数量与 iPhone 4 一样变为原来四倍的话,其像素密度应该会达到至少 260 PPI。不应忘记的是,次像素渲染在 Retina Display 之上仍旧可以发挥作用,假设每个像素在横向上分割为红绿蓝三个分量,那么理论上像素密度或许可以再提升一倍左右。

    时间:2012-04-28 关键词: retina display 分辨

  • 如何分辨数字电位器的性能

    概述 数字电位器,或digipot,方便了模拟电路的电阻、电压以及电流的数字控制和调整。数字电位器通常用于电源校准、音量控制、亮度控制、增益调节以及光模块的偏置/调制电流调节。数字电位器除基本功能外,还提供许多其它功能,以增强系统性能,简化设计。这些功能包括:不同类型的非易失存储器、过零检测、去抖动按键接口、温度补偿和写保护。这些功能针对不同的应用而设计。   基本的数字电位器设计 电位器实际上是一个三端元件(见图1a)。低端VL在内部连接至器件地或作为引脚输出,便于设计。三端数字电位器的结构实质上是一个具有固定端到端电阻的可调节分压电阻。可变电阻是双端电位器,抽头和一个电阻串端点的阻值可变(参考图1b)。调节可变电阻数字电位器的抽头位置,可以改变数字电位器的端到端电阻。   简单地说,数字电位器是由数字输入控制的模拟输出,类似于数/模转换器(DAC)的定义。与DAC不同的是,DAC提供经过缓冲的输出,而绝大多数数字电位器在没有外部缓冲器的情况下不能驱动低阻负载。   对于数字电位器,最大抽头电流范围为几百微安到毫安级。当数字电位器的抽头连接到低阻负载时,无论是可变电阻还是真正的数字电位器,一定要确保在最糟糕的工作条件下抽头电流处于可接受的IWIPER范围。可变电阻的最差负载发生在VW接近VH时。在这个点上,电路中除抽头电阻以外可能没有其它电阻限制电流。但是,有些应用中可能要求很大的抽头电流,这种情况下,需要重点考虑电位器抽头的压降,这个压降限制了数字电位器的输出动态范围。   根据应用需求改进设计 数字电位器的应用范围很广,一些设计中可能需要外加器件,以满足对数字电位器的“精密调节”要求。例如,数字电位器的端到端电阻范围为10kΩ和200kΩ,而控制LED亮度时常常需要小电阻。解决这个问题的方案是DS3906,该芯片与105Ω的固定电阻并联使用,可提供70Ω至102Ω的等效电阻。这种配置下可以获得0.5Ω的步进调节,精确调节LED亮度。另一个解决方案是多通道数字电位器,如 MAX5477或MAX5487,可以多个通道相互组合得到不同的调节电阻步长,达到数字电位器的分辨率要求。   有些情况可能需要更特殊的数字电位器功能,对于需要温度补偿的电压或电流调节,如光模块的光驱动器偏置,可以选择基于查找表的可变电阻。一些数字电位器集成了EEPROM (用于存储温度变化时的校准数据)和内部温度传感器(用于测量环境温度)。数字电位器按照测量温度在查找表中检索到对应的数值,调整可变电阻。基于温度查找表的数字电位器通常用来修正电路元件的非线性温度响应,如激光二极管或led/' target='_blank'>光电二极管;也可以根据应用需要,有意建立一个非线性电阻的温度响应。 非易失存储器是数字电位器中引入的比较常见的低成本功能电路,标准的基于EEPROM的非易失(NV)数字电位器在上电复位(POR)期间进入一个已知状态。EEPROM能够确保50,000次的重复写次数,相对于机械电位器,大大提高了系统的可靠性。一次性编程(OTP)数字电位器,如MAX5427/MAX5428/MAX5429,采用熔丝设置,永久保存默认的抽头位置。与基于EEPROM的数字电位器一样,POR后OTP数字电位器初始化到已知状态。然而,OTP数字电位器的POR状态一旦编程后不能重写。所以,OTP很适合工厂编程或产品校准。熔丝永久性地设置OTP数字电位器的POR抽头位置,无需锁定抽头位置。有些OTP数字电位器的抽头在熔丝编程后可以调节;有些OTP数字电位器的抽头位置则被永久性地设置,得到一个精确的、经过校准的电阻分压器。一些数字电位器提供锁定寄存器,或数字控制输入,使数字电位器接口呈高阻态,避免不恰当的抽头调整。EEPROM数字电位器的写保护功能还降低了功耗。   数字电位器可以在电源或其它需要工厂校准的系统中完成电压和电流校准。与机械电位器或分离电阻等费时且不精确的手动校准相比,数字电位器有助于提高制造商的生产能力,改善校准精度和重复性指标。另外,数控电位器便于远程调试和重新校准。需要校准多个电压和/或电流时,使用DS3904/DS3905等三路NV数字电位器非常理想(图2)。这种情况下,一个小体积数字电位器可以代替三个机械电位器。用数字电位器替代机械电位器还有助于提高电路布局的灵活性,因为数字电位器不需要在安装或维护期间进行机械调整。校准是OTP或EEPROM写保护功能的典型应用,其中EEPROM写保护更有利于设计。   图2. DS3904/DS3905三路非易失数字电位器,可理想用于需要校准多路电压/电流的系统。这款小尺寸IC可以替代3个机械电位器。图2. DS3904/DS3905三路非易失数字电位器,可理想用于需要校准多路电压/电流的系统。这款小尺寸IC可以替代3个机械电位器。   虽然不是数字电位器,DS4303等具有简单的单线数字控制接口的采样/保持电压基准也能用于产品校准(图3)。紧凑的设计非常符合校准的需求,电压基准输出在被控制信号锁定之前取决于输入电压,输出锁定后,除非重新编程或掉电,否则输出将不再发生变化,与输入电压无关。最新产品把锁定后的输出电压存储在 EEPROM中,电源上电后可重新恢复。   图3. 非易失采样/保持电压基准DS4303,虽然不是数字电位器,但可理想用于产品校准。校准时,在被控制信号(ADJ)锁定之前,DS4303输出(VOUT)取决于输入电压(VIN)。   图3. 非易失采样/保持电压基准DS4303,虽然不是数字电位器,但可理想用于产品校准。校准时,在被控制信号(ADJ)锁定之前,DS4303输出(VOUT)取决于输入电压(VIN)。   改进后的按键接口是传统接口(如SPI™、I²C、增/减和旋转控制)的补充。带有缓冲输出的数字电位器MAX5486使用了这种接口。这种经过去抖的按键接口基于按键按下的时间,用变化的速度控制抽头动作。按键接口不需要微控制器,降低了系统设计的复杂度。去抖动按键接口对于音量控制尤其重要。   针对音频应用设计的数字电位器通常提供过零检测电路,过零检测可以抑制抽头从一个位置跳变到另一个位置时的可闻噪声。该功能使能后,过零检测电路将抽头动作推迟到VL接近VH时。很多过零检测电路还提供最大抽头变化的延迟,方便直流调节及其它特定电路。   结论 简单的易失性数字电位器在系统设计中仍然实用,而针对特殊应用设计的数字电位器和可变电阻提供了更多的功能。目前,很多设计者希望替换机械电位器,提高系统的可靠性和在整个工作温度范围内的性能,省去系统微处理器,或抑制咔嗒/噼噗声。对于这些需求,数字电位器充分展现它的优势,数字电位器的应用越来越普遍。

    时间:2012-03-19 关键词: 性能 如何 电源技术解析 数字电位器 分辨

  • 如何分辨谁才是真正的工程师?

      有时候你会想弄清楚某位工程师的基本技术能力与背景,到底谁才是拥有“真才实料”的真正工程师,谁又只会在那里自我吹嘘。毕竟,我们都知道有些人在工程领域待久了,也能够轻松地卖弄一些技术用语与专业术语,可能让人感觉听起来就像他们真的很懂一样──例如呆伯特(注:Dilbert,美国关于现代化工作场所一个主要人物名为呆伯特的喜剧连环漫画)的秃头老板──但事实上他们并非真的明白自己在讲些什么。当然,这样的人相当令人反感。  那么你如何对付这样的人呢?你也许可以试着不经意地问他们一些更深入的技术问题。当然,如果问题太过于“专精”,也可能会超出真正工程师的专业技术领域之外,使其除了一般的常识以外,可能就没法回答你的问题,因而也没法辨识出真假工程师。(例如,别问我有关Unix的任何问题!)  回想起在采用DIP IC(双列直插式封装芯片)的“辉煌岁月”,我们通常将一个未经标示的IC放在桌上,让受测人员仔细观察后闭上眼睛几秒钟。我们先将这个IC封装旋转180°后再要受测者张开眼睛看看,并告诉我们是否看到了任何不同之处。如果他们回答没什么不同,我们马上就知道他们并不是真正的电子工程师──因为他们不知道有关pin 1引脚代号的意义。不过,这种采用DIP IC考验真假工程师身份的传统方法已不适用了。  此时,我的脑海中忽然浮现了一个解决之道:问问有关温度的问题吧!毕竟,这是工程学与科学领域中最常见的参数之一,每一位与技术领域有关的人员都应该十分了解温度所代表的意义。  我思考了一会儿后,很快地提出几个问题以供参考。在此列出我所想到的几个问题──读者们不必取得什么授权协议或付权利金,也没有使用限制:  ·先来个简单的问题:“32℉与212℉约相当于摄氏几度?”(当然,如果你问的人来自于美国以外的其它地方,最好是问问0℃及100℃等于华氏几度啰!)  ·再问个稍难但更准确的问题:“零下40℉约相当于摄氏几度?”(同样的,在美国以外的其它地区,就改问零下40℃相当于华氏几度。)  ·或者也可以问问看:“SRAM和DRAM二者基本上有何不同?”  ·试试更专业的问题:“为什么用更高的电压可提升电源控制、线路与汇流排的功效?”  先试着问问这些问题,注意对方回答问题的答案准确度以及答题速度,这将有助于让你确定谁才具有真正的技术背景与真才实料,而谁只是在卖弄一些技术用语罢了。  你用什么办法来确定谁才是拥有真本事的真正工程师?谁又是不懂装懂的呢?请与我们的读者分享你用来辨识真假工程的问题吧!例如有关于基本二进位编码与转码等等专业问题。或者,你采用其他什么辨识方法呢?

    时间:2012-02-12 关键词: 工程师 如何 真正 分辨

  • 雷达成像近似二维模型及其超分辨算法

    现有的雷达成像超分辨算法是基于目标回波信号的二维正弦信号模型,所以模型误差,特别是距离走动误差,将使算法性能严重下降或失效.为此,本文采用距离走动误差下的一阶近似雷达成像二维信号模型,提出了一种基于非线性最小二乘准则的参数化超分辨算法.在算法中,距离走动误差补偿与目标参量估计联合进行.文中同时给出了算法估计性能的Cramer-Rao界及仿真结果.   关键词:距离走动误差;补偿;超分辨;雷达成像 A Super Resolution Radar Imaging Algorithm Based on the 2-D Approximate Model SUN Chang-yin,BAO Zheng (Kay Laboratory for Radar Signal Processing,Xidian University,Xi’an 710071,China)   Abstract:The recently proposed super resolution radar imaging algorithms,which are based on the 2-D sinusoid signal model,often suffer from the motion through resolution cell error(MTRC) and failed completely.In this paper,an algorithm is proposed based on the 2-D approximate radar imaging model.By minimizing a nonlinear least-squares cost function,the algorithm combines the parameter estimation with the compensation of MTRC errors.The Cramer-Rao bounds are derived and simulation results are also presented to demonstrate the performance of the algorithm.   Key words:motion through resolution cell error;compensation;super resolution;radar imaging 一、引  言   雷达成像基于目标的散射点模型.雷达通常发射长时宽的线频调(chirp)信号,然后用参考信号对回波作解线频调(dechirp)处理,再将解线频调的回波作横向排列,则在一定条件下它可近似为二维正弦信号模型,通过二维傅里叶变换,可以重构目标的二维像;采用超分辨算法[1~3],还可得到更精细的二维目标像.   应当指出,上述二维模型是假设散射点在成像期间不发生超越分辨单元走动,近似认为散射点的移动只影响回波的相移,而子回波包络则固定不变.这种近似,只适用于小观察角时参考点附近有限小尺寸目标成像.   如果目标较大,特别是在离参考点较远处,越分辨单元移动(MTRC)便会发生,从而使得用简单二维模型获得的图像模糊.传统解决的方法是按目标转动用极坐标-直角坐标插值.插值不可避免地会有误差,而超分辨算法通常基于参数化估计,对误差较为敏感,这会影响成像质量.   本文介绍一种近似度较高的二维模型,并利用该模型通过超分辨算法成像,可获得较好的结果. 二、维回波模型   设目标有K个散射点,雷达以平面波自下向上照射目标(图1).目标以参考点为原点相对雷达射线转动,经过N次脉冲发射,散射点Pk点移至P′k点,移动中第n次脉冲时该散射点的垂直坐标为: ykn=yk+Δykn=xksin(nδθ)+ykcos(nδθ),n=0,1,…,N-1 (1) 式中δθ为相邻脉冲的转角,总观测角Δθ=(N-1)δθ.考虑到雷达发射的是长时宽的线频调信号,以原点为参考作解线频调处理,并对信号以 的频率采样,得目标的回波信号(离散形式)为:  (2) 式中Ak为第k个散射点子回波信号的复振幅;fc、γ分别是雷达载频和调频率,c为光速;e(m,n)为加性噪声. 图1 二维雷达目标几何图   由于观测角Δθ很小,取近似sin(nδθ)≈nδθ和cos(nδθ)≈1,则式(2)可近似写成:  (3) 式中   式(3)指数项中的第三项是时频耦合项,它是线频调信号(其模糊函数为斜椭圆)所特有的,如果采用窄脉冲发射,则该项不存在.将该项忽略,则式(3)成为常用的回波二维正弦信号模型.   实际上,式(3)的第三项系“距离移动”项,它与散射点的横坐标xk成正比,目标区域大时必须考虑,而且这还远远不够,散射点的多普勒移动也必须考虑.为此,令sin(nδθ)≈nδθ和cos(nδθ)≈1-(nδθ)2/2,则式(2)较精确的近似式可写成:  (4)[!--empirenews.page--] 式(4)与式(3)相比较,指数中增加了两项,其中前一项是“多普勒移动”项,纵坐标yk越大,影响也越大,这可以补充式(3)之不足;而后项是时频耦合的多普勒移动项,由于Mγ/Fs<<fc,它的影响可以忽略.因此,可将考虑MTRC情况下,回波二维模型的一阶近似式写成:  (5)   需要指出,每个散射点的参数之间存在下述关系:ωk/μk=2γ/Fsfcδθ2和k/vk=fcFs/γδθ.由于雷达参数(fc,γ,Fs)和运动参数(δθ)均已知,所以待估计的五个参数中只有三个是独立的.本文假设五个参数是独立的,而在成像计算中已考虑参数之间的关系.   设{ξk}Kk=1≡{αk,ωk,k,μk,vk}Kk=1,现在我们要从y(m,n)中估计参量{ξk}Kk=1. 三、二维推广的RELAX算法   对于(5)式所示的信号模型,令: Y=[y(m,n)]M×N 则 (6) 式中   设ξk估计值为,则ξk的估计问题可通过优化下述代价函数解决:  (7) 式中‖.‖F表示矩阵的Frobenius范数,⊙表示矩阵的Hadamard积.   上式中C1的最优化是一个多维空间的寻优问题,十分复杂.本文将RELAX[3]算法推广以求解.为此,首先做以下准备工作,令:  (8)   即假定{i}i=1,2,…,K,i≠k已经求出,则式(7)C1的极小化等效于下式的极小化: C2(ξk)=‖Yk-αk(aM(ωk)bTN(k)Pk)⊙Dk(vk)‖2F (9) 令:  Zk=YkP-1k⊙Dk(-vk) (10)   由于Pk为酉矩阵,矩阵Dk的每个元素的模|Dk(m,n)|=1,显然矩阵Yk与Zk的F范数相同,故C2的极小化等效于下式的极小化: C3=‖Zk-αkaM(ωk)bTN(k)‖2F (11)   对上式关于αk求极小值就获得αk的估计值k: k=aHM(ωk)Zkb*N(k)/(MN) (12)[!--empirenews.page--]   从式(12)可以看出:是Zk归一化的二维离散傅里叶变换在{ωk,k}处的值,所以只要得到估计值{k,k,k,k},即可通过2D-FFT获得k.   将估计值k代入式(11)后,估计值{k,k,k,k}可由下式寻优得到:  (13)   由上式可见,对于固定的{μk,vk}取值,估计值{k,k}为归一化的周期图|aHM(ωk)Zkb*N(k)|2/(MN)主峰处的二维频率值.这样,式(13)的优化问题归结为:在(μk,vk)平面上可能的取值范围内寻找一点{k,k},在该点处周期图|aHM(ωk)Zkb*N(k)|2/(MN)的主峰值比其余各点处的主峰值都大.所以,我们通过上述二维寻优获得{μk,vk}的估计值{k,k},再由式(13)得到{ωk,k}的估计值{k,k}.   实际中,为了加快运算速度,二维(μk,vk)平面的寻优可以用Matlab中的函数Fmin()实现.   在做了以上的准备工作以后,基于推广的RELAX算法的参量估计步骤如下:   第一步:假设信号数K=1,分别利用式(13)和式(12)计算1.   第二步(2):假设信号数K=2,首先将第一步计算所得到的1代入式(8)求出Y2,再利用式(13)和式(12)计算2;将计算的2代入式(8)求出Y1,然后利用式(13)和式(12)重新计算1,这个过程反复叠代,直至收敛.   第三步:假设信号数K=3,首先将第二步计算所得到的1和2代入式(8)求出Y3,再利用式(13)和式(12)计算3;将计算的3和2代入式(8)求出Y1,然后利用式(13)和式(12)重新计算1;将计算的1和3代入式(8)求出Y2,然后利用式(13)和式(12)重新计算2,这个过程反复叠代,直至收敛.   剩余步骤:令K=K+1,上述步骤持续进行,直到K等于待估计信号数.   上述过程中的收敛判据与RELAX算法的收敛判据相同,即比较代价函数C1在两次叠代过程中的变化值,如果这个变换值小于某个值,如ε=10-3,则认为过程收敛. 四、数值模拟   1.算法参数估计性能模拟   模拟数据由式(5)产生,M=10,N=10,信号数K=2.信号参数和实验条件如表1所示,为复高斯白噪声.注意两信号的频率差小于FFT的分辨率Δf=Δω/(2π)=0.1.表1给出了信号参数估计均方根误差的统计结果及相应情形时的C-R界,可见,估计均方根误差与CR界十分接近.另外表中还给出了估计均值,与真实值也非常接近. 表1 二维信号的参数估计、CRB及与均方根差的比较 [!--empirenews.page--]   2.SAR成像模拟   雷达参数为:中心频率f0=24.24GHz,调频率γ=33.357×1011Hz/s,带宽B=133.5MHz,脉冲宽度tp=40μs.四个点目标作正方形放置,间隔50米,左下角的点作为参考点.雷达与目标间隔1公里,观察角Δθ=3.15,数据长度为128×128.采用FFT成像方法时,其纵向和横向距离分辨率为ρr=ρa=1.123米,防止MTRC现象发生所需的目标最大范围为[4]:纵向尺寸Dr<4ρ2r/λ=40米,横向尺寸Da<4ρ2a/λ=40米.采用常规超分辨方法时,目标尺寸Dr=Da>10米则出现明显的性能下降.图2、图3分别给出了RELAX方法及本文推广的RELAX(Extended RELAX)算法的成像结果.可以看出,由于目标远离参考中心,已在横向和纵向出现距离走动,采用常规超分辨的RELAX算法产生图像模糊,对于本文算法,则得到基本正确的成像结果.图4和图5则比较了RELAX算法和推广的RELAX算法的散射点强度估计结果,可以看到,RELAX算法由于距离走动影响,散射点(除参考点以外)的强度降低.对于本文算法,散射点强度接近真实值.                 图2 距离走动误差下的RELAX成像结果 图3 距离走动误差下的                  图4 RELAX方法估计的信号强度推广RELAX成像结果 图5 推广RELAX方法估计的信号强度 五、结束语   现有的雷达成像超分辨算法是基于目标回波信号的二维正弦信号模型,所以仅适用于目标位于参考点附近很小区域时的情形.当目标远离参考点时,模型误差,特别是距离走动误差,将使算法性能严重下降或失效.为此,本文提出一种基于雷达成像近似二维模型的超分辨算法,从而扩大了超分辨算法的适用范围.本文进一步的工作包括SAR实测数据成像及ISAR机动目标成像,结果将另文报道. 附 录:参数估计的C-R界   下面我们给出式(5)所示的二维信号参量估计的C-R界表达式.同时假设式(5)中加性噪声为零均值高斯色噪声,其协方差矩阵未知.令: y=vec(Y) (A.1) e=vec(E) (A.2) dk=vec(Dk) (A.3) 式中vec(X)=(xT1,xT2,…,xTN)T,向量xn(n=1,2,…,N)为矩阵X的列向量.我们将式(5)改写为如下向量形式:  (A.4) 式中表示Kronecker积,Ω=[{[P1bN(1)]aM(ω1)}⊙d1…{[PkbN(K)]aM(ωK)}⊙dK],α=(α1,α2,…,αK)T.   令Q=E(eeH)为e的协方差矩阵,则对于由式(A.4)所示的二维信号模型,其Fisher信息阵(FIM)的第ij个元素推广的Slepian-Bangs公式为[5,6]: (FIM)ij=tr(Q-1Q′iQ-1Q′j)+2Re[(αHΩH)′iQ-1(Ωα)′j] (A.5) 式中X′i表示矩阵X对第i个参数求导,tr(X)为矩阵的迹,Re(X)为矩阵的实部.由于Q与Ωα中的参量无关,而Ωα亦与Q的元素无关,显然FIM为一块对角阵.所以待估计参量的C-R界矩阵由(A.5)式的第二项得到. 令:η=([Re(α)]T[Im(α)]TωTTμTvT)T (A.6) 式中ω=(ω1,ω2,…,ωK)T,μ=(μ1,μ2,…,μK)T,=(1,2,…,K)T,v=(v1,v2,…,vK)T. 令:F=[Ω jΩ DωΘ DΘ DμΘ DvΘ] (A.7) 式中矩阵Dω、D、Dμ、Dv的第k列分别为:[{[PkbN(k)]aM(ωk)}⊙dk]/ωk、[{[PkbN(k)]aM(ωk)}⊙dk]/k、[{[PkbN(k)]aM(ωk)}⊙dk]/μk、[{[PkbN(k)]aM(ωk)}⊙dk]/vk,Θ=diag{α1 α2 … αK}.则关于参量向量η的CRB矩阵为 CRB(η)=[2Re(FHQ-1F)]-1 (A.8)

    时间:2010-12-24 关键词: 算法 模型 电源技术解析 及其 达成 二维 分辨 近似

  • 基于DSP的高分辨SAR多普勒调频率的估算

        雷达可以全天候、全天时、远距离对目标进行检测和定位,随着合成孔径雷达(SAR)技术的引入,可以通过SAR获得观测区域的高分辨图像,在国民经济和军事领域中有着十分重要的应用。为了获得高分辨,发射大时宽的宽频带信号,如线性调频信号等,可以在接收后进行脉冲压缩来实现。在实际处理中,脉冲压缩是通过快速傅里叶变换来实现的,对于场景大、分辨率高的情况,尤其是在实时成像中实际运算量也是十分的巨大。为此,采用由ADI公司的TS-201S高性能数字信号处理器搭建的平台来实现实时成像系统。文中分析了MD算法实际工程应用,并完成了多普勒调频率估计的快速估算。1 基本原理1.1 高分辨SAR成像计算流程    从图1中可以看出在整个实时成像系统中,多普勒调频率的准确而快速的计算尤为重要。其中在运动补偿中,运动补偿参数是由多普勒调频率推导出的。在方位脉冲压缩中,在用CS算法完成距离向的距离走动和距离弯曲矫正后,还需要对多普勒调频率做再次的估计,以便于精确的完成方位脉冲压缩,因此多普勒调频率的计算精度和速度对成像有很大的影响。1.2 MD估计算法    在实际应用中,MD估计算法是主要的多普勒调频率估计算法,由于二次相位是使图像产生模糊的主要相位项,且MD估计算法能稳健地估计二次相位。MD估计算法将全孔径时间分成不交叠的两个子孔径,在利用二次相位在前后两部分孔径中有不同的函数表述式子。每个子孔径可分解成常量、一次分量和二次分量,其中常量和二次分量相同,一次分量使两个子孔径像平移。MD估计算法就是通过估计两个子孔径之间的平移量,估计整个孔径的二次项系数,得到多普勒调频率的估计值。其具体流程,如图2所示。[!--empirenews.page--]2 DSP编程实现    在实测数据的Matlab处理中,MD算法流程实现如图3所示。为了使多普勒调频率估计精度满足实际的需要,通常需要用估计出的多普勒调频率作为调频率参考值从对距离脉压数据做方位脉压,然后重复子孔径相关等后面的步骤,得出更精确的调频率值。一般重复3次即可,次数越多越精确,但是考虑的成像效果以及实时性的要求,3次重复就可以得出满意的结果。这里n为所选取的最大的能量和数量,这里选64即可以满足要求。      文中选用ADI公司的TSs-20lS高性能数字信号处理器在运算能力、与外部通信能力及在大内存设计等方面都优于其它类型的处理芯片。其主要特点有:(1)内部时钟频率最高为600 MHz,指令周期1.67 ns(在此系统中内部核时钟采用500 MHz,指令周期为2 ns),24 MB的片内DRAM存储器,分为6个4 MB的存储器块,每个块包含128 000个32位字,每个块内存连接着交叉线通过它自身的缓冲和一个128 000 kB的4-Way缓冲器;(2)芯片内包含两个运算模块(X-ComputeBlocks,Y-Compute Blocks),每个模块包括一个整数ALU、一个乘法器、一个移位器和一个寄存器组(32-word)和一个通信逻辑单元。其中,ALU用于寻址和指针操作;(3)4条128 bit的总线提供高的带宽连接内部存储块。扩展端口包含主机端口、SDRAM控制器、静态管线接口、4个DMA通道。4个LVDS连接端口(每一个都连接2个DMA通道),支持8片DSP共享总线的片上仲裁,无需其它逻辑。IEEE 1149.1兼容的JTAG测试端口用于片上仿真。外部端口的DMA传输速率可达1 GB/s,每个链路口的DMA传输速率可达1 GB/s,共计5 GB/s的外部I/O能力。而且,ADSP-TFS201S的静态超标量结构使其每周期能够执行多达4条指令、24个16位定点运算和6个浮点运算;4条相互独立的内部数据总线(128位),每条连接到6个4 MB的内部存储器块。提供了4 bit的数据、指令I/O访问和33.6 GB/s的内部存储器带宽。因此运行在500 MHz时,ADSP-TS201S的可以提供48亿次40位的MAC运算或者12亿次的80位MAC运算。雷达成像中用到了大量的FFT运算,TS201在计算。FFT时速度很快。例如,运行在500 MHz时,做1 024点的FFT只需18.8μs。ADSP-TS201S有丰富的内部存储资源,而且也特别适合于并行计算,组成高速并行处理器。这对于高分辨SAR实时成像系统而言非常有利。    在此实时成像中的多普勒调频率估计中,数据块为512×4 096(方位向和距离向)个复数。分别按照并且需要计算16个调频率值,即按距离单元分为16个子数据块,每个块为512×256个复数。为保证计算精度,一个复数占2×32 bit的存储单元,即实部虚部各占一个4 bit单元。    由于数据从SDRAM读到内部存储器中需要很多机器周期,在此时计算块就会处于空闲状态,不利于提高运行速度和执行效率,所以在实际计算时,采用如图4所示的流程来提高效率。图4中,相同的箭头表示同时交换数据。当计算块在计算内部存储区1的数据时,内部存储区2通过TS-201S的DMA模块直接和SDRAM交换数据。当计算完内部存储区1的数据时,计算块就直接计算内部存储区2的数据,同时内部存储区1通过 TS-201S的DMA模块直接和SDRAM交换数据,此时计算块一直处于满负荷状态,不用为等待数据而变得空闲,这种运算方式即所谓的“乒乓”方式。在使用DSP实现算法流程时,按方位向求能量和、方位脉压及子孔径相关的运算量最大,重点在这几方面进行优化。          在按方位向取能量和的计算中,512个复数先取模再平方再求和,大概需要2 500多个机器周期,而从SDRAM中读取这512个数据需要1 200多个周期,因为512个复数相当于1 024个实数,并且DMA大约为一个周期传送一个数据。按照“乒乓”方式计算,相当于没有读取数据的时间,所以速度的提升是十分明显的。为了能够更加充分的利用计算块,在计算块和内部存储区之间也采用了类似的“乒乓”方式。在运算量极大的按方位向求能量和中,一个计算数据块512×2中有512个复数。其中,一个复数的模的平方需要计算两次乘法(每次乘法需要两个机器周期)和一次加法(一个机器周期),总和还需要512次加法,所以总共要计算大约3 500多个机器周期。所有的16个多普勒调频率估计,仅在计算能量和就需要约3 500×4 096多个机器周期,所以用尽可能少的机器周期来完成这个计算显得尤为重要。充分利用TS-201S处理器中计算块内部有两个并行的独立计算模块X-Compute Blocks和Y-Compute Blocks,而且每个计算模块都有一个乘法器和加法器,则同时读取两个复数分别到两个计算模块中,然后在寄存器中选一个作为和的存放地,初始为0,以及两个作为平方后的存放寄存器。先计算实部的平方(2个周期),再做虚部的平方以及将实部的平方与和寄存器相加存到和寄存器中(2个周期),读取下两个复数(1个周期),实部平方的计算及上一组数据的虚部平方与和寄存器相加并存放(2个周期),在做虚部平方及实部平方与和寄存器相加并存放(2个周期),依此类推,直到所有的复数计算完毕。从中可以看出,大约需要5个周期就可以计算两个复数,全部计算完成大概需要2 500多个周期,与3 500多个周期相比还是节省了很多。[!--empirenews.page--]    方位脉压及子孔径相关的运算量远大于通过DMA读取数据的时间,所以只要通过图4的计算流程就可以实现DSP计算模块的满负荷运行。3 结果对比    经过编译调试,将512×4 096的数据块全部导入到DSP仿真软件平台Visual DSP++4.5中计算全部的16个多普勒调频率,用去315 454 119个周期,当TS-201运行在500 MHz时,相当于用去0.63 s。在用硬件仿真器调试时,时间约为0.58 s,比用Visual DSP++软件仿真平台稍快。得到的结果,如图5所示,误差如图6所示。从图中可以看出,在DSP平台上,计算结果和Matlab计算结果还是有误差的,但是控制在小数点后第2位,在成像时,还是可以用于运动补偿和方位脉压的。  4 结束语    在分析Matlab实现MD算法的流程后,充分利用ADI公司的TS-201S数字信号处理器的特性,针对多普勒调频率估计的大运算量进行了优化,以减少计算块的等待时间,为优化思路以及充分利用计算块中的资源来实现用尽可能少的周期完成计算,并且该算法模块已应用于某高分辨SAR实时成像系统,最终成像结果令人满意。

    时间:2009-11-25 关键词: 频率 DSP 电源技术解析 基于 sar 估算 分辨 多普勒

  • 怎样分辨LED显示屏档次的高低

    一块全彩显示屏的好坏主要可以从以下几个方面来签定:     1.平整度     显示屏的表面平整度要在±1mm以内,以保证显示图像不发生扭曲,局部凸起或凹进会导致显示屏的可视角度出现死角。平整度的好坏主要由生产工艺决定。     2.亮度及可视角度     室内全彩屏的亮度要在800cd/m²以上,室外全彩屏的亮度要在1500cd/m²以上,才能保证显示屏的正常工作,否则会因为亮度太低而看不清所显示的图像。亮度的大小主要由LED管芯的好坏决定。     可视角度的大小直接决定的显示屏受众的多少,故而越大越好。可视角度的大小主要由管芯的封装方式来决定。     3.白平衡效果     白平衡效果是显示屏最重要的指标之一。色彩学上当红绿蓝三原色的比例为1:4.6:0.16时才会显示出纯正的白色,如果实际比例有一点偏差则会出现白平衡的偏差,一般要注意白色是否有偏蓝色,偏黄绿色现象。白平衡的好坏主要由显示屏的控制系统来决定,管芯对色彩的还原性也有影响。     4.色彩的还原性     色彩的还原性是指显示屏对色彩的还原性,既显示屏显示的色彩要与播放源的色彩保持高度一致,这样才能保证图像的真实感。     5.有无马赛克、死点现象     马赛克是指显示屏上出现的常亮或常黑的小四方块,既模组坏死现象,其主要原因为显示屏所采用的接插件质量不过关。     死点是指显示屏上出现的常亮或常黑的单个点,死点的多少主要由管芯的好坏来决定。     6.有无色块     色块是指相邻模组之间存在较明显的色差,颜色的过渡以模块为单位了,引起色块现象主要是由控制系统较差,灰度等级不高,扫描频率较低造成的

    时间:2009-07-22 关键词: LED 显示屏 分辨

  • 怎样分辨LED显示屏档次的高低

    一块全彩显示屏的好坏主要可以从以下几个方面来签定:     1.平整度     显示屏的表面平整度要在±1mm以内,以保证显示图像不发生扭曲,局部凸起或凹进会导致显示屏的可视角度出现死角。平整度的好坏主要由生产工艺决定。     2.亮度及可视角度     室内全彩屏的亮度要在800cd/m²以上,室外全彩屏的亮度要在1500cd/m²以上,才能保证显示屏的正常工作,否则会因为亮度太低而看不清所显示的图像。亮度的大小主要由LED管芯的好坏决定。     可视角度的大小直接决定的显示屏受众的多少,故而越大越好。可视角度的大小主要由管芯的封装方式来决定。     3.白平衡效果     白平衡效果是显示屏最重要的指标之一。色彩学上当红绿蓝三原色的比例为1:4.6:0.16时才会显示出纯正的白色,如果实际比例有一点偏差则会出现白平衡的偏差,一般要注意白色是否有偏蓝色,偏黄绿色现象。白平衡的好坏主要由显示屏的控制系统来决定,管芯对色彩的还原性也有影响。     4.色彩的还原性     色彩的还原性是指显示屏对色彩的还原性,既显示屏显示的色彩要与播放源的色彩保持高度一致,这样才能保证图像的真实感。     5.有无马赛克、死点现象     马赛克是指显示屏上出现的常亮或常黑的小四方块,既模组坏死现象,其主要原因为显示屏所采用的接插件质量不过关。     死点是指显示屏上出现的常亮或常黑的单个点,死点的多少主要由管芯的好坏来决定。     6.有无色块     色块是指相邻模组之间存在较明显的色差,颜色的过渡以模块为单位了,引起色块现象主要是由控制系统较差,灰度等级不高,扫描频率较低造成的

    时间:2009-07-20 关键词: LED 显示屏 高低 怎样 分辨 电源资讯 档次

  • 毫米波末制导雷达频域高分辨测角技术研究

    摘 要:针对毫米波末制导雷达角跟踪精度差的问题,提出基于频域高分辨像的单脉冲测角算法。该算法根据单脉冲雷达测角原理,在测角之前对和差通道的回波信号分别进行一维频域成像,然后在频域做比幅测角,获得频域单元的角度误差,经过一定的滤波处理,得到目标径向几何中心的空间角度。仿真结果表明该算法可大大提高单脉冲雷达的测角精度。关键词:单脉冲;测角;频域高分辨;多普勒频移;毫米波末制导雷达0 引 言    精确制导技术是精确制导武器的关键技术,其重点在于研究确保寻的武器在复杂战场环境中命中目标乃至命中目标要害部位的寻的末制导技术。随着导弹寻的精确制导技术的发展,当雷达寻的器接近目标时,目标角闪烁已成为微波/毫米波雷达寻的器跟踪误差的主要来源,特别是当跟踪大的扩展目标时,目标角闪烁已成为提高末制导雷达精度的主要障碍。因此,抑制角闪烁,提高末制导雷达的测角精度是末制导雷达的一项关键技术。    经典的抑制角闪烁常用的方法是根据不同的雷达体制和应用背景,在不同的空间、频率和极化方式上对目标的后向散射回波进行分集接收和滤波处理。近年来,随着宽带雷达的发展和应用,基于距离高分辨距离像的单脉冲测角技术在抑制角闪烁方面具有较大的潜力和应用前景。本文提出的基于频域高分辨的测角算法应用于毫米波PD体制末制导雷达,是在系统多普勒分辨率满足一定的条件下,对目标回波进行频域高分辨成像,在和通道中实现目标散射中心频域单元的检测,对检测出的频域单元分别求出相应的方位角和俯仰角,经过一定的滤波处理,得到目标的径向几何中心的空间角度。仿真结果表明该频域高分辨测角技术可以有效提高末制导雷达的测角精度。1 频域高分辨原理    当导弹与目标存在相对径向运动时,产生多普勒效应。对于主动末制导雷达,点目标回波的多普勒频率为:    式中:Vr(t)为弹目相对径向速度;λ为发射信号的波长。目标的不同部位与导弹的相对速度是不一样的,不同部位对应的回波多普勒频率也不同。对于毫米波雷达而言,其目标特性处于光学区,由于目标的尺寸远大于雷达发射信号的波长,目标可以看成是由多个散射中心组成的扩展目标。当导引头的视线与目标之间存在夹角时,扩展目标不同部位散射中心的速度方向与雷达视线方向不同,进而使得各个散射中心的多普勒频率也存在差异。如果雷达系统的频域分辨率满足要求,就可以分辨出体目标的各个强散射点的多普勒频率,则在频域上可以得到体目标上各个散射点的多普勒频率信息,从而获得频域高分辨一维像。2 频域高分辨测角算法2.1 振幅和差单脉冲测角原理    单脉冲雷达属于同时波瓣法测角。雷达天线在一个角平面内有两个部分重叠的波束,振幅和差单脉冲雷达取得角误差信号的基本方法是这两个波束同时收到的信号进行和、差波束处理,分别得到和信号、差信号,其中差信号就是该角平面内的误差信号。    以方位平面为例,假定两个波束的方向性函数完全相同,设为F(θ),两波束收到的信号电压振幅分别为E1,E2,两波束各自相对天线轴线的偏角为δ,则对于偏离天线轴线θ角方向的目标,其和信号振幅为:    其中:F2∑(θ)为发射和波束方向性函数,而F(δ一θ)+F(δ+θ)为接收和波束方向性函数,它与发射和波束方向性函数完全相同;A为比例系数。    差信号的振幅为:    其中:F△=F(δ-θ)一F(δ+θ)为接收差波束方向性函数。    假定目标的误差角为ε,则差信号振幅可表示为:        由于ε比较小,对F△(ε)做泰勒级数可表示为F′△(0)ε,那么:    所以,在一定的误差角范围内,差信号的振幅大小与误差角ε成正比。差信号的相位表明目标偏离天线轴线的方向,所以误差角可以表示为:    其中,当差信号与和信号同相时,ψ取O,反之取π。2.2 频域高分辨测角算法    PD雷达有三个回波接收通道,分别为和通道、方位通道和俯仰通道,记为E,△f,△y,对三个通道分别作FFT处理,获得三通道的频域高分辨一维像。对和通道一维像进行目标检测,可以获得强散射点的多普勒位置信息,然后根据单脉冲偏轴测角原理,可得到各散射点的方位角误差εfi和俯仰角误差εyi:        对各散射点的角误差进行滤波处理,可得到目标几何中心的角误差,即:    其中,ai,βi为加权系数。3 仿真实验    为了验证算法的有效性,进行仿真实验。导弹和目标的位置关系如图1所示。导弹运动速度VM为450 m/s,目标的运动速度VT为1 000 m/s。α1为30°,目标长度为20 m,取头、尾两个散射中心,则频域高分辨一维像如图2所示,其中弹目距离为150 m时,频率分辨率为100 Hz。    为了验证频域高分辨测角的效果,图3、图4分别给出常规单脉冲测角和不同频率分辨率下的测角结果。其中测角结果用归一化的线偏差来表示。可以看出常规单脉冲测角误差比较大。分辨率为800 Hz,400 Hz和100Hz的测角结果如图4所示。可以看出,测角精度大大提高,并且分辨率越高,测角精度越高。4 结 语    高重频PD体制末制导雷达在防空系统中有着广泛的应用,提高其角跟踪精度是急需解决的关键技术。本文在分析频域高分辨原理及单脉冲测角原理的基础上,提出频域高分辨测角算法,该方法实现简单,适合工程应用。仿真结果表明该算法可有效提高系统的角跟踪精度,并且分辨率越高,测角精度越高。

    时间:2009-04-29 关键词: 毫米波 雷达 分辨 末制导

发布文章

技术子站

更多

项目外包