当前位置:首页 > 动力锂离子电池
  • 关于动力锂离子电池技术的发展前景分析,你了解吗?

    关于动力锂离子电池技术的发展前景分析,你了解吗?

    在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的动力锂离子电池吗?随着动力锂离子电池的出现,新能源清洁能源已成为大势所趋,电池技术也朝着新材料和清洁能源的方向发展,并取得了重大突破。但是,很少有商业应用。重要的原因是它不能满足低需求。因此,在成本和多容量承诺方面,目前电动汽车电池的研究仍集中在锂离子电池上,其次是铅酸电池,镍氢电池和钠电池,在数量上排名前两位。 动力锂离子电池具有高能量密度和长寿命的优点,使其成为最实用,最有价值的新能源电动汽车电池候选产品。在动力锂离子电池的生产过程中,其相关指标(安全性,容量,内阻,循环寿命等)是相互矛盾的。因此,电池生产需要在组装技术,电池系统分组技术和管理技术的协调下,考虑电极材料,电解质和隔膜的性能,以使电池的相关性最大化。发挥协同效应。 特别是特斯拉和松下之间的紧密合作并没有刻意改变电池材料,也就是说,仍然使用锂离子电池。只有提高效率和提高产量,才能根据汽车的需求对电池进行优化。这表明制造业与工程技术的紧密结合是电池技术商业化应用的一种可行方式。但是,锂离子电池的发展空间有限,生产成本也很高。锂离子电池的使用和回收将带来环境污染。此外,锂矿山(如使用锂离子电池的电动汽车)的不均匀分布仍将受到限制。 可用于动力电池的负极材料包括石墨,硬/软碳和合金材料。石墨是目前广泛使用的负极材料,其可逆容量已达到360mA·h / g。非晶态硬碳或软碳可以满足电池更高速率和更低温度应用的需求,并且已经开始应用,但它们主要与石墨混合。钛酸锂负极材料具有最佳的倍率性能和循环性能,并且适用于大电流快速充电电池,但是制得的电池具有较低的比能量和较高的成本。纳米硅是在1990年代提出的,可用于大容量阳极。通过少量的纳米硅掺杂来提高碳阳极材料的容量是当前研究和开发的热点。具有少量纳米硅或氧化硅的阳极材料已开始进入小批量生产。在应用阶段,可逆容量达到450mA·h / g。但是,由于锂在插入硅中后体积膨胀,因此在实际使用中循环寿命会降低的问题需要进一步解决。 电解质连接锂离子电池组件中的正极和负极材料,同时又是锂离子传输的载体,这是高电压和高比能电池的关键。 2017年,我国电解液产量为10.2万吨,同比增长15.38%。电解质由溶剂,电解质(锂盐)和添加剂组成。该溶剂具有高介电常数,低粘度,高纯度和良好的吸湿性的特征,其可以容易地提高电解质的电导率。 凭借其优异的机械性能,良好的电化学稳定性和相对便宜的特性,聚烯烃微孔膜目前是锂离子电池隔膜市场的主要品种。包括聚乙烯(PE)单层薄膜,聚丙烯(PP)单层薄膜和PP / PE / PP三层复合微孔薄膜。国内有许多使用干法生产的制造商,并且许多公司已批量生产湿法PE隔膜。随着陶瓷涂层技术的发展,高温高压隔膜将成为未来研究和发展的方向。 为了驾驶电动汽车,需要大量的电池单元。电池块串联连接以形成电池片。电池片形成电池组,将电池组组装成三层,从而形成可以为汽车供电的电池系统。但是,大量电池单元的组合会加剧其短路,热稳定性差且安全系数低,因此有必要为每个级别的电池单元,电池砖和电池片安装保险丝,以防止出现这种情况。电池系统过热或过大电流。 从商用锂离子动力电池系统的角度来看,关键核心技术包括电池组技术(集成电池组,热管理,碰撞安全,电气安全等),电池管理系统(BMS)电磁兼容技术和信号准确性测量(例如电池电压,电流等)技术,电池状态的准确估计,电池平衡控制技术等。以上就是动力锂离子电池的一些值得大家学习的详细资料解析,希望在大家刚接触的过程中,能够给大家一定的帮助,如果有问题,也可以和小编一起探讨。

    时间:2021-05-10 关键词: 动力锂离子电池 电解液 正极材料

  • 关于动力锂离子电池管理系统的工作原理以及功能解析

    关于动力锂离子电池管理系统的工作原理以及功能解析

    人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如动力锂离子电池管理系统。锂离子电池管理系统(BMS)通过检测动力锂电池组中每个单体电池的状态来确定整个电池系统的状态,并根据其动力锂电池系统对其进行相应的控制调整和策略执行地位。动力锂离子电池系统及各单体的充放电管理,确保动力锂电池系统安全稳定运行。 动力锂离子电池BMS电池管理系统,是电动汽车动力锂电池系统的重要组成。它一方面检测收集并初步计算电池实时状态参数,并根据检测值与允许值的比较关系控制供电回路的通断;另一方面,将采集的关键数据上报给整车控制器,并接收控制器的指令,与车辆上的其他系统协调工作。锂离子电池管理系统,不同电芯类型,对管理系统的要求往往并不相同。 典型的锂离子电池管理系统的拓扑结构主要分为两个主要部分:主控制模块和从控制模块。具体而言,它由中央处理单元(主控制模块),数据获取模块,数据检测模块,显示单元模块和控制组件(保险丝设备,继电器)等组成。通常,数据信息通信模块之间的连接是通过使用内部CAN总线技术实现的。 下面讨论动力锂电池管理系统的设计方案,以实现锂电池动力电池组的过充保护,过放保护,过流保护和均衡充电的功能。 1.1过充电保护 对于锂离子电池,充电后单个电池的最大电压不得超过规定值,否则电池中的电解质会分解,导致温度升高并产生气体,从而缩短电池的使用寿命,并且甚至在严重的情况下也可能引起爆炸。因此,保护电路必须确保绝对不会过度充电,并且必须监视电池组中每个电池的端电压。当电池电压超过设定值时,过充电保护功能被激活,保护电路切断充电电路,停止充电。当电池电压恢复到允许电压并释放过充电锁定模式时,可以停止保护。不同材料的锂离子电池的保护电压和释放电压具有不同的规定值。 1.2过放电保护 锂离子电池过度放电也会缩短其使用寿命,并且对电池的损坏通常是不可逆的。为了防止锂离子电池的过放电,当锂离子电池的电压低于其过放电电压检测点时,将激活过放电保护,停止放电,并进行放电。电池处于低静态电流的待机模式。参数设置与过放电电压检测点相似。充电保护。 1.3过电流/短路保护 锂离子电池的最大放电电流有一定的限制。放电电流过大也会对锂电池造成不可逆转的损坏,并影响其使用寿命。短路保护的功能实际上是过电流保护的扩展。如果由于外部短路或其他原因引起大电流放电,应立即停止放电,否则可能严重损坏锂电池本身和外部设备。 1.4电池电量平衡 动力锂离子电池通常需要几串,几十串,甚至数百串或更多。在生产过程中,从薄膜开始到制成成品,电池必须经历许多过程。即使经过严格的检查程序,每组电源的电池电压,电阻和容量都是相同的,但是在使用一段时间后,电池的内阻,电压,容量和其他参数会发生波动,从而形成状态不一致,并且将以一种或另一种方式存在差异。当电池组充满电或放电时,这种差异反映在串联连接的电池单元之间的不同电压上。在这种情况下,在电池组的充电过程中,电压过高的电池单元会及早触发电池组的过充电保护,而在放电过程中电压低的电池单元会引起电池组的过放电保护,因此使整个电池组的容量大大降低。 本文只能带领大家对动力锂离子电池管理系统有了初步的了解,对大家入门会有一定的帮助,同时需要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。

    时间:2021-04-20 关键词: 电压 管理系统 动力锂离子电池

  • 关于动力锂离子电池和储能锂离子电池的区别,你了解吗?

    关于动力锂离子电池和储能锂离子电池的区别,你了解吗?

    什么是动力锂离子电池和储能锂离子电池?随着社会的快速发展,我们的动力锂离子电池和储能锂离子电池也在快速发展,那么你知道动力锂离子电池和储能锂离子电池的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。 电池是用来储存能量的。从公用事业的角度来看,这一切都与能源储存有关。因此,所有的锂离子电池都是储能锂离子电池。后来,为了区分它们的用途,根据场景将它们分为消耗、电力和能源储存。消费者应用程序应用于手机、笔记本电脑和数码相机等消费产品。电力被应用于电动汽车,能量储存被应用于发电站。 铅酸电池是最老的也是最成熟的化学储能方法,已有100多年的历史,广泛用于汽车启动电源、电动自行车或摩托车动力电源、备用电源和照明电源等。铅酸电池电极主要由铅及其氧化物制成,电解液是硫酸溶液。充电时,正极主要成分为二氧化铅,负极主要成分为铅;放电时,正负极的主要成分均为硫酸铅。铅酸电池可靠性好、原材料易得、价格便宜,但是其最佳充电电流为0.1C左右,充电电流不能大于0.3C,放电电流一般要求在0.05~3C之间,很难满足功率和容量同时兼顾的大规模蓄电要求。 动力锂离子电池是指容量在3AH以上的锂离子电池,目前则泛指能够通过放电给设备、器械、模型、车辆等驱动的锂离子电池,由于使用对象的不同,电池的容量可能达不到单位AH的级别。 动力锂电池实际上是一种储能电池。它重要用于电动汽车。由于汽车的体积和重量的限制以及发动机的加速度,动力锂电池比普通电池要更高的能量密度。尽可能高的电池充电更快,放电更大,但普通的储能电池要求不是很高。 除了以钛酸锂为负极的锂离子动力电池可以应用在储能领域外,随着磷酸铁锂正极材料的应用,传统的碳负极锂离子动力电池的寿命和安全性也得到较大提高,也可应用于储能领域。2010年索尼推出了1.2kWh磷酸铁锂储能电池模块,具有最大2.5kW的输出功率。 动力锂电池具备其它二次电池的共性:可多次充放电、循环使用。总体来看,动力电池的使用要经历了铅酸电池、镍镉电池、镍氢电池和锂电池,并最终向燃料电池等更新型的电池发展。锂离子动力电池的安全性问题研究任重而道远,唯有理论结合实际不断创新,才能迎来在高能量/高功率应用领域真正意义上的辉煌。 以上就是动力锂离子电池和储能锂离子电池的有关知识的详细解析,需要大家不断在实际中积累经验,这样才能设计出更好的产品,为我们的社会更好地发展。

    时间:2020-12-27 关键词: 电池 储能锂离子电池 动力锂离子电池

发布文章

技术子站