当前位置:首页 > 可编程
  • 线性霍尔效应传感器 IC,你知道吗?

    线性霍尔效应传感器 IC,你知道吗?

    什么是线性霍尔效应传感器 IC?它有什么作用?全球微电子工程公司 Melexis 宣布推出符合 ASIL 标准的霍尔效应传感器 IC MLX91377,该产品适用于安全苛求的汽车系统,如电动助力转向系统 (EPAS)。 在环境温度最高达 160℃ 的情况下,具备高线性度和出色热稳定性(包括低偏移和低灵敏度漂移)的 MLX91377 支持在 EPAS 系统中提供准确可靠的扭矩传感,实现在常规驾驶和无人驾驶过程中的安全控制。 MLX91377 作为独立安全单元 (SEooC) 开发,符合 ISO 26262 标准和 AEC Q-100 0 级认证。MLX91377 符合功能安全等级 ASIL-C 标准(数字输出模式(SENT 或 SPC))和 ASIL-B 标准(模拟输出模式),每个裸片均提供高等级的功能安全性,可检测内部故障并进入安全状态,防止出现意外的车辆行为。TSSOP-16 封装通过提供全冗余双裸片,进一步扩展了此项功能,支持转向系统和制动系统等安全性要求严苛的应用。 除了功能安全苛求应用,MLX91377 还满足一系列汽车和工业非接触式位置传感器应用的要求,包括转向扭矩传感器、加速踏板、制动踏板或离合踏板传感器、绝对线性位置传感器、浮子液位传感器、非接触式电位计、小角度位置传感器和小行程位置传感器。 可编程测量范围和多点校准为工程师提供了更大的灵活性,各种输出协议使一颗 IC 能用于多个应用,从而减少重复的认证工作和开发成本。短 PWM 代码 (SPC) 协议允许在检测到触发脉冲时进行测量和传输。因此,最多可将四个 MLX91377 传感器 IC 同步至最高 2 kHz,实现具有确定性延迟的同步磁测量,以确保高精度。此外,低噪声和高刷新率支持较高的控制环路速度,使系统能够实现快速响应时间,同时尽可能减少滤波。 MLX91377 具有 48 位可编程标识号,提供双裸片全冗余 TSSOP-16 封装。以上就是线性霍尔效应传感器 IC解析,希望能给大家帮助。

    时间:2020-06-01 关键词: melexis 可编程 传感器ic

  • 汽车电子嵌入式软件编程接口库如何设计比较合理

    汽车电子嵌入式软件编程接口库如何设计比较合理

    引言 近年来,随着电子科学和计算机技术的飞速发展,汽车电子设备的应用越来越多。目前,国内汽车电子技术水平跟国外汽车厂商相比还有很大差距,尤其是在发动机电控方面,国内尚无独立开发先例。本文介绍的柴油机电控系统嵌入式软件平台就是面向汽车电子,遵循OSEK标准,应用于汽车动力总成控制的系统平台。软件平台由微型系统内核和应用编程接口库组成。嵌入式操作系统内核负责任务调度及事件处理等,编程接口库负责将开发常用的算法和MPC555底层硬件的驱动函数进行控件级封装,供用户调用。在嵌入式系统中,开发人员通过调用编程接口库中已有的API函数,就可以实现常用运算功能以及常规硬件操作。 图1 发动机电控系统层次图 整个电控系统包括硬件平台、底层驱动、嵌入式软件平台和上层用户四个层次。各个层次关系,如图1所示。 硬件平台简介 发动机电控系统硬件平台主控CPU为MPC555,它是一款高性能的32位单片机,是专为汽车电子、航空航天、智能系统等高端嵌入式控制系统所设计的芯片。其独特之处在于其具有浮点运算单元,支持浮点代码的直接编程;此外,MPC555还具有可编程的时间处理模块,可通过对该模块的独立编程,实现对发动机曲轴、凸轮轴等复杂周期信号的处理,无需外接单独的CPU,从而大大简化了软、硬件设计。 图2 发动机电控系统硬件电路结构框图 以MPC555为核心控制单元,辅以相应的输入信号处理、输出控制和通讯单元设计的发动机电控系统硬件电路结构框图,如图2所示。 嵌入式操作系统内核简介 该嵌入式操作系统是以MPC555/MPC556单片机为硬件运行平台,参照欧洲OSEK标准,构建的超微型实时安全的嵌入式操作系统内核。该系统为用户提供各种任务调度、事件处理及中断响应机制,并由操作系统管理各个任务之间的切换和信息传递。 为满足系统实时性的要求,操作系统任务管理采用基于任务优先级的可抢占式任务机制,任务之间通过消息邮箱和消息队列传递变量和信息。另外,系统内核利用开放源码机制,通过裁减与移植,可以支持多种国际主流处理器。 该嵌入式操作系统内核的功能结构,如图3所示。 图3支持汽车电子的嵌入式操作系统内核结构图 嵌入式编程接口库设计 应用编程接口库的设计是将发动机电控系统需要的常规算法和硬件基本操作封装为函数形式,嵌入在操作系统中,为开发人员提供一个友好安全的软件平台。 该嵌入式编程接口库的结构,如图4所示。 图4 支持汽车电子的嵌入式编程接口库结构图 嵌入式基础编程接口库 嵌入式基础编程接口库是指各行业在电子控制方面通用的编程接口库。该库利用现有车辆数据作为模拟数据进行控制算法和线性插值算法库函数验证,数据结构符合 ASAP2标准。该接口库为用户提供了一整套开发中常用的算法函数和基本操作,对典型的算法和操作进行控件级封装,为应用程序提供一个完整的通用的系统调用函数库。 该函数库主要包括: 1. 2D、3D线性插值算法接口库:在二维、三维表中,经过线性插值得到与输入量对应的函数值,用于发动机控制参数查表算法。 2. PID控制器算法接口库:PID控制器是一种线性控制器。它根据给定值与实际输出值构成控制偏差,将偏差的比例、积分和微分通过线性组合构成控制量,主要用于控制喷油输出信号。 3. 平滑滤波处理算法接口库:主要用于对采集的模拟信号进行平滑和去抖处理。4. 其他汽车电子控制系统中,常用的控制算法和信号处理函数接口库。 嵌入式基础编程接口库的设计有两个目的:一是方便调用应用程序,增加程序可靠性和编程效率;二是希望通过将处理方法标准化,在不改变程序结构的情况下,可以将程序言在不同的硬件平台上进行移植,免去了软件开发人员对一些典型算法和操作的重复编程。 嵌入式专用编程接口库 嵌入式专用编程接口库,是指针对特定柴油机和ECU的硬件特殊需要设计的系统专用编程接口库。该接口库的设计符合OSEK操作系统调用规范,为用户提供底层硬件MPC555的各个功能模块的驱动,并针对汽车电子完成了基本的数据处理工作,提供软件方面的可调用函数。嵌入式专用编程接口库主要包括: 1. 模拟量输入检测及处理接口库:发动机的温度、压力等传感器信号以电压形式被电控单元ECU的模拟量通道采集。信号采集方式可以是需要时调用采集函数,也可以设置成QADC单元自动按定时器周期顺序采集。在系统初始化时,用户可根据具体情况分别设定各个通道的采集方式。 2. 开关量输入/输出接口库:用于对离合器、刹车等开关量信号采集并做去抖处理,结果赋值给指定的全局变量,供用户需要时读取。传感器电源、涡轮增压器控制等开关量输出,则通过直接调用相应函数由引脚输出高低电平实现。I/O口的引脚方向在系统初始化时根据硬件设计设定。 3. 周期量输入检测及输出控制接口库:MPC555单片机内部集成的时间处理单元TPU自带曲轴/凸轮轴信号检测功能和喷油信号输出控制功能。为方便用户使用,我们将各个功能封装为底层驱动函数形式,用户可以调用这些函数设定TPU的工作方式。 4. 其他和单片机硬件相关的驱动函数接口库。 底层驱动接口库是汽车电子开发人员和底层硬件系统之间的桥梁,使开发人员可以最大限度地脱离底层硬件转而专注于汽车控制算法设计。用户通过对底层驱动接口函数的调用,就可以方便地完成对MPC555底层硬件的操作。 嵌入式API函数库 基于上述算法和底层驱动函数库,针对该控制系统的具体需求和功能,兼顾在汽车电子领域的通用性,我们对函数和算法以及各种操作进行了更高一层的封装,为用户提供了更标准的API函数库,更大程度地方便了用户。API函数库包含了发动机各种信号的输入处理和输出控制函数,能够实现更加具体的功能。 以发动机喷油控制函数为例,当系统检测到曲轴信号缺齿位置时,产生中断。系统根据测得的发动机转数,以及各种温度和压力参数,结合怠速、刹车等开关的状态,设定喷油输出信号的起始时刻和脉冲宽度,从而实现对发动机性能的控制。 结语 本文介绍了一种支持汽车电子的嵌入式编程接口库的内容和设计方法。接口库提供了可供系统直接调用的各种API函数,以实现常规算法和硬件操作。接口库的设计相对独立,实现了与硬件平台、操作系统和控制算法的并行开发,最后统一联调,大大缩短了开发的时间。同时,这种层次分明的设计思想,也使得接口库设计更加通用和标准化,可以通过简单修改移植到新的软、硬件平台之上,提高了代码的重复利用率,有较高的使用价值。      

    时间:2020-05-18 关键词: 汽车电子 可编程

  • 网络可编程性有哪一些办法实现

    网络可编程性有哪一些办法实现

    哪怕是最苛刻的IT专业人员,有一个词也会很吸引他注意:节约成本。当市场中出现白盒交换机时——即一种预安装第三方网络操作系统的消费类交换机硬件,网络工程师一般首先听到或了解到的是这种新方法有可能节约成本。 但是,随着网络可编程性的概念变得越来越受到关注,节约成本已经不是白盒交换机中最受关注的方面了。除了节约金钱,它们还可以增加网络自动化、可编程性和灵活性,这些改进也有其实际价值。 根据波士顿Doyle Research首席分析师Lee Doyle的观点,包含软件和硬件在内的白盒交换机市场预计将在2018年增长到5亿美元。但是,现在仍然是软件定义网络(SDN)的发展早期,因为白盒交换机与网络操作系统市场目前还很小。Doyle指出,作为对比,像Cumulus Networks和Big Switch Networks这样的白盒交换机供应商现在的“收益可能只有200万美元”。 他补充说,目前主攻白盒交换机的公司主要有三类:有资源部署和维护这些交换机的互联网级别公司、更多考虑绿地部署风险的数据中心运营商和一些基于云但未达到互联网级别的公司。然而,大多数企业和服务提供商并不满足于任何一个网络操作系统。对于大多数公司而言,他们的操作系统选择最终取决于作出采购决策的负责人的专业技术背景。 Gartner公司杰出分析师Joe Skorupa说:“服务人员会选择Cumulus Networks或Pica8,而网络人员则会选择Big Switch或Pica8。Cumulus Networks有适用于数据中心的白盒交换机。人们通常会用它来支持SDN堆叠网络,但是它本身并不是SDN。” 下面将针对这个特点来介绍三个使用拍盒交换机实现网络可编程性的用例。 像管理服务器一样管理交换机 DreamHost LLC是洛杉矶一家网站托管公司和云提供商,它在白盒交换机上使用Cumulus Networks的Cumulus Linux网络操作系统来高效地扩展和管理自己的开源多租赁公共云服务:DreamCompute。 DreamHost负责云的副总裁Jonathan LaCour说:“由于运行着Cumulus Linux网络操作系统,所以我们将交换机看作是另一种Linux服务器。我们也用相同的团队、工具和流程去管理我们的Linux服务器上的Cumulus Linux。” 这与DreamHost的遗留交换机有很大的区别,后者运行着预安装的私有软件和工具,与IT团队用于管理和监控计算与存储设备的Linux工具完全不同。 LaCour说:“Cumulus Linux帮助我们将一种特殊的网络环境变成一种不那么特殊的通用环境。” Cumulus白盒交换机采用的方法将来自大型传统交换机供应商的私有交换机接口更换为所有Linux服务器管理员都能理解的通用Linux接口。 在白盒交换机上运行Cumulus Linux可以帮助DreamHost提升Linux平台的性能和实现网络可见性,同时让它的工程师能够使用现有的Linux服务器管理工具实现网络自动化。采用与Linux服务器自动配置安装过程的相同方法,除了一些小更新和修改之外 ,完全不需要更多的特殊考虑,Cumulus Linux控制器会自动配置其白盒交换机安装设置,以满足DreamHost的网络要求。这个网络包括客户Pod(自包含硬件单元,表示DreamHost云的一个可用域)和用于管理用途的命令与控制Pod,它们运行着Cumulus Linux和40GbE叶脊架构。 LaCour说:“虽然网络工程师现在可以通过自动化、CPI(命令行接口)和API编程控制交换机,Cumulus Linux的特别之处是它的CLI和API与每一位系统工程师和云工程师长期使用的Linux工具完全相同,如路由器命令和ipconfig等。他们完全不需要学习新东西,所有东西都由硬件加速。” Linux服务器与运行Cumulus Linux的交换机之间并没有很大的差别——主要差别就是每一台设备上的端口数量。一个Linux服务器可能只有2~4个2层和3层连接以太网端口,而Cumulus白盒交换机则有48个10GB端口。 DreamHost使用DevOps工具Opscode Chef实现服务器与网络编制。由于每一个交换机都运行着版本2和版本3的开放最短路径优先(Open Shortest Path First)协议,因此从配置到故障修复等所有网络操作都变得非常简单。DreamHost工程师根据Chef手册和秘诀(一组可重用配置说明)编程实现Cumulus Linux交换机的目录管理和配置。它的IT团队使用基于Python编写的工具Graphite来监控交换机。 交换机会出现故障,而当它们出现故障时,Cumulus Linux会让DreamHost的网络保存路由数据并保持正常运行,直到交换机完成更换,即从网络移除故障交换机,然后使用剩余交换机自动重建网络结构。然后,控制器会配置新交换机,然后自动将它添加到网络中。这样就可以将平均修复时间从几小时减少为几分钟。 但是,与所有网络平台一样,Cumulus Linux也不是完美的。 LaCour说:“在一些复杂特性上,网络操作系统仍然无法与传统交换机架构相媲美。但是,这与我们的情况没有关系,因为我们更愿意保持底层网络的简单性,同时在SDN堆叠网络上添加白盒交换机所缺少的更多特性。”

    时间:2020-05-12 关键词: 服务器 可编程 交换机

  • 区块链分布式数据库是个什么

    区块链分布式数据库是个什么

    一、前言 比特币第一笔交易发生在2009年1月4日2点15分5秒。到今天,超过10年了。在这10多年的过程中,比特币网络上发生的所!有!交易,全都完整地保存了下来。任何人都可以下载查阅比特币所!有!的历史交易。更牛X的是,比特币网络还没有专门的人去维护,没有专门的法规去约束谁要保存这些交易。它就这样稳定安全地保存了10年的交易数据。 区块链或许命中注定承担保存那些需要长期、安全、稳定、数量庞大的数据。 区块链数据库,这个名字听起来太拗口,很难理解。遇到这个名词,我脑子里一直无法想象出一个对应的“视觉化图景”。说数据库,我们能想象出一张表;说区块链,我们能想象出一个一个区块首尾相连。但区块链数据库是个什么玩意? 二、区块链数据库 数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。所谓 “数据库” 系以一定方式储存在一起、能予多个用户共享、具有尽可能小的传统数据库是用来存储信息的数据结构。这包含能够用来制作支持各类商业,金融和管理决定的报告,所需要的数据。政府也会使用数据库来存储大型数据,可以会有几百万个记录。数据库从文件分级系统开始,提供了最基本的信息获取和存储功能。然后,数据库使用相关的模型,通过将多个数据库进行相关,可以有更多复杂的方式来获得数据。存储在数据库中的信息可以使用管理系统来进行管理。简单的数据库被存储在数据行列中,被称为表格。表格中包含不同领域,用来定义不同记录的种类,存储数据被称为属性。每个领域包含列和航,代表存储的记录。冗余度、与应用程序彼此独立的数据集合。 数据库是被管理员可以修改,管理和控制的。数据库总是会有管理员,并且可以完全控制数据库。他们可以创建,删除,修改数据库中的任何记录。他们能优化数据库的性能和大小。越大的数据库就会有更慢的性能,所以管理员可以使用方法来优化。管理员也可以把这个身份转给别人。例如,管理员可以把身份转给另外的用户,让他们来进行数据库备份。但是,问题也会有,例如服务器跨了,唯一的方法就是从备份恢复。数据库也是递归的,也就是说你可以回去重复某个任务,或者说删除任务。如果信息已经备份,那么管理员就会删除之前的记录和其他过期信息。比如你在现在数据库写入了“John Smith”,现在需要更新住址。但是现在已经有“John Smith”的备份了,所以你可以通过现有数据库的新地址进行更新。 数据库可以通过服务器架构来实现。这是因为计算机需要连接服务器,它们管理数据库,从而可以获得信息和存储的数据。最初地时候,数据库客户端使用ODBC连接,这是由管理员设定的,然后连接到数据库。这个客户端软件然后就会运行,来完成加密连接,但是必须要有权限才能进入。这个权限能够被管理员设置,或者用户通过密码也可以进入。这就是为什么用户账号会被创造,可以让认证的用户进入,同时拒绝那些没有认证的。现在大多数系统,都会使用网页接口。但是对于私人信息,还是需要认证,但是公开数据库就可以很容易地通过网页进入。 我们可以看出,数据库需要足够的控制,这会让它高度中心化。同时,这也是需要允许的,也就是说需要管理员来设定如何让用户进入。在生产环境下,DB管理员需要设定只读权限,他们也需要给用户设定更新和写入的权限。传统数据库的中心化会保证系统的安全和信任。很多数据库都会在私人网络下运行,同时背后是大公司的防火墙。其他也有数据库是基于云服务器。但是他们仍然是需要管理员来控制他们。 第一,不管是 RDBMS、NoSQL 还是 NewSQL,都会提供一个 接口,供用户进行数据的存取。也就是说数据是可以篡改的,这跟区块链不可篡改的思想相悖。 第二,传统企业或者互联网企业之所以选择数据库,因为这些 数据是私有的,数据就是价值,数据就是竞争力。 企业数据库存储的数据是绝不会公开的,跟区块链所倡导的公开思想完全背离。比如你在知乎提问、答题,这些数据都会给知乎带来最大的价值,而不是给你带来最大价值。因为这些数据是存在知乎的数据库里,只有具有相关权限的人才会接触到。他们会拿这些数据做什么呢?出电子书、出实体书、出周边、大数据分析等等,而这几乎与你无关。也就是说,传统数据库是为企业最大化服务的,而不是用户。 第三,传统数据库都是应用在 中心化 的公司或者机构,与区块链去中心化的思想相悖。中心化意味着作恶的概率、被攻击的可能性极高。 第四,部分传统数据库开源,还有相当大比例的数据库都是闭源的。没有开源的数据库是由中心化的组织来维护代码,安全性和稳定性也是中心化组织来维护。这跟区块链所倡导的开源思想相悖。一个开源的系统自然会存在问题,但是社区会以最快的速度进行修复。 第五,除了分布式数据库有共识机制,其他的数据库没有完整的分布式协议应用,而分布式协议可以理解成区块链里的共识机制。大多数数据库不具备共识机制。 第六,区块链目前暂时没有达到大规模应用的要求,目前也是区块链技术的瓶颈,而数据库目前完全可以支撑大规模高并发的场景。区块链由于是一个分布式系统,想要实现高并发,关键点在于共识机制。 所以,传统数据库无法改造成区块链。 三、区块链分布式数据库 分布式数据库从2005年左右开始,首先是NoSQL这波浪潮。这些数据库解决的首要问题是单机上无法保存全部数据,如HBase/Cassadra/MongoDB等。紧接着是RDMS的救赎,除了NoSQL之外,RDMS系统也做了不少努力来适应业务的变化,也就是关系型数据库的中间件和分库分表方案。然后是NewSQL的发展,2012~2013年Google 相继发表了Spanner和F1两套系统的论文,让业界第一次看到了关系模型和NoSQL的扩展性在一个大规模生产系统上融合的可能性。 区块链技术也被称为分布式账本技术,我认为他和传统分布式数据库的主要区别是“”“信任”,区块链是去中心化的,任何节点都不是leader,都不被充分信任(trustless),区块链内的任何节点都可以修改数据,修改完数据会向整个链内进行广播,其它节点接受到广播并不是立马同步修改记录数据,会对修改的数据保持怀疑,会根据共识机制,密码算法去验证这个数据的修改是否是合法的,如果不合法就丢弃掉,如果合法就记录下来,而一般传统的分布式数据库节点之间是相互信任的,数据复制(数据的修改同步)没有类似区块链的一套验证,讲究实时同步,所以类似银行,支付宝转账基本都是瞬间到账,而如比特币的买卖到账时间都不是实时的,区块链这套机制本质上是牺牲了一定的效率而换取了安全性。 扯些题外话,目前来看区块链技术的发展还处于早期,目前主要的应用场景就是各种发币,币圈也是越来越热,现在各国政府对区块链都是拥抱的态度,但是对比特币等数字火币应该还是没有想清楚如何应对和监管,各国对数字火币的态度也不尽相同。 另外一点,关于区块链去中心化这个事情,目前已经被很多人当成政治正确,一直被强调,我个人并不是很赞同。 去中心化看似是一个公平,普世的东西,但是在实际操作层面会有很多问题,比如在金融行业,金融体系对一个国家来说是命脉所在,去中心化如何监管,仅仅靠区块链的共识机制,制度设计是不是就不会出现问题? 这些都是需要回答的问题,尤其在当前的中国,中国改革开放40年来取得的经济奇迹和国家的体制有密切的关系,我们是民主集中式领导,强调中心,核心,从哲学思想上说,完全的去中心化在中国更难获得成功。总之个人认为去中心化和中心化需要有个最佳的妥协才能在现实世界发挥价值,任何技术和理念必须产生实际价值才有意义。 四、分布式数据库核心产品 DRDS:Distributed Relational Database Service,是阿里巴巴致力于解决单机数据库服务瓶颈问题而自主研发推出的分布式数据库产品。DRDS 高度兼容 MySQL 协议和语法,支持自动化水平拆分、在线平滑扩缩容、弹性扩展、透明读写分离,具备数据库全生命周期运维管控能力。详细的DRDS介绍请参考DRDS概述章节。 RDS:RelaTIonal Database Service,是一种稳定可靠、可弹性伸缩的在线数据库服务。基于阿里云分布式文件系统和SSD盘高性能存储,并且提供了公共云数据库的容灾、备份、恢复、监控、迁移等方面的全套解决方案。详细的RDS介绍请参考什么是RDS章节。 HDM:Hybrid Cloud Database Management,是混合云数据库管理平台,帮助企业打通混合云数据库架构,提供多环境统一管理、快速弹性、容灾切换的能力。对于混合云灾备场景下,使用阿里云HDM可便捷、快速的将本地IDC的数据同步至云上,并进行容灾切换演练,故障发生时可通过HDM进行容灾切换,保障数据库的可用性。详细的HDM介绍请参考混合云数据管理章节。 DTS:Data Transmission Service,是阿里云提供的一种支持多种数据源之间数据交互的数据流服务。它提供了数据迁移、实时数据订阅及数据实时同步等多种数据传输能力。在数据库灾备解决方案中,使用阿里云DTS可实现各数据库间的数据迁移与实时同步,从而为数据库灾备打好最重要的基础。DTS的数据迁移、数据同步详细架构设计及原理请参见产品架构章节。 DMS:Data Management,支持MySQL、SQL Server、PostgreSQL、MongoDB、Redis等关系型数据库和NoSQL的数据库管理,同时还支持Linux服务器管理。它是一种集数据管理、结构管理、访问安全、BI图表、数据趋势、数据轨迹、性能与优化和服务器管理于一体的数据管理服务。详细的DMS介绍请参考数据管理章节。 CloudDBA:CloudDBA是监控和管理RDS实例性能及运行状况的服务,在RDS控制台的实例管理页面,目前只适用于智汇返佣http://www.kaifx.cn/broker/thinkmarkets.html类型的实例。针对SQL语句的性能、CPU使用率、IOPS使用率、内存使用率、磁盘空间使用率、连接数、锁信息、热点表等,CloudDBA提供了智能的诊断及优化功能,能最大限度发现数据库存在的或潜在的健康问题。CloudDBA的诊断基于单个实例,该诊断会提供问题详情及相应的解决方案,可为您管理实例运行状况带来极大的便利。详细的CloudDBA的介绍请参考CloudDBA简介章节。 五、总结 从2008年的比特币开始,区块链经历了可编程货币、可编程金融与可编程社会三大应用时代,其应用范围逐步扩展到社会生活的方方面面。从需求端来看,金融、医疗、公证、通信、供应链、域名、投票等领域都开始意识到区块链的重要性并开始尝试将技术与现实社会对接。 从投资端来看,区块链的投资资金供给逐步上升,风头的投资热情也不断高涨,投资密度也越来越大,供给端的资金有望助推技术的进一步发展。从市场应用来看,区块链将促使公司现有业务模式重心的转移,有望加速公司的发展。 从投资端来看,区块链的投资资金供给逐步上升,风头的投资热情也不断高涨,投资密度也越来越大,供给端的资金有望助推技术的进一步发展。从市场应用来看,区块链将促使公司现有业务模式重心的转移,有望加速公司的发展。

    时间:2020-05-12 关键词: 数据库 可编程 区块链

  • 你见过活的机器人吗

    你见过活的机器人吗

    站长之家(ChinaZ.com) 1月14日 消息:用活细胞制造的微型活体机器人可能很快就会在你的体内“游动”了。据cnet报道,美国佛蒙特大学和塔弗茨大学研究人员使用超级计算机,利用青蛙的皮细胞和心脏细胞设计新的生命形式也就是活体机器人“xenobots”。 本周一,科学家已经在《美国科学院院报》(PNAS)发布了一篇论文详细介绍了这项活体机器人研究情况。 佛蒙特大学的机器人专家约书亚·邦加(Joshua Bongard)解释称,它们既不是传统的机器人,也不是已知的动物物种。这是一种活的、可编程的有机体。 xenobots移动速度非常缓慢,为了验证它们是否按编程设计运行,研究人员将它们翻转过来,这些活体机器人就停止移动。 塔夫茨大学再生与发育生物学中心研究人员迈克尔·莱文(Michael Levin)也表示,这些活机器人的许多有用的应用,这是其他机器做不到的。比如寻找令人讨厌的化合物或放射性污染,清理海洋中的微塑料污染,或者进入人体血管,精准输送药物、清楚动脉壁上的斑块等等。 这种活体机器人有几个优点,它们虽然可能不像金属、塑料机器人那样坚固,但却是完全可生物降解,受损后它能够治愈伤口。邦加德说:“我们把机器人切成两半,它自己缝合起来,继续工作。” 研究人员承认,活机器人的概念可能让人类感到恐惧,如果被用于不法用途,后果也可能是灾难性的。

    时间:2020-05-08 关键词: 机器人 可编程

  • 全球首个活体机器人诞生,可编程还会自愈

    全球首个活体机器人诞生,可编程还会自愈

    (文章来源:环球网) 众所周知,至少自农业出现以来,人类就一直在为自身利益操纵生物,基因编辑也越来越普遍。过去几年里,人类已经通过模仿其他动物的体型,制造出了一些人造生物,但研究小组表示,这是有史以来第一次“完全从头开始设计的生物机器”。大体上,xenobots的创造过程有两步。 第一步,利用佛蒙特大学的佛蒙特高级计算核心(Vermont Advanced Computing Core)的DeepGreen超级计算机集群,研究团队(包括第一作者和博士生SamKriegman)用了几个月的时间,用进化算法为这一新的生命形式设计了上千个设计。 为完成任务(比如朝一个方向移动),计算机会一遍遍地将几百个模拟细胞重新组合成无数的形式或身体形状。随着程序的运行——由关于单个青蛙皮肤和心脏细胞能做什么的生物物理学基本规则驱动——更成功的模拟生物被保存、优化,而失败的则被抛弃。在对算法进行100次独立运行之后,科学家选出了最满意的设计,用于下一步研究。 第二步,Michael Levin带领的塔夫茨大学团队和显微外科医生Douglas Blackiston要做的就是关键一步——将电脑设计变成现实。他们先从非洲蛙种非洲爪蟾的胚胎中收集干细胞,将其分离成单个细胞并孵育,然后用小镊子和更小的电极,将细胞切割并在显微镜下连接,使其非常接近于计算机指定的设计。 这样,这些细胞被组装成了自然界从未见过的形体,随后它们便开始一起工作了。经过上述一番操作,皮肤细胞形成了一个更加被动的结构,而心肌细胞原本无序的收缩则在电脑设计的指导下,在自组织模式的帮助下,产生有序的向前运动,这也就是机器人实现自行移动的关键。当然,在研究过程中,难免会有一些意想不到的结果,但有时这些结果也促成了新的发现。 研究者们注意到,这些可重组的有机体能够以一种连贯的方式移动,并且在胚胎能量储存的驱动下,用数天甚至数周时间探索它们的水环境,但是反过来的时候却失败了,就像甲虫翻跟头一样。后来,试验表明,成群的xenobots会绕着圈移动,并集体自发地把一个小球推到中心位置。其他xenobots则在中间挖开一个洞,从而减少阻力。而在模拟过程中,科学家们发现把这个洞作为一个袋子,它们能成功地携带物体。 佛蒙特大学计算机科学与复杂系统中心教授JoshBongard表示:“这是电脑设计的生物向智能药物输送领域迈出的一步。“我们知道,许多机器、硬件产品等都是由钢、混凝土或塑料等材质制成的,这固然有其道理(比如质量有保证),但有时也难免会造成生态和人类健康问题——比如日益严重的海洋塑料污染。 相比之下,Josh Bongard表示:“xenobots有自我再生修复机制,而且当它们停止工作、死亡时,通常也不会对外界环境带来破坏,它们是完全可生物降解的。七天后当它们完成工作时,它们就只是死皮细胞。”另外,笔记本电脑固然强大,但要是把它摔成两半,可能就无法工作了。但科学家们把xenobots切成两半后,发现它们可以自愈,然后继续前进,这是传统的机器无法做到的。 同时,研究者也表示,他们对细胞交流、连接潜力的研究,已经深入到对计算科学和对生命的理解中。MichaelLevin说:“当前一个重要的问题便是理解决定形式和功能的算法。基因组能够编码蛋白质,但硬件如何让细胞在各种不同的条件下合作,从而进行功能性解剖,这还等着我们去发现。” 同时,为了使有机体发展并起作用,有机计算一直在有机体的细胞内和细胞间进行,而不仅仅是在神经元内。这些几何特性是通过生物电学、生物化学和生物力学过程形成的,正如MichaelLevin所说:这些过程在DNA指定的硬件上运行,是可重新配置的,也使得新的生命形式成为可能。 如今,许多人担心技术的飞速发展和越来越复杂的生物操作会带来负面影响。对此,MichaelLevin表示:这种恐惧不是没有道理,当我们开始摆弄连我们自己都不理解的复杂系统时,结果可能很难想象。如果人类要在未来生存下去,就需要更好地理解复杂的性质是以何某种方式从简单的规则中产生的。大部分科学都集中在控制“低级规则”上,我们还需要了解“高级规则”。 Michael Levin认为,这项研究对于解决人们心中的恐惧有积极意义,这也是研究团队的一项意外收获。      

    时间:2020-05-08 关键词: 机器人 可编程

  • 可编程磁性机器人可以做一些什么

    可编程磁性机器人可以做一些什么

    精确控制液滴行为是冷却降温、防结冰、微流控等应用领域的关键。当前研究主要集中于单一液滴移动行为,此时仅需使液滴的驱动力大于其移动时受到的固定阻力。调节液滴所受驱动力及阻力的相对大小,实现复杂的液滴行为,仍然面临严峻挑战。 在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所绿色印刷重点实验室宋延林课题组近年来致力于纳米绿色印刷技术的研究和应用,在喷墨打印墨滴控制和功能界面操控液滴行为领域取得一系列进展。最近,他们设计出一种能够程序化控制的“液滴机器人”,首次实现了液滴的切割、移动、释放和旋转等复杂行为。该机器人由磁场控制系统和两个不锈钢组成。通过程序化控制磁场分布,可以改变钢球的位置和球心距,从而动态调节液滴运动时前后端受到的阻力大小,实现液滴的多行为控制。对钢球进行表面处理,调节其表面能,可用于多种类流体系统的操控。比如,在水下控制油滴,在油下控制水滴和水下控制气泡等。这种液滴控制技术在化学分析和生物医学等领域具有广泛的潜在应用前景。 这项研究实现了液滴的复杂行为操纵。可以通过简单的程序设计,实现复杂的化学生物实验的操控。也许有一天,未来的化学生物实验只需要“编程”就可以实现。相关研究成果发表在《Science Advances》杂志,通讯作者是研究员宋延林和博士李会增,第一作者是博士生李安。

    时间:2020-04-27 关键词: 机器人 可编程

  • 3分钟认识波形发生器,如何设计AD9833型高精度可编程波形发生器?

    3分钟认识波形发生器,如何设计AD9833型高精度可编程波形发生器?

    波形发生器在生活中有很多应用,很多公司都有各种波形发生器产品。对于波形发生器,大家可能有些陌生,因为即使波形发生器存在诸多应用,但普通职业群众却很少接触波形发生器。为增进大家对波形发生器的了解,本文将对AD9833型高精度可编程波形发生器设计方案予以介绍。如果你对本文即将探讨的内容存在一定兴趣,不妨继续往下阅读。 一、AD9833波形发生器介绍 AD9833是一款低功耗、可编程波形发生器,能够产生正弦波、三角波、方波输出。波形发生器广泛应用于各种测量、激励和时域响应领域,AD9833无需外接元件,输出频率和相位都可通过软件编程,易于调节,频率寄存器是28位的,主频时钟为25MHz时,精度为0.1Hz,主频时钟为1MHz时,精度可以达到0.004Hz。 可以通过3个串行接口将数据写入AD9833,这3个串口的最高工作频率可以达到40MHz,易于与DSP和各种主流微控制器兼容。AD9833的工作电压范围为2.3V-5.5V。 AD9833还具有休眠功能,可使没被使用的部分休眠,减少该部分的电流损耗,例如,若利用AD9833输出作为时钟源,就可以让DAC休眠,以减小功耗,该电路采用10引脚MSOP型表面贴片封装,体积很小。 AD9833的主要特点如下: 频率和相位可数字编程; 工作电压为3V时,功耗仅为20mW; 输出频率范围为0MHz-12.5MHz; 频率寄存器为28位(在25MHz的参考时钟下,精度为0.1Hz); 可选择正弦波、三角波、方波输出; 无需外界元件; 3线SPI接口; 温度范围为-40℃-+105℃。 二、AD9833的结构及功能 2.1 电路结构 AD9833是一块完全集成的DDS(Direct Digital Frequency Synthesis)电路,仅需要1个外部参考时钟、1个低精度电阻器和一个解耦电容器就能产生高达12.5MHz的正弦波。除了产生射频信号外,该电路还广泛应外于各种调制解调方案。这些方案全都用在数字领域,采用DSP技术能够把复杂的调制解调算法简化,而且很精确。 AD9833的内部电路主要有数控振荡器(NCO)、频率和相位调节器、Sine ROM、数模转换器(DAC)、电压调整器,其功能框图如图1所示。 AD933的核心是28位的相位累加器,它由加法器和相位寄存器组成,每来1个时钟,相位寄存器以步长增加,相位寄存器的输出与相位控制字相加后输入到正弦查询表地址中。正弦查询表包含1个周期正弦波的数字幅度信息,每个地址对应正弦波中0°-360°范围内的1个相位点。查询表把输入的地址相位信息映射成正弦波幅度的数字量信号,去DAC输出模拟量,相位寄存器每经过228/M个MCLK时钟后回到初始状态,相应地正弦查询表经过一个循环回到初始位置,这样就输出了一个正弦波。输出正弦波频率为: fOUT=M(fMCLK/228) (1) 其中,M为频率控制字,由外部编程给定,其范围为0≤M≤228-1。 VDD引脚为AD9833的模拟部分和数字部分供电,供电电压为2.3V-5.5V。AD9833内部数字电路工作电压为2.5V,其板上的电压调节器可以从VDD产生2.5V稳定电压,注意:若VDD小于等于2.7V,引脚CAP/2.5V应直接连接至VDD。 2.2 功能描述 AD9833有3根串行接口线,与SPI、QSPI、MI-CROWIRE和DSP接口标准兼容,在串口时钟SCLK的作用下,数据是以16位的方式加载到设备上,时序图如图3所示,FSYNC引脚是使能引脚,电平触发方式,低电平有效。进行串行数据传输时,FSYNC引脚必须置低,要注意FSYNC有效到SCLK下降沿的建立时间t7的最小值。FSYNC置低后,在16个SCLK的下降沿数据被送到AD9833的输入移位寄存器,在第16个SCLK的下降沿FSYNC可以被置高,但要注意在SCLK下降沿到FSYNC上升沿的数据保持时间ts的最小和最大值。当然,也可以在FSYNC为低电平的时候,连续加载多个16位数据,仅在最后一个数据的第16个SCLK的下降沿的时将FSYNC置高,最后要注意的是,写数据时SCLK时钟为高低电平脉冲,但是,在FSYNC刚开始变为低时,(即将开始写数据时),SCLK必须为高电平(注意t11这个参数)。 当AD9833初始化时,为了避免DAC产生虚假输出,RESET必须置为1(RESET不会复位频率、相位和控制寄存器),直到配置完毕,需要输出时才将RESET置为0;RESET为0后的8-9个MCLK时钟周期可在DAC的输出端观察到波形。 AD9833写入数据到输出端得到响应,中间有一定的响应时间,每次给频率或相位寄存器加载新的数据,都会有7-8个MCLK时钟周期的延时之后,输出端的波形才会产生改变,有1个MCLK时钟周期的不确定性,因为数据加载到目的寄存器时,MCLK的上升沿位置不确定。 三、AD9833的引脚功能及时序 AD9833的引脚排列如图2所示,各个引脚的功能描述见表1。 AD9833的时序特性如图3、图4和表2所示。 四、AD9833的内部寄存器功能 AD9833内部有5个可编程寄存器,其中包括3个16位控制寄存器,2个28位频率寄存器和2个12位相位寄存器。 4.1 控制寄存器 AD9833中的16位控制寄存器供用户设置所需的功能。除模式选择位外,其他所有控制位均在内部时钟MCLK的下沿被AD9833读取并动作,表3给出控制寄存器各位的功能,要更改AD9833控制寄存器的内容,D15和D14位必须均为0。 4.2 频率寄存器和相位寄存器 AD9833包含2个频率寄存器和2个相位寄存器,其模拟输出为 fMCLK/228&TImes;FREQEG (2) 其中:FREQEG为所选频率寄存器中的频率字,该信号会被移相: 2π/4096&TImes;PHASEREC (3) 其中,PHASEREC为所选相位寄存器中的相位字。 频率和相位寄存器的操作如表4所示。 五、应用设计 AD9833可应用在L15型飞机控制盒配套的检测盒中,利用AD9833产生频率可调的正弦波,以模拟机轮速度传感器的速度信号,从而对控制盒的刹车防滑通道能否正常的刹车防滑进行检测。 5.1 AD9833的硬件电路连接 检测盒设计以TI公司的TMS320LF2407A型DSP作为核心控制器,应用中需要2路速度信号,因此需要检测盒给出2路可独立调节的频率,图5示出TMS320LF2407A与AD9833的硬件连接。 外接有源晶体振荡器的输出送给2个AD9833作为主频时钟,DSP的SPI口采用主动工作方式,即用SPISIMO口发送数据,为了与AD9833的时序相配合,DSP的接口时钟(SPICLK信号)方式选择有延时的下降沿,IOPC3和IOPC5作为电路选通信号,IOPC3为低电平时U2被选通,此时对U1写数据无效;同理,IOPC53为低电平时U1被选通,此时对U2写数据无效。 5.2 软件程序 图6示出了AD9833的软件流程。 无论是写控制寄存器、频率寄存器还是相位寄存器、在写数据之前都需要把选通信号置为有效状态,这样写入的数据才会有效,否则无效。在DSP发送完1个数据字后将产生SPI中断请求,本设计中未使用中断方式,而且通过查询中断标志来跳出,并虚读DSP的接收缓冲器清除中断标志。 以上便是此次小编带来的“波形发生器”相关内容,希望大家对本文探讨的内容具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-04-15 关键词: 波形发生器 可编程 指数 ad9833

  • LED可编程技术

    LED可编程技术

    随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。为响应新能源法规的要求,LED正越来越多地被用作节能光源。与传统灯具相比,它们具有决定性优势:能耗更低,寿命更长,并且有各种颜色可供选择。 例如,借助LED,世界上最大的教堂——罗马圣彼得大教堂,现在得以呈现于全新灯光下。通过智能控制系统,即使是其重要藏品最小的细节也可以通过预设的照明场景进行一一呈现。这些数字控制系统集成了可编程LED驱动器,因此可按需激活LED。图1显示了一个3通道LED驱动器配置的示例。 数模转换器(DAC)(在本例中为ADI公司的AD5686)的三个输出电压中的每一个都控制一个电压-电流转换器级,在每一级的负载路径中放置独立的LED,用于每个LED通道。所有三个转换器级均由运算放大器(运放)ADA4500-2并连接一个用来控制LED电流的MOSFET实现。理论上,这个LED电流可以高达几安培,具体取决于电压源(VS)和负载电阻,在本电路中为2 Ω。因此,选择合适的MOSFET非常重要。 DAC输出电压的质量很大程度上取决于基准电压源VREF。应使用高质量的基准电压源。ADR4520就是这样一个例子,如图1所示。它具有极低的噪声、超高的长期精度和出色的温度稳定性。由于ADA4500-2的内部设计,典型的轨到轨放大器具有一定的非线性和交越失真。它们的输入级由两个并联的差分晶体管组成:PNP级(Q1和Q2)和NPN级(Q3和Q4),如图2所示。     图1.用于控制三个独立LED的LED驱动器的简化原理图。     图2.运算放大器中的轨到轨双极晶体管输入级简化版。 根据所施加的共模电压,两组输入对产生不同的失调电压和偏置电流。如果共模电压施加到放大器输入端,与正或负电源电压(VS)相差小于0.7 V,则只会激活两个输入级中的一个。那么,仅会出现对应于有效级的误差(失调电压和偏置电流)。如果电压升至0.8 V,则两个输入级都将激活。在这种情况下,失调电压可能突然改变,导致所谓的交越失真和非线性。 相比之下,ADA4500-2具有集成的输入端电荷泵,无需第二个差分对即可覆盖轨到轨输入范围,从而避免了交越失真。ADA4500-2的其他优势还包括低失调、低偏置电流和低噪声分量。在这类电路中,必须注意负载/电流路径中由LED连线产生的电感。导线通常为数米长,如果没有提供正确的补偿,可能会导致异常的振荡。此电路中的补偿通过反馈路径实现,它将由分流电阻测量的电流返回到运算放大器的输入。应根据产生的电感调整ADA4500-2上现有的电阻和电容电路。 利用图1所示的电路,能够更简易地实现可通过DAC编程以用于精确照明控制应用的多通道LED驱动器。根据特定需求进行适当调整以避免功能异常也是十分重要的。 结论 本文所述的电路显示了创建可编程LED驱动器更简单的方法,该驱动器非常适用于需要紧凑、可扩展、易于供电和高线性度电源的精确照明控制应用。不过,尺寸必须适应应用的要求,以避免由于各种存在的电感(例如线路电感和寄生电感)引起的任何故障。以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。

    时间:2019-11-04 关键词: LED 驱动器 可编程 电源技术解析

  • 实现可编程LED驱动器更简单的方法

    实现可编程LED驱动器更简单的方法

    通过智能控制系统,即使是其重要藏品最小的细节也可以通过预设的照明场景进行一一呈现。这些数字控制系统集成了可编程LED驱动器,因此可按需激活LED。图1显示了一个3通道LED驱动器配置的示例。 数模转换器(DAC)(在本例中为ADI公司的AD5686)的三个输出电压中的每一个都控制一个电压-电流转换器级,在每一级的负载路径中放置独立的LED,用于每个LED通道。所有三个转换器级均由运算放大器(运放)ADA4500-2并连接一个用来控制LED电流的MOSFET实现。理论上,这个LED电流可以高达几安培,具体取决于电压源(VS)和负载电阻,在本电路中为2 Ω。因此,选择合适的MOSFET非常重要。 DAC输出电压的质量很大程度上取决于基准电压源VREF。应使用高质量的基准电压源。ADR4520就是这样一个例子,如图1所示。它具有极低的噪声、超高的长期精度和出色的温度稳定性。 由于ADA4500-2的内部设计,典型的轨到轨放大器具有一定的非线性和交越失真。它们的输入级由两个并联的差分晶体管组成:PNP级(Q1和Q2)和NPN级(Q3和Q4),如图2所示。 图1.用于控制三个独立LED的LED驱动器的简化原理图。 图2.运算放大器中的轨到轨双极晶体管输入级简化版。 根据所施加的共模电压,两组输入对产生不同的失调电压和偏置电流。如果共模电压施加到放大器输入端,与正或负电源电压(VS)相差小于0.7 V,则只会激活两个输入级中的一个。那么,仅会出现对应于有效级的误差(失调电压和偏置电流)。如果电压升至0.8 V,则两个输入级都将激活。在这种情况下,失调电压可能突然改变,导致所谓的交越失真和非线性。 相比之下,ADA4500-2具有集成的输入端电荷泵,无需第二个差分对即可覆盖轨到轨输入范围,从而避免了交越失真。ADA4500-2的其他优势还包括低失调、低偏置电流和低噪声分量。 在这类电路中,必须注意负载/电流路径中由LED连线产生的电感。导线通常为数米长,如果没有提供正确的补偿,可能会导致异常的振荡。此电路中的补偿通过反馈路径实现,它将由分流电阻测量的电流返回到运算放大器的输入。应根据产生的电感调整ADA4500-2上现有的电阻和电容电路。 利用图1所示的电路,能够更简易地实现可通过DAC编程以用于精确照明控制应用的多通道LED驱动器。根据特定需求进行适当调整以避免功能异常也是十分重要的。

    时间:2019-10-08 关键词: 可编程 电源技术解析 LED驱动

  • 瑞萨电子的可编程电源管理

    瑞萨电子的可编程电源管理

    2018年4月25日,日本东京讯 – 全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布推出三款可编程电源管理IC---ISL91302B、ISL91301A和ISL91301B,可为智能手机和平板电脑应用处理器提供最高效的电源管理,同时具备最小的展板体积。上述几个电源管理IC还为人工智能(AI)处理器、FPGA和工业MPU提供电源管理,它们非常适合为固态驱动器(SSD)、光收发器和各种消费类电子产品,以及工业和网络设备中的各路负载供电。ISL91302B单/双输出多相电源管理集成电路,可以在70 mm2解决方案尺寸(比竞品同类电源管理集成电路小40%以上*)内,提供高达20A的输出电流和94%的峰值效率。     ISL91301A三相输出电源管理IC和ISL91301B四相输出电源管理IC均可提供高达16A的输出电流,峰值效率达94%。今天推出的新款可编程电源管理IC采用了R5调制技术,在负载瞬变期间提供业内最快的单周期瞬态响应、数字调谐补偿和高达6MHz的开关频率。这些特性使得电源设计人员,可以更轻松地采用2mm x 2mm,高度为1mm的薄型电感器、小型电容器,以及少量无源元件设计出电源方案。 瑞萨电子今天推出的电源管理IC不需要外部补偿元件或外接分压电阻来设置工作条件。每个电源管理IC都可以在全负载电流范围内动态改变工作的相数以获得最佳效率。其超低的静态电流、优异的轻载效率、高稳压精度和快速动态响应的特性,显著延长了目前市场上功能丰富、耗电量高的电子产品所需电池寿命。 瑞萨电子核心电源方案部门副总裁Mark Downing表示:“智能手机和平板电脑应用处理器需要更小尺寸的电源和更高的输出电流和效率,以最大限度延长电池寿命。ISL91302B和ISL91301A / B 电源管理集成电路,为设计人员提供了迫切需要的解决方案,以解决最棘手的印刷电路板布局问题、动态扩展性能,并延长电池运行时间。” ISL91302B 电源管理IC的主要特性和规格 单路或双路输出;共提供三种出厂配置选项: 双路输出(2 + 2)配置,每路两相,支持10A。 双路输出(3+1)配置, 一路输出三相共支持15A,以及第二路单相支持5A。 单路输出,四相(4+0)配置,支持20A。 小型解决方案尺寸:7mm x 10mm,支持四相设计; 输入电源电压范围为2.5V至5.5V ; I2C和SPI可编程输出电压0.3V – 2V; R5调制器架构各相有效均流,并通过平滑的增相和减相来优化功率效率; 在断续模式下提供75μA静态电流; 每个输出均有独立动态电压调整; -10°C至85°C环境负载远端电压调节时,系统精度为±0.7%; 集成遥测模数转换器(ADC)可检测各相电流、输出总电流、输入/输出电压和芯片温度,从而在运行期间启用电源管理集成电路诊断; 提供软启动和全面的欠压、过压、过流及过温保护。 ISL91301A和 ISL91301B电源管理IC的主要特性和规格 提供两种出厂可配置选项: ISL91301A:三路输出(2 + 1 + 1)配置,其中一路为双相配置。 ISL91301B:四路单相输出(1 + 1 + 1 + 1)配置。 电源电压2.8V至5.5V时,每相4A; 电源电压2.5V至5.5V时,每相3A; 小型解决方案尺寸:7mm x 10mm; I2C和SPI可编程输出电压0.3V-2.0V; 在断续模式下提供62μA静态电流; 每个输出均有独立动态电压调整; -10°C至85°C环境下负载远端电压调节时,系统精度为±0.7%; 提供软启动和全面的欠压、过压、过流及过温保护。 供货 ISL91302B单/双路输出电源管理IC采用2.551mm x 3.670mm 54焊球WLCSP封装, 起订量为1000片时单价3.9美金。 ISL91301A三路输出电源管理IC和ISL91301B四路输出电源管理IC采用2.551mm x 2.87mm 42焊球WLCSP封装,起订量为1000片时单价3.12美金。

    时间:2019-08-12 关键词: 效率 电源 可编程 电源新品

  • 网络芯片进入了可编程时代

    网络芯片进入了可编程时代

    网络是数据中心里的交通枢纽,连接着所有运行应用业务的设备。没有网络,也就没有数据中心,没有互联网的今天,网络在数据中心里发挥着非常关键的作用,所以网络技术一直是热点,在不断发展进化着,其中就包含可编程技术。可编程技术在各行各业中都有广泛应用,同样在网络世界里也很普遍。这种技术在芯片上实现各硬件单元都不是固定的,可由用户在使用中选择,即通过计算机指令来选择不同的通道和不同的电路功能,称为编程控制,这给使用者提供了极大的灵活性。比如:处理器、FPGA、CPLD、DSP,这四种都是可编程芯片。其中处理器是个大类,包含各种位数的单片机、电脑的CPU、以及ARM的一系列手机用芯片,还有复合芯片,比如一些是单片机+无线功能的芯片,如带单片机内核中的蓝牙芯片。一些可简单编程芯片,比如时钟芯片,你可以设置它到特定时间点时某个管脚电平高低,或者是数字温度芯片输出温度格式以华氏度输出,这些芯片在网络设备中应用很广,网络设备的CPU处理器可以实现各种复杂的网络协议处理,FPGA可以将转发表项扩展到很大,满足高规格的网络环境使用,网络设备通过这些可编程芯片,实现了很多特殊网络流量的转发。 网络设备的硬件内部一般由CPU、内存、Flash、转发芯片、FPGA、EEPROM等芯片组成,这些大部分都是可编程芯片,可有没有人注意到其实转发芯片绝大部分都不是可编程芯片,无论是路由器中采用的NP,还是交换机中采用的SwitchChip,都不是可编程芯片。这些芯片的硬件转发逻辑已经设计好,无法通过调整软件参数去更改,软件设置的只是让这些功能模块可以运转起来,但绝不可以调整它们的处理顺序,而且软件设置的范围都是提前预定好的。比如我们需要在交换机上实现入方向上的报文过滤,这样就需要在转发芯片入方向下发一些ACL过滤规则。在一些商用转发芯片上,这些ACL过滤规则固定下发在转发模块之后,如果进入芯片的是三层转发流量,此时下发的ACL过滤规则匹配的就是三层转发之后的报文,此时报文MAC已经发生了替换,下发的ACL规则只能匹配转发之后的报文特征,这就是不能可编程实现的局限性。一个报文进入转发芯片,从入端口检查,到查找转发表项,再到出口,这中间要经过几十个功能模块的处理,有修改报文优先级的,有修改报文VLANTAG的,有做队列调度的,有做路由策略的等等,这些功能模块都是按照固定顺序来对报文处理的,灵活性比较差,常常会遇到不少实现上的限制,若能实现网络芯片可编程将可以很好解决这些问题。 当然,网络芯片和其它芯片不同,芯片要承担大量的数据流量转发,这些数据远远大于CPU、内存以及Flash这些器件的数据,这就要求芯片硬件处理逻辑要尽可能地简单,否则转发效率都成问题,延迟是网络设备一个重要的考核指标,这使得网络芯片要尽可能做到简单。使用者只要做选择就可以,将参数输入芯片,芯片就可以按照制定的数据来转发,所以多年以来,转发芯片都是不能编程的,网络发展也好好的。随着云计算、大数据和虚拟化技术的出现,这给网络带来的冲击是最大的,网络固定的转发模式无法适应这些年新技术的应用,在这些新技术面前,网络部分显得相形见绌,是到了该要改变的时刻了。 三年前,一家专做SDN芯片的公司成立,叫BarefootNetworks,BarefootNetworks从事开源可编程网络芯片的设计和研究,BarefootNetworks的芯片Tofino是一种可编程芯片,可实现高达6.5Tbps处理速度,用户或网络供应商可以利用P4编程语言来定制白盒解决方案或固定配置产品,这样用户可以在数周内部署新协议,而不需要新版本的芯片来支持,具有极大的灵活性。现在很多网络需求,听到最多的就是芯片限制实现不了,只能换更高级的芯片设备,有了可编程芯片的设备就不同了,可以根据客户需求,通过软件对网络设备进行重新设计都可以实现,不用再去更换硬件,刷新软件就可以解决。今年6月,Broadcom也发布了可编程网络商用芯片Trident3系列,虽然处理速度只有Tofino的一半3.2Tbps,但Broadcom控制了整个网络芯片市场的90%左右,其垄断地位决定了Trident3芯片一定会得到很多使用者的追捧,网络设备进入了可编程时代。现在的网络设备,快和手机行业一样了,使用三年基本就不能再满足业务发展需要了,使用五年基本成古董了,这给数据中心带来了很大成本压力,数据中心要不断增加设备采购,同时淘汰更多的老旧设备,说是老旧也不过就两三年。如果网络设备具有可编程性,就可以通过重新编程来满足未来需求,同时继续大力降低网络设备使用的成本和功耗。 由此可见,网络芯片进入了可编程时代,这就增强网络部分的灵活性,更加适应未来业务发展需要。这种可编程能力与软件定义SDN还有些区别,可编程能力指的是通过基于脚本的编程灵活实现各种网络协议功能,SDN则是通过控制器向网络设备下发转发流表,实现流量转发,流表实现只是网络设备功能的一部分,网络设备还有ACL过滤、路由策略、修改报文内容、队列调度等丰富的网络功能,这些通过SDN都无法实现,通过可编程技术则可以很好实现。未来,若是某项网络功能满足不了,又说是芯片限制,就要考虑下这个说法的真实性了,芯片的可编程能力极大地扩展了网络处理的灵活性,可适应各种复杂网络场景的应用,即便有限制也会很少。

    时间:2019-08-07 关键词: FPGA 可编程 网络芯片

  • 可编程多路开关系统设计

    相对于有线遥控,无线遥控不受距离的影响,完全消除了拖缆式遥控装置所带来的故障隐患,给人们的日常工作和生活带来了更多的便利。随着数字处理技术的快速发展,无线数字通信技术日趋成熟,其抗干扰能力强和易于对数字信号进行各种处理等优点,使得无线遥控系统的抗干扰性能逐步提高,安全性能大大改善。目前的无线遥控领域主要有超声波遥控、红外线遥控及无线电遥控。相对于超声波遥控和红外线遥控, 无线电遥控是利用无线电信号在空气中传播,根据无线电波的频率来遥控,可穿透一定的障碍物,传播距离较远,因此成为无线遥控领域的首选,在国防、军事、科研和日常工作生活领域应用越来越广。 采用Silicon Laboratories 研制的无线发射芯片Si4010、无线接收芯片Si4313和C8051F920 单片机设计并制作的频率为433.92 MHz 的无线电遥控多路开关系统,结构简单,性能稳定,控制方便,适用于含有较多受控电器的场合,并可实现多路多功能控制。 1 系统工作原理 无线电遥控多路开关系统由无线电发射电路和无线电接收控制电路两大部分组成。系统组成框图如图1 所示。   图1 系统组成框图 开关系统工作原理是首先通过按键电路输入所需控制开关电路的位号,同时启动指令编码电路,指令编码电路在内部电路的控制下产生带有地址编码信息和开关状态信息的编码脉冲信号,该脉冲信号对载波信号进行调制,调制后载波信号经放大和调谐由射频发射电路发射出去。无线电接收电路接收到载波调制信号后,由解调解码电路对载波调制信号进行解调得到编码脉冲信号, 再进行编码地址确认,确认是否为本遥控开关系统地址。如果所接收到的信号地址码与本机地址编码相同,则对编码脉冲信号进行译码并输出数据,由单片机电路控制相应的开关电路动作。否则,不进行译码,单片机控制电路不响应,开关电路无任何动作。 2 硬件介绍 2.1 Si4010 简介 Silicon Laboratories 的Si4010 射频发射器为单芯片遥控IC,仅需一个外部旁路电容、一块印制电路板、电池和一个带按键的外壳便能构成完整的无线电遥控器。采用专利高可靠性的无晶体振荡器架构,无需外部时钟源,也不受冲击和震动影响。其载波频率精确度在商业温度范围内为±150 ppm,在工业温度范围内则可达±250 ppm, 它的精确度比传统的(SAW)发射器高出两倍,且无需使用外部晶体振荡器。具备自动天线调谐,该功能可最大化发射距离,提供稳定的输出功率,有效减少对遥控器的不利影响。包含一个嵌入式兼容8051 微控制器,内具1 个4 kB 的RAM、1 个8 kB 的一次性编程(OTP)非易失性内存、1 个128 位EEPROM 以及用于函数库(library)功能的12 kB ROM,该微控制器上的数字外围功能包括触控唤醒GPIO、1 个专利技术的可提供100 万次读写寿命的20 位EEPROM、1 个LED 驱动器、1 个休眠定时器、1 个调试器, 以及1 个可提供安全单向链路的高速128位高级加密标准(AES)加速器。Si4010 的工作电压范围为1.8~3.6 V,可提供超低的电流消耗(小于10nA 的待机电流和小于20 mA 的峰值电流)以及低功耗触控唤醒模式。支持FSK、OOK 调制模式, 支持PCB 环形天线, 工作频带为27~960 MHz,芯片内部还包含LDO、温度传感器及低电压检测报警等。 2.2 Si4313 简介 Silicon Laboratories 的Si4313 芯片是单端通用ISM 频段接收器, 工作频率为240~960 MHz, 可编程接收频率带宽为2.6~260 kHz, 接收灵敏度为-118 dBm, 数据速率为0.2~128 kb/s,采用FSK、GFSK 和OOK 调制方案,支持调频、单电容调谐网络,支持PCB 环形天线,工作电源电压为1.8~3.6 V,具备超低功耗、高灵活低关机模式。内部功能包括:唤醒计时器、自动频率校准、前端码侦测、无线电信号强度检测、集成电压调节器、片内振荡器、64 kB FIFO 等。 3 系统硬件电路设计 3.1 无线电发射系统 无线电发射系统主要由按键电路、编码调制电路、无线电发射电路组成。无线电发射系统的电路原理图如图2 所示。   图2 发射系统电路原理图 无线电发射系统是以Si4010 为核心来设计。Si4010 的4 个输入输出端口与按键直接相连, 内部电路可直接采集按键状态信息。Si4010 的信号差分输出端TXM、TXP 分别与环形天线的两端连接, 环形天线直接印制在PCB 板上,减少了发射系统体积。采用C2 接口编程,Si4010 的C2DATA、C2CLK 端口与JTAG 接口的4 个端口相连。C3、C4、C5组成电源滤波电路。发光二极管提供按键动作指示,当有按键按下时,放光二极管亮,没有按键按下,放光二极管灭。无线电发射系统的主要功能是在Si4010 内部MCU的控制下采集按键电路的状态信息, 实现数据加密和编码,再进行FSK 调制,调制后信号经放大调谐,由环形天线发射出去。 3.2 无线电接收系统 无线电接收系统主要由无线电接收电路、解调解码、单片机控制电路及开关电路组成。无线电接收系统电路原理如图3 所示。   图3 接收系统电路原理图 接收解调电路采用与射频发射模块相配套的无线接收芯片Si4313 来实现。控制单元采用C8051F920 单片机。 Si4313 的RX 端口经电容C1与天线相连, 接收遥控调制载波信号。Si4313 与单片机之间的通信是通过SPI 总线实现,SPI 总线读写操作由以下几部分组成:读写标志(1 bit),地址(7 bits)和数据(8 bits)。读写标志位指示当前操作是读还是写;7 位地址指示操作对象, 可寻址128 个8 位控制寄存器中的任意一个; 数据域包含写入或读出的Si4313 内部寄存器的内容。Si4313 的SCLK、SDI、SDO、nSEL、nIRQ 端口分别与单片机的P0.0~P0.4 端口相连。SCLK 为时钟接口;SDI为串行数据写入端口, 由单片机对Si4313 进行数据写入;SDO 为串行数据输出端口, 解调后数字信号由此端口输出至单片机。单片机P1.0~P1.3 为控制端口,与开关电路相连。 无线电接收系统的主要功能是接收遥控载波调制信号,经解调解码电路对调制信号解调和解码,串行输出至单片机,由单片机进行数据处理, 再通过控制端口控制开关电路相应的开关动作。 4 系统软件介绍 软件编程采用模块化设计思想,系统中各主要功能模块均编成独立的应用函数由主程序调用。 4.1 发射系统软件 无线电发射系统的软件设计主要通过C2 接口编程实现Si4010 内部集成的8051MCU 对无线发射电路的状态进行控制。包括芯片初始化程序,键盘扫描及读取程序,射频参数设置程序,无线发射程序等。发射系统软件流程如图4 所示。   图4 发射系统软件流程图 4.2 接收系统软件 无线电接收控制系统的软件基于C8051F920 单片机设计,通过C2 编程实现单片机对开关电路的状态控制。单片机采样到有效中断请求信号,便执行中断服务子程序,在中断服务子程序中, 单片机将根据I/O 端口获得的数据执行相应的子程序,从而实现对开关电路的控制。接收系统软件流程如图5 所示。   图5 接收系统软件流程图 5 结束语 本文采用低价位、超低功耗单芯片无线遥控IC 及单片机设计可编程无线电遥控多路开关系统,具有成本低、体积小、功耗低、抗干扰能力强、遥控距离远、可靠性高等特点。经在实验室软、硬件综合测试,接收解调电路对发射电路遥控信号接收解调正常,开关电路动作到位,无线电遥控开关系统的多路多功能控制正常。可进一步推广应用,在工业生产、安防监控、智能家居等领域应用前景广阔。

    时间:2019-07-16 关键词: 可编程 多路开关系统

  •  “可编程的‘智能卫星’出现-卫星的新时代来了

    “可编程的‘智能卫星’出现-卫星的新时代来了

     “可编程的‘智能卫星’出现,使得卫星可以在轨改变任务、功能,这会改变原先的产业链,很多相关产业会因为卫星功能的提升而消失。”在不久前举办的2019年美国卫星大会展会上,传统卫星制造商洛克希德马丁公司的发言让人真切意识到:卫星的新时代来了。 有媒体这样评价发生的改变,“以前只能从新航天公司那里听到的词句,比如人工智能、软件定义等,多次出现在传统企业的发言中”。传统势力也欣喜“拥抱”新技术,人工智能卫星、天基AI真的要来了。 “原本,卫星上天之前定位为遥感卫星就只负责遥感,气象卫星只负责气象,探测卫星只负责探测,未来的智能卫星却可以依据上注(安装)的软件不同拥有‘转换思维’的能力,做完全不同的事情。”近日,中国2019软件定义卫星高峰论坛举办,中国科学院软件所研究员赵军锁解释,这就是前面提到的“改变任务、功能”。将天基超算平台装载于卫星,不仅可以改变卫星用途,还能做很多意想不到的事,目前中国已经有了正在运转的试验星。 智能卫星有何特别之处 据报道,智能卫星拥有“判云读雾”和“无人驾驶”的能力。 “判云读雾”实际上是对图像质量的判读。据介绍,传统卫星没有判读能力,所有拍摄的图片都会“原封不动”地下载,由地面测控中心进行筛检、再合成,这将浪费大量的信道资源。而装载了人工智能系统的卫星,会“判读”“筛选”用得上的图片下传,不仅进行了初筛还节约了大量信道资源。 “无人驾驶”的提法却在业内存在争议,有业内人士表示,卫星不是运输工具,不应有“驾驶”一说,卫星只存在运行维护、操作操控的说法。“如果是想表达无人运维或无人操控的概念,目前的大多数低轨卫星在测控不可见弧段本身就是无人操控的(靠自主控制),在可见弧段需要对其进行测控。” 事实上,在天基领域,卫星会受到太阳、地球等引力的影响,轨道会发生一些漂移,多种干扰产生的摄动都需要地面对卫星的测控支持。 “无人操控”虽然难以实现,但真正的智能卫星却可以“请求”管控。2018年11月中国科学院软件所主导发射入轨的“天智一号”上,上注了自主请求式管控APP,能够利用星上实时或历史全球导航卫星系统定位数据进行自主定轨,未来可自行高精度调整轨道。卫星还有判断能力,一旦发现轨道偏差超出设定门限,卫星便会自主向地面发出管控请求。2019年1月7日至3月17日,由中国科学院软件研究所、西安卫星测控中心、中国科学院微小卫星创新研究院联合开展了自主请求式管控试验,获得成功。 相关试验还证明了,智能卫星的判读数据还可以更进一步进行初筛后的计算工作,实现从数据到信息的提取,如民航机场流量监测、植被监测、突发事件监测等。例如要比对一个机场每天起降航班的次数,卫星可以在天基进行运算,直接给出数据,不需要把图片传下来再计算,数据传输量很可能消减近百倍。 任务可变、天基计算、请求管控等,都是更智能的卫星的能力。但这并不是全部,赵军锁说:“我们希望构建的是一个智能无限延展的平台。人工智能要发展起来单靠一个单位是无法完成的,为此软件所希望把底层算法移植到卫星上,让地面的软件开发者可以参与到天基智能的形成中来。” 功耗、算力、卫星数据安全等难题待解 对于更高级别的人工智能来说,功耗和算力是两大“拦路虎”。卫星的载荷有限,在太空中运行也很难得到大量的运行能源,因此,如何在低功耗的情况下发挥最大的算力是必须要解决的问题。 “天智一号”还搭载了云计算平台,通过自主感知计算负载实现智能管理、调度计算资源,在轨完成大部分数据处理工作,省去了大量不必要的数据传输。 目前人工智能的模型大多在地面上,无法在天基进行,仍旧需要采集大量的数据下传,学习后将模型上传,要进行反复地矫正、训练比较困难。 但把地面上的超级计算机的处理能力搬到天上,难以实现,主要是无法克服载重和功耗的问题。“未来我们希望通过软件的方法,针对更低功耗的芯片做算法上的‘翻译’,让现在GPU(图形处理器)上跑的算法能直接在低功耗处理器上跑,把人工智能算法搬到卫星上。这样就能在卫星上做更多的运算,让卫星上的人工智能与地面的差距越来越小。”赵军锁说。 此外,卫星系统的安全问题也是需要解决的课题之一。据报道,美国卫星大会上,洛克希德马丁公司表达了对智能卫星安全性的担忧。 有代码的地方就会有可被攻击的漏洞。让卫星获得人工智能,离不开系统、应用、算法、软件,而这些都是通过代码实现的。无疑,使用开源代码,如果没有吃透、摸清,很容易被攻击。 因此确保卫星安全,必须实现底层代码的自主可控。 软件定义卫星联盟正在打造的SPUTNIX系统就是一个定制的系统,在开源、开放的同时保证卫星系统的安全可靠。 建设人工智能星座,星间通信链路是关键 单个卫星实现人工智能之后,才能进行人工智能星座的构建。当系统从一个变为一群,星间的数据传输便成为需要解决的问题,数据传递如何最迅速、算力分配如何最优等问题随之而来。 在茫茫太空中,彼此距离遥远的卫星发射的激光又如何能够抵达另一颗卫星的接收设备呢? “两颗星之间的距离平均为数千公里,并且会相对快速移动。”关于星座间的联络,行云航天公司副总经理杜利介绍,两颗星之间完成建立联系的瞬间精准还只是第一步,稳定地在严苛的太空环境下保持均一、持续的联系,不掉线也对星间通信设备提出了更高要求。 杜利介绍,建立星间通信链路并保持链路稳定是一项最关键的技术。两颗卫星始终处于相对高速运动,要成功建链并保持稳定需要瞄准、捕获和跟踪。 “星间激光通信是极远距离、极弱信号的探测,其技术难点来自于超远的距离、链路的动态变化和复杂的空间环境。”杜利说,由于距离超远,星间可采用激光通信技术,这就要求发展功率大、功耗低、线宽窄和温度稳定性好的激光器模块,超高灵敏度的光电探测器,以及高速光电转换器件。 此外,在星座系统规模上,杜利提醒,一般来说:如果单星质量在百十公斤以下、单一功能的卫星,其投入成本不高,几十、几百颗星座的投资、建设、运营还是可以承受的,以好的商业模式长期运营也可以盈利;但如果单星质量到了吨级,甚至数吨级,其结构和功能往往比较复杂,制造成本很高,其星座系统的建设、运营、管理也很复杂,整个系统投入像个天文数字,一般很难用商业航天模式去解决,此类商业航天项目通常获利困难,不易成功。

    时间:2019-07-08 关键词: 卫星 人工智能 可编程

  • 可编程通讯网关在变电站自动化中的应用

    可编程通讯网关在变电站自动化中的应用

     案例名称:Atop可编程通讯网关在电力自动化中的应用  应用单位:某电力系统上市公司  使用产品型号:Atop GW21S-MAXI+SDK  系统架构:(无人/有人值班变电站自动化系统)应用背景: 在变电站综合自动化系统中,现场有许多不同规格的设备,当接入到以太网时,需要做规约转换,而传统的方式是通过前置机完成此任务,这样造成前置机负载及功能过于庞大多杂,严重影响系统的实时性和可靠性。因此,需要由专门的设备来将此部分任务分担出来。    GW21S-MAXI在系统中的作用:  在变电站自动化系统中,许多智能设备如智能计费电表,智能直流电源控制设备等采用的是多种不同的规约如IEC870-5-103,DL451.91(国标)等,在将这些现场的测控设备联入网络时,采用传统的串口转以太网转换器不能完成这些特殊的规约装换功能,必须要求一种可以进行二次开发的可编程串口转以太网服务器,实现这些自有规约与标准开放的以太网之间的转换,Atop GW21S-MAXI很好的担当着这样的角色。    为什么要选用Atop GW21S-MAXI+SDK  1).Atop 是最早推出SDK解决方案的厂家,有着多年的经验积累;  2).Atop GW21S-MAXI提供一个RS-232串口,一个10/100M网口,体积非常小巧,可以非常方便地嵌入到规约转换通信装置中;  3).Atop SDK提供功能强大易用的API和方便的下载工具,并且有非常丰富的例子程序指导客户开发自己的规约转换程序;  4).Atop在大陆设有资深、专业人员组成的强大研发团队,客户在开发过程中遇到的任何问题,都可以快速解决。  效 益:  1).通过GW21S-MAXI将原来必须由上位机或前置机做的复杂规约转换的任务,现在可以解放出来交由专门的部件处理,减轻了主机的负载,同时也提高了系统的可靠性;  2).将Atop GW21S-MAXI嵌入到客户自己的设备中,提升了该设备的智能化,容易与设备做整合加值;  3).SDK可以提供客户灵活的解决问题途径,可以替代原来系统中昂贵专用转换设备。    其他相关应用:  电力配网自动化  工厂自动化  智能交通控制系统  安防监控系统    其他相关产品:  GW21C-MAXI------外置式单口可编程通讯网关  GW21SW-MAXI---嵌入式无线型可编程通讯网关  SOM-MEGA------嵌入式双网口可编程串口服务器通讯网关(基于linux平台,双网络口)

    时间:2019-04-18 关键词: 通讯 网关 变电站 可编程 总线与接口

  • 如何利用可编程器件设计车用显示系统

    如何利用可编程器件设计车用显示系统

    汽车电子设备正在迅速发展,尤其是车用显示系统,视频和视频处理正成为汽车应用中增长较快的技术。像车道保持、驾驶监控、夜视以及车载娱乐设备等车用显示系统/FPGA都是典型的应用需求。 设计车用视频系统时,需要考虑系统结构的几个方面:首先是系统的功能,应确定这个系统是针对安全系统处理视频信息、还是车载娱乐设备处理流动的视频数据,或者是两者的结合而设计。其次是互联的类型和视频系统器件的速度。此外还应考虑其它因素包括有多少视频源、有多少显示输出、系统中不同的设备相隔多远、采用哪种布线方案,以及整个系统的成本。由于可编程器件具有很高集成度和灵活性,以及低功耗和宽的工作温度范围,且价格不断下降,因此车用显示系统/FPGA该类器件对于从事汽车电子设计的工程师来说越来越具有吸引力。本文将主要介绍如何利用Lattice公司的可编程器件设计车用显示系统。 电子设备的互联 在汽车电子设备中,各种信息源的互联可采用几种拓扑结构,即星型、总线型和环型结构。这些拓扑结构如图1所示。星型结构是一对一的连接系统,外部的设备连接到视频控制器的一个端口。通信信道可以是双向或者单向的。 图1:汽车电子设备互联的几种拓扑结构。 总线型结构是车用显示系统/FPGA一点对多点,单个设备可以连接到总线。总线上的设备必须有本地控制器,用来协调总线上的设备何时以及如何进行通信。这种类型的系统易于扩展,因为每个设备都有一个唯一的地址。 环型结构中每个设备都有一个唯一的地址,此外还有本地数据控制器和用来连接到环的媒体收发器。当显示设备收发器接收到前一个设备的信息后,在数据包中查看自己的地址,如果地址相匹配的话就处理数据或者命令,如果地址不匹配,就把数据包传送给环中的下一个设备。为使各种设备都能够传送音频和视频包,用于娱乐车用显示系统/FPGA的汽车环型总线都被设计成很高的带宽,以便观众能实时观看。从图1中可以看出,无论哪种结构都需要采用视频控制器。 图像捕获与显示 有效确保图像的捕获和处理十分重要,以下将介绍几种解决方法。在图2展示的智能图像捕获系统的几个例子中,信息从车辆的多媒体总线传送到视频控制器。通常使用的是MOST和D2B协议的环型或总线结构。 图2:采用不同处理器件的三种智能图像捕获系统。 在这三个例子中,MT9V111/125是适用于汽车应用的图像传感器。例1采用了基于微处理器的系统,在数据发送到显示子系统的接口之前进行控制和视频数据处理。例2采用基于闪存的低成本CPLD处理视频。例3采用了基于SRAM的FPGA器件。在以上所有例子中,均由处理单元对车用显示系统/FPGA发送的信息进行处理。其中,后两个例子中采用的可编程逻辑器件体现了重构硬件的灵活性。特别是例3在FPGA中使用了Lattice公司的微处理器核LatticeMico8,因而可获得更大的灵活性。 发送所捕获图像的一种方法是将并行视频数据转换成串行流,并采用8b/10b编码在单对双绞线LVDS接口上传送。这个接口将时钟嵌入数据流,减少了传送信号到视频控制器所需的导线数目。在接收端,系统需要对数据进行处理,以便返回原来的形式。图3是4个LCD显示的例子。前三个例子均使用SERDES电路转换信号,其中例3采用具有集成SERDES功能的基于SRAM的FPGA。此例中采用的是LatticeECP/ECP2 FPGA,由于该器件中已嵌入了关键时序参数,因此设计者车用显示系统/FPGA不必再花大量时间和精力来完成此任务。 图3:LCD显示。 LatticeECP2和LatticeECP2M系列重新定义了低成本FPGA,在更低的成本下拥有更多优秀的FPGA特性。这些器件含有sysDSP块和工程预制的源同步I/O。LatticeECP2M具有高达5.3Mb的RAM块,LatticeECP2具有高达1.1Mb的RAM块。在LatticeECP2M中还具有3.125Gbps嵌入式SERDES,可支持PCI Express、Ethernet(1GbE和SGMII)以及多个其它标准。通过集成以前只有高成本、高性能FPGA才具有的特点和性能,这些系列的产品扩展了低成本FPGA的应用范围。 LatticeMico32是一种针对Lattice FPGA优化的32位RISC软微处理器。如果将LatticeECP2M与开放源代码的LatticeMico32软处理器结合在一起,则LatticeECP2M可以实现完整的视频控制器功能(如图4所示)。内部的外设通过双WISHBONE总线进行通信。定时器、DMA、存储器控制器、通用I/O、串行外围接口和UART均可与LatticeMico32相连。 图4:利用LatticeECP2M和LatticeMico32实现完整的视频控制器功能。 本文小结 由于可编程器件具有可重构的特点,因此特别适合于应对各种变化(例如不断修改的标准和新兴的标准),并可以快速实现新版标准。此外,可编程器件还具有成本低和生命周期长的优势,能够满足车内电子设备与汽车寿命相匹配的要求,设计者也易于对产品进行升级、维护和更新。

    时间:2019-03-27 关键词: 器件 系统 车用 可编程 设计教程

  • 基于可编程数字电位器在AVR单片机中的应用

    基于可编程数字电位器在AVR单片机中的应用

    1 引言 AVR嵌入式单片机具有丰富的硬件、软件资源,其中的串行I2C接口能满足很多应用场合的要求,两个AVR单片机通过I2C总线直接连接就可实现单片机相互通信;AVR单片机还可以和任何具有I2C总线接口的外设直接连接而无须其它硬件电路支持。而X9221系列可编程数字电位器在智能测试设备上应用非常广泛,通过I2C总线可以简单地构成单片机与各种外设之间乃至与计算机之间的通信,建立友好的人机界面联系。硬件设计简单、灵活,只需要将所有设备的SDA和SCL信号线分别并联在一起并加上拉电阻即可,有助于提高设备的自动化水平、可靠性、稳定性及电气装配的工艺性。AVR单片机和X9221系列可编程数字电位器都有内置的E2ROM单元,可以非常方便地为用户保留一些工艺参数;X9221系列电位器0~63级的变化可以将电位器调节到手动无法实现的平滑级别,调节过程中不会产生噪声且寿命长、不受机械振动污染潮湿影响等。2 X9221系列数字电位器介绍2.1电气特性及硬件结构原理 X9221系列电位器共有15种规格型号,有双列直插DIP20和表面贴装SOIC20两种封装。电源电压民品级、工业级为4.5~5.5V,军品级为2.7~5.5V;一组封装芯片内有两个数字电位器,参见图1,X9221系列电位器封装及引脚功能。内置的E2ROM单元,可以在掉电时将数据很好地保存,上电时自动加载到自己的RAM单元,电位器接口是标准的I2C总线,其中的数据寄存器可通过I2C总线进行读写操作;电位器滑动端(VW0/RW0,VW1/RW1)相当于普通电位器中间抽头,是无摩擦"触点"。 X9221系列电位器总电阻配置有3种阻值2 kΩ、10kΩ、50kΩ,用户可根据自己的设计需求来选型。每一个芯片有A0~A3四位二进制编程的器件地址以区分I2C总线上接入的不同外设,因此,一条总线上最多可接入16个X9221器件。器件内部有两组类型的寄存器"DATA"和"WCR",他们的访问则由串行数据线上的命令字来确定。电阻阵列通过内部编码可以有64种状态,0~63种状态的连续变化,相当于电位器中心抽头从普通电位器的一端滑动到另一端;所有的寄存器都可以通过I2C总线进行双向操作,即可读可写。 "在线"实时的调节电位器"中间抽头位置"可以有3种方法:通过I2C总线向WCR寄存器写数据(串行加载)、通过对相应的DATA类寄存器直接写数据(并行加载)、以及增量减量命令(下面会讨论到)直接写数据;概念上电位器"中间抽头位置"可以由"WCR"寄存器来替代,其另一类寄存器可以由"DATA"寄存器来替代。2.2数字电位器I2C总线时序及指令2.2.1一般I2C总线通信时序 X9221系列数字电位器其接口是按标准的I2C总线设计的,因此,硬件连接非常简单,只需把串行时钟线SCL、串行数据线SDA与之对应相连即可。其通信完全符合I2C总线协议要求,串行时钟线SCL、串行数据线SDA按照规定的协议产生一序列脉冲串,进而完成传输一组数据的任务。参见图2 I2C总线通信时序。 X9221系列数字电位器完全以从机的身份出现在I2C总线上,它不可以主机的身份出现在I2C总线上,也就是说对其寄存器的读写操作都受控于主机,这一点一定要在硬件和软件设计上留意。当主机发出"START"信号后,从机(X9221A)芯片即将拉高SDA线,表明放弃数据线权限由主机控制,主机发送一个字节后再由从机(X9221A)芯片自动拉低SDA线,表明数据收到,如果此时从机将SDA线拉不低,表明从机没有正常接受数据,主机必须启动下一个写周期。可以理解为主机每发送一个字节后都会等待一个ACK回答响应信号,否则,主机认为从机(X9221A)没有正常接收数据。2.2.2 X9221指令表 表1是X9221所有指令说明,其中前4种指令的正常执行需要在串行数据线上至少有3个步骤:①通过数据线写从机地址;②写指令;③写数据。才能完成一个寄存器的读或写,这4种指令适用于X9221三字节时序格式操作。如果是写在WCR类型的寄存器中,掉电后数据丢失,写在DATA类型的寄存器中,掉电后数据存在其中;全局转换的4种指令的正常执行需要在串行数据线上至少有2个步骤:①通过数据线写从机地址、②写指令,才能完成所有寄存器之间的数据交换,适用于X9221两字节时序格式操作;最后一种"+/-"指令相当于"在线"上下调节电位器中间抽头,比较直观,很好理解。"+/-"指令仅访问WCR类型寄存器,且只是写操作,如果数据线SDA保持高电平,下一个时钟信号SCL周期到来,WCR寄存器数据"+1"。如果数据线SDA保持低电平,下一个时钟信号SCL周期到来,WCR寄存器数据"-1"。然而,不管哪种命令,只要写DATA类型的寄存器(芯片内的E2ROM存储单元),写操作要花费大约10 ms时间才能完成,在设计通信软件时一定要特别留意。3 AVR系列单片机与数字电位器硬件和软件设计3.1 X9221数字电位器与AVR系列单片机硬件接口 X9221数字电位器与AVR系列单片机硬件接口如图3所示。硬件连接非常简单,只需将所有设备串行数据线SDA、串行时钟线SCL相连接并接10 kΩ左右的上拉电阻即可。连接在I2C总线上的逻辑电平为"线与"逻辑关系,只要有一个设备将其拉低,总线上即出现低电平,当所有设备总线都悬挂起时呈现高阻状态。主机发送模式就是向其中一个外设写入数据,首先产生一个启动信号"START","START"发送成功后才向外设发送设备地址,地址发送成功后,再发送数据,数据可以是1~N个字节,所有数据发送完成,最后发送"STOP"完成主机写的过程。主机接收模式也是一样的,过程类似。对X9221来说地址发送完成后,必须发送指令模式,告诉X9221目前将做什么,指令的含义上面已提到,指令模式后是一组数据,其它过程一样。 为了使I2C总线处于正常状态,所有总线上的设备必须加电,如果有一个设备没有加电,总线将处于不正常工作状态。在总线上有几个设备同时欲将发送数据时,竞争中某主机发现仲裁失败后,应立即回到从机状态或放弃总线请求,保证获取总线控制权的主机正常发送数据;不同的主机有不同的总线时钟频率,通过SCL信号"线与"来保证,即高电平为高电平中最短的,低电平为低电平中最长的,也就是说协议"照顾"了速度最慢的设备;集结在总线上所有的传送必须包含相同数目的数据包,否则,多主机系统中仲裁结果无法定义,这在设计上要特别注意。3.2 X9221数字电位器与AVR系列单片机通信软件设计 下面是一个通过查询由atmega16单片机向X9221发送数据的例程,在这个例程中需要注意的是TWINT标志利用软件写"1"进行清零(清除硬件置位标志),而当前发送完成后由硬件自动将TWINT标志置"1",TWINT标志是不能通过硬件清零的;每次通过检查TWINT标志判断当前发送是否完成,通过读取状态寄存器TWSR的值判断发送的数据是否正确。START:LDI R16,$A4;设置AVR单片机I2C总线控制寄存器OUT TWCR,R16;软件清除TWINT标志WAIT1:IN R16,TWCR;读取控制寄存器TWCRSBRS R16,7;等待硬件置位TWINT标志RJMP WAIT1;TWINT标志没置位,循环检查等待IN R16,TWSR;读取状态寄存器TWSRANDI R16,$F8;屏蔽无效位CPI R16,$08:检查"START"信号是否发送成功BRNE ERROR;"START"信号发送未成功,转入出错处理LDI R16,$56;发送X9221器件地址56="5"器件标识,"6"器件地址OUT TWDR,R16LDI R16,$84OUT TWCR,R16;软件清除TWINT标志IN R16,TWSRANDI R16,$F8CPI R16,$18;检查X9221器件地址是否发送成功BRNE ERROR;X9221器件地址发送未成功,转入出错处理LDI R16,$2F;设置所发送的数据(0~63有效,例中为47)OUT TWDR,R16;数据输出到数据寄存器TWDRLDI R16,$84OUT TWCR,R16;软件清除TWINT标志;检查数据"2F"是否发送完成,类似于上述循环继续LDI R16,$94;发送"STOP"信号,一次'$2F'数据发送完成OUT TWCR,R16ERROR:···;出错处理过程END 在此例程中,器件的地址对X9221来说为56,其中"5"是器件本身固有的以区别于其它类型的设备,而"6"是设计硬件时规定的,可以是"0~F"任何十六进制数值;例程中AVR单片机仅作为主机使用且向X9221发送数据,其实从X9221中读取当前数据也是一样的。本例程采用查询方式,程序显得繁琐,但是如果采用中断方式的话,程序就会显得简单多,只要标志SREG寄存器中"I"位和I2C总线控制寄存器中的"TEWIE"置"1",即中断使能有效,当"TWINT"标志置"1"立即产生中断请求,表明完成当前数据发送完成,可以准备下一个字节数据发送或停止发送等操作。4 X9221可编程数字电位器在半导体专用设备一些应用研究4.1用于测量微小电压变化 图4是微小电压测量电路模型,用于芯片键合设备中去检测吸头上是否有芯片吸附以及吸头是否堵塞、或者芯片是否丢失等现象。当内径为大约0.1~0.15 mm的吸头去吸附一个小芯片时,如果芯片较透明,光敏传感器检测出来的电压变化较小,一般在10~50 mV间;同样当吸头吸附一个小芯片时,气路真空的压力也会产生变化,这种压力的变化以传感器电压变化输出。为了改变电位器"中间抽头"以便与传感器检测输入电压相匹配,计算机通过RS232接口向单片机发送数据,单片机收到数据后转发给X9221可编程数字电位器以改变基准电压值。比较基准电压U∑+按下式确定: U∑+是LM393运放同相输入端电压(在这种状态下,考虑到前级传感器输出基本上处于放大状态,所用传感器电源电压为+5 V,最高输出电压按3.5 V计算) N是0~63共64种状态变化值,那么,当U∑+从0~3.5 V变化时,最小分辨率可以达到55 mV左右,用手工进行一般电位器调节达到这样的分辨率是难以掌控的。 基准电压(即U∑+)通过机器的人机界面可以"直接调节",如果将电位器数值进行标定,随时还可以看到当前的基准电压大小。传感器输出电压与基准电压比较,使电压比较器输出反应当前的状态,不同的时刻高低电平代表不同的意义,如"吸头阻塞"、"芯片丢片"、"真空不足"等。4.2测量微小电流变化 图5是微小电流测量电路模型,用于引线键合设备中去检测断线、连线、短路等情况,被测器件是一个半导体元件,当在焊盘上键合上一根金线时,通过检测漏电流来判断这条金线与芯片键合过程中是否存在"断线"、"连线"、"短路"等情况。计算机通过界面操作发送指令以改变X9221可编程数字电位器的阻值,进而改变电压源的放大倍数以改变加在被测元件的电压,从而达到适应不同品种的半导体器件性能要求。 设:信号源的输出为Us,运放LM324输出为U0,X9221电阻为Rx,被测元件阻抗为Rz,被测元件流过的漏电流为I0,则用以下两个表达即可表达它们之间的关系: 通过主机界面改变Rx可编程电阻值,即可以改变U0,U0的改变等于改变了I0,而I0的改变等于改变了流过被测器件的最大允许电流,从而保护了被测器件不会因为检测漏电流而损坏,通过检测被测器件上施加的电压和U0之差值即可判断漏电流大小,从而检测金线是否与被测器件焊盘点键合上。I0是根据不同器件在工艺参数上需要经常调节的量,以适应不同场合的要求。5 结束语 可编程数字电位器的最大优点在于直接可以和带有I2C总线单片机相连而无需特殊设计,上位机可以随机读取电位器当前设定值。利用它的这些优点,可以提高设备仪器的智能化水平,特别是在带有I2C总线的嵌入式单片机中应用十分灵活简单。随着电子技术的飞速发展,人们对设备、仪器以及家用电器的追求已不再仅仅满足功能使用上,而是在产品应用的人性化上要求越来越高,由于大多数自动化设备上,都具有友好的人机界面,人们通过计算机界面想完成所有操作,比如调节一个电位器以调节电流、电压或者电机速度、转矩、频率等物理量,利用可编程数字电位器完全可以通过界面完成。适时采用可编程数字电位器不但可以降低成本、简化电路设计、提高可靠性,而且可以使设计更加人性化。另外,AVR单片机可以通过JTAG接口完成仿真调试、下载程序;片内有FLASH和E2ROM存储单元,有标准的串行接口、I2C总线接口、SPI接口增强了其硬件功能;支持C语言编程,便于掌握C语言者无需太多地了解硬件就能进行一些编程。

    时间:2019-03-26 关键词: 数字 电位器 可编程 嵌入式处理器 机中

  • 飞兆半导体的数字可编程降压稳压器面向DVS应用提供业界最高效率

    飞兆半导体公司为系统设计工程师提供一款高效的功率管理解决方案,针对现今移动电话、便携式媒体播放器(pmp)和其他便携式应用中采用的全新动态电压调节(dvs)平台。fan5355是800ma/1000ma 3mhz降压转换器, 采用专有的超快速架构设计,其静态电流极低,并能提供超快速的瞬态响应。在pfm模式下其典型静态电流为37μa,即使在这种极低的待机电流下,fan5355也能够提供同级最佳的瞬态响应,使其具备了应对负载意外波动的更高弹性。此外,这种架构在pfm模式下具有更低的纹波,因此能降低系统噪声,大幅提升轻负载的效率达到85%,即使负载仅为1ma。对于中型至重负载,经仔细优化的动力传动使得pwm模式下的转换效率达至90% 以上。  fan5355 备有 i2c 接口,允许系统根据处理器的工作负载,动态地调节数字内核的电源电压。这得益于dvs的典型内核是移动应用中的应用处理器、图形处理器和dsp。通过将电源电压水平调整至适应内核的处理状态,便能降低能耗,以延长电池的使用寿命。为了使dvs的效能最大化,fan5355的数字可编程输出电压具有0.75v至1.975v的范围,并且能够以12.5mv的增量进行调节。为了满足便携式应用的需求,fan5355采用3mm x 3mm mlp封装和12个凸起、0.5mm间距的wl-csp封装。  fan5355采用采用无铅(pb-free)引脚,潮湿敏感度符合ipc/jedec j-std-020标准对无铅回流焊的要求。所有飞兆半导体产品均设计满足欧盟有害物质限用指令 (rohs) 的要求。

    时间:2019-03-19 关键词: 半导体 稳压器 效率 可编程 嵌入式处理器

  • TI新型低功耗可编程DSP适用于免提车载电话套件

    德州仪器(ti)宣布,其超低功耗可编程dsp产品系列又添新成员tms320c5506dsp。这款业界最低功耗可编程dsp将进一步推动低功耗音频/语音应用领域的创新。全新tms320c5506dsp在待机模式下的功耗仅为0.12mw,另外,其还具备众多其它低功耗特性,堪称同类产品中功耗最低的处理器。  全面的128kb片上存储器可显著简化编程工作,而全速usb2.0接口则提供了低成本的有线连接方案。c5506dsp实现了低功耗、存储与连接功能,以及低成本等众多特性,这使各种高销量应用都能从中受益,其中包括触摸屏控制器、usb耳机、无绳电话以及免提车载电话套件等。  forwardconcepts公司在近期发布的题为《dsp战略:嵌入式芯片发展趋势》的报告中指出:调查结果显示,开发工具与功耗是dsp设计人员在为设计(如:便携式设备)选择最佳dsp芯片时首要考虑的两大问题。forwardconcepts的总裁willstrauss指出:“ti高度关注客户需求,全新c5506dsp实现了业界最低待机功耗,从而充分反映了这种关注。”他进而指出:“ti目前提供全面的电源管理工具,以帮助开发人员进一步降低功耗,在竞争中立于不败之地。”  ti全新c5506dsp是特性丰富的超低功耗多媒体处理器系列中新的一员。该系列产品包含tms320c5509a、c5507以及c5503dsp。随着c5506dsp的推出,系统开发人员有了更低成本的低电压选择方案,可进一步降低功耗,尽可能节省电池耗电,以延长两次充电间的工作时间。c5506提供以下特性,以便将功耗降至最低:  ·业界最低待机功耗(108mhz与1.2v情况下仅为0.120mw)  ·超低内核与存储器工作功耗(108mhz下仅为58mw)  ·动态频率与电压缩放  ·多种待机模式可分别关闭独立外设与内部功能  ·128kb的sram可满足高效代码需求,尽可能减少片外存储器存取  ·电源优化工具有助于实现低功耗设计  该产品还提供有助于简化设计并降低系统成本的其他集成特性,如与pc连接的usb2.0全速端口、3个mcbsp端口、3个计时器、i2c总线、6通道dma、16位emif与36gpio。大量i/o端口有助于实现外设连接。这为那些准备从tms320c54xdsp系列产品进行升级的客户提供了良好的低功耗、低成本策略,以满足他们对usb连接、更高性能或sdram存储器连接的需求。c5000dsp平台的成功意味着tms320c5506dsp设计人员可以一次获得数百种现成算法,从而节省了宝贵的时间,加速了产品上市进程。  小型多媒体系统的新市场  c5506dsp是面向大众市场应用的出色解决方案,能够以低功耗满足实时信号处理的高性能需求。触摸屏控制器为了实现更高精度、更低功耗以及更强大的功能转而采用dsp控制技术。连接至pc的usb耳机需要完成大量处理工作,以降低噪声、抵消回声并实现音频流的处理。车载免提电话套件与用于无线lan的无绳手持终端、voip电话、室内电话(deckphone)以及其它便携式应用等都需要低待机功耗的调制解调器信号处理器,以延长超低功耗的空闲工作模式时间。在各种情况下,c5506dsp都能实现多种优势的完美结合以满足应用需求,其中包括低功耗、mips、存储器、连接性、小体积以及低价格等。c5506dsp的诸多优势使便携式系统的开发人员能够推出可靠性更强的低成本产品,以增强对消费者的吸引力。  采用c5506dsp的开发人员可以完全放心地利用tms320c55x电源优化dsp入门套件(dsk)开展设计工作,这套全面的工具能够缩短查找设计功耗瓶颈的时间。利用dsk,开发人员能够准确地设计、分析、管理并优化实时功耗。dsk的诸多特性包括:  ·电源计划工具,帮助开发人员方便快捷地创建试验性配置,以确定不同存储器与外设组合的功耗。  ·dsp/bios内核中的电源管理器,该软件模块可帮助开发人员自动实施操作系统级的节电策略。  ·功率调整库,根据应用模式与性能要求支持运行时内核频率与电压的动态控制。  ·美国国家仪器公司提供的基于labview?的电源测量工具,实现可视检量与分析功能,使开发人员能根据应用实际运转状态准确描述功耗情况。  tms320c5506dsp现已投入量产,可通过ti及其授权分销商进行订购。该器件采用12毫米×12毫米microbga封装,批量为10,000片时,建议单价为5.75美元。ti还提供能够与c5506dsp配合工作的完整系列的电源管理产品。

    时间:2019-03-05 关键词: 套件 免提 可编程 嵌入式处理器 适用于

  • 用DSP实现CPLD多方案现场可编程配置

    用DSP实现CPLD多方案现场可编程配置

      1 总体描述 系统中的DSP采用TI公司的定点数字信号处理器TMS320C5402。它采用4总线4级流水线的增强型哈佛结构,处理速度为100MIPS;具有片内4K×16位的ROM和16K×16位的DARAM, 2个多通道缓冲串行口(McBSP),1个直接存储控制器(DMA)等片内外围电路;外部可扩展至1M×16位存储空间,芯片采用3.3V电源电压。 TMS320C5402的多通道缓冲串行口(multi-channel buffercd scrial port)具备标准串行口的所有功能,可设定收发数据格式(8位~32位);在8位不扩展模式下,可选择高位(MSB)先送或低位(LSB)先送。直接存储控制器(DMA)可以实现数据在串行口McBSP和内部DARAM间的直接交换, 提高工作效率, 节省运行时间。 CPLD采用Altera公司FLEX10K系列的EPFl0KIOA7C144-1。可用资源有576个逻辑单元(LE)、72个逻辑阵列块(LAB)、3个嵌入式阵列块(EAB)和102个I/O引脚,电源电压为3.3V。 FLEX1OK的配置由Altera的专用串行配置PROM(EPCI)或系统控制器提供的数据宋完成,也由编程硬件通过下载电缆(BytcBlastcrMV)进行在线配置。依据控制配置过程的器件不同, 可将配置分为主动配置和被动配置两类;依据配置数据流的格式不同, 可将配置分为串行配置和并行配置两类。本文采用的是在微处理器控制下的被动串行配置(passivc serial)模式。配置连接示意如图1所示。  其中,DSP的XF作为输出控制CPLD的nCONFIG,INTO和INT1作为输入监控CPLD的nSTATUS和1NT DONE,缓冲串行口的BCLKX0和BDX0分别接CPLD的DCLK和DATA0,BCLKR0 作为输入端检测CONF DONE的信号。TMS320C5402和EPFl0KIOATC144-1都采用3.3V电源电压。  2 配置数据的获取和存储 对CPLD的配置设计完成以后,MAX+PLUS II的编译器在编译过程中自动产生一个存储器目标文件(*.sof)。它包括一个专用数据头和二进制配置数据, 供下载电缆(BvtcBlastcrMV)对器件进行被动申行配置时使用。在存储器目标文件(*.sof)的基础上,可以生成其它类型配置文件。我们所用到的是十六进制文件(*.hex),是ASCII形式的配置数据文件。使用MAX+PLUSII生成十六进制文图2十六进制文件(*.hex)的生成过程件(*hex)的过程,如图2所示。 ①完成编译之后,从“FILE”菜单中选择“ConvertSRAM Object Files|…”(图中a); ②选择相应的配置文件*.sof(图中b); ③设定输出文件格式为.hex(图中c); ④选择对应输出文件•.hex(图中d); ⑤点击“OK”确认(图中e)。 然后,在MAX+PLUSII环境下打开生成的十六进制文件(*.hex),便可获取到ASCIl格式的配置数据。将配置数据通过DSP的开发软件转化成二进制数据,通过DSP存入其外部大容量数据存储器(flash memory)中。 EPF10K10ATCl44_1的二进制配置数据大小约为120000位,即14.6KB。TMS320C5402的内部DARAM为16K×16位,外部存储空间为lM×1 6位,故可存储数十个配置文件。 1NT—DONE一状态指示端,配置时为低,配置数据初始化完成后释放,漏极开路; DCLK一配置时钟信号端; DATA0——配置数据输入端。 被动串行配置(PS模式)的时序如图3所示。    图3中关键的时序参数如表1所列。  3.2配置过程描述 参照被动串行配置时序,DSP控制下CPLD现场配置的实现过程如下所述。 首先,DSP将一个方案的配置数据从外部数据存储器中读入内部DARAM。然后,在DCONFIG上产生一个由低到高的跳变,使CPLD进入配置状态,等待CPLD释放nSTATUS。nSTATuS变高之后,通过McBSP在时钟(DCLK)上升沿将配置数据逐位送到DATA0上,时钟(DCLK)频率选为10MHz。因为配置要求每字节数据的最低位(LSB)先送出,故在初始化McBSP时,设定发送控制寄存器(XCRl和XCR2),使McBSP工作于8位不扩展传送模式和低位(LsB)先发模式,DMA完成数据从DARAM到McBSP口的直接传送。CPLD接收完所有配置数据(120 000字节)后,会释放CONF_DONE,变成高电平,之后DSP仍须在DCLK上输出脉冲来初始化CPLD器件,直到INT_DONE被释放变成高电平,表示CPLD器件初始化完毕,进入用户状态,配置过程结束。在配置的过程中,没有握手信号。一旦CPLD检测到出错,会将nSTATus拉低,此时会产生DSP外部中断。DSP响应中断后,在nCONFIG上产生一个由低到高的跳变,重新开始配置,或者DSP检测到配置出错,也要强制重新开始配置。 配置结束后,DSP和CPLD将工作于该方案模式下。当需要进入其它方案模式时,DSP按照需求读入新的配置方案数据,对CPLD重新进行配置。由于DSP的高处理速度(100MIPS)和配置时钟的高频率(10MHz),使得CPLD的配置时间小于20ms,因此可以快速、灵活地实现各配置方案间的现场实时切换。  结语 在继电保护测试装置中,要求测试端的输入输出特性随被测试线圈阻抗的变化而改变。CPLD作为测试端的核心器件,基于DSP实现其多方案现场可编程配置,实现了多种类型继电保护装置通用测试器的设计。本设计的思路及方法也适用于其它DSP+CPLD/FPGA或MCU+CPLD/FPGA系统。利用系统中现有的DSP/MCU和大容量通用数据存储器,省去专用的配置PROM,方便灵活地实现对CPLD的现场可编程配置。

    时间:2019-03-01 关键词: DSP cpld 可编程 嵌入式处理器 现场

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包