在工业废气排放监测与污染控制,多光谱气体传感器凭借其非接触、多组分同步检测的优势,已成为实时感知气体成分的核心设备。然而,工业废气中存在的复杂气体混合物(如SO₂与NO₂的吸收光谱重叠、VOCs(挥发性有机物)与水蒸气的基线漂移)会导致传感器输出信号产生严重的交叉干扰,使得传统基于阈值比较或线性拟合的辨识方法误报率高达30%以上。深度学习驱动的抗交叉干扰设计,通过构建高维特征提取与非线性映射模型,为多光谱气体传感器的精准辨识提供了突破性解决方案,使工业废气成分的实时检测准确率提升至98%以上,为环保监管与工艺优化提供了可靠数据支撑。