当前位置:首页 > 射频
  • 立功科技的物联网云端平台型服务系统的优势及发展应用

    立功科技的物联网云端平台型服务系统的优势及发展应用

    物联网的概念提了有四五年了,最近终于加速了。随着传感器技术、通信技术、嵌入式技术和分布式处理技术的迅速发展,以各类传感器、射频模块、智能终端为代表的信息自动生成设备和射频通信设备联网,共同构成了实时准确感知、测量和监控现实物理世界的硬件支撑平台,物联网已经迅速触及到社会的每一个角落。而物联网云平台的价值在于,它彻底地突破了互联网中人与人通信的限制,使人与物的交互变得更加简单,甚至在物与物之间也能建立通信的桥梁。 就在今年中国国际软件博览会上,一家来自广州的企业所发布的云平台让我们眼前一亮。为解决行业痛点,结合芯片和模块的优势立功科技推出的ZWS云平台是一个汇集数据、可视化呈现、控制整个工业智能物联生态系统的“大脑”,为用户提供稳定可靠的云服务方案。 ZWS云平台是什么? ZWS云平台,全称为:ZLG Web Service云计算服务平台,是ZLG立功科技推出的物联网云端平台型服务系统,旨在为设备提供安全可靠的连接通信能力,向下连接海量设备,支持设备采集上云;向上提供云端API,指令数据通过API调用下发至设备端,实现远程管理。 立功科技常务副总李佰华介绍到:ZWS云平台支持不同协议的设备快速接入,对接入的设备提供功能丰富的控制台系统进行统一管理,无需二次开发,即可以便捷查看设备的数据和状态,并对设备进行远程控制和固件升级。此外,对于已有业务系统的客户,支持数据透传转发到客户自身的第三方系统;对于有定制化需求的客户,支持可视化组态编程和完善的二次开发包;对于隐私性要求高的客户,支持全私有化部署。ZWS云平台支持从多个不同维度,为客户的核心需求提供一站式的解决方案。 ZWS云平台系统框架总体采用分层协作的设计,在硬件和系统层,基于ZLG立功科技的智能模块和AWorks开发平台,可以让不同协议的设备快速接入云平台;在中间服务层,由于LoRaWAN本身有独立的国际标准,ZWS云平台分为ZLG Cloud和LoRa Server两个部分,前者负责为通用类型的设备提供服务,后者主要为LoRaWAN类型设备提供服务,这两部分可以独立应用,也可以协同应用,最终接入同一套应用系统进行管理。 ZWS云平台PaaS层显功底 先简单介绍一下PaaS层。随着物联网的发展,未来基本上所有的应用都会是基于物联网的应用,而未来所有的应用,将是基于物联网PaaS平台上开发出来的SaaS应用,所以物联网PaaS平台将承载未来商业业务。 ZWS云平台在IaaS层,可以采用阿里云、亚马逊云等基础服务商提供的硬件设施作为基础服务。而在PaaS层做到了真正的自主研发,采用微服务技术、RestfulAPI接口、Docker容器技术、MongoDB技术、Redis技术、分布式技术等,为用户提供设备认证、设备管理、数据管理、大数据分析等中间层服务接口。 ·微服务技术:各个服务之间独立运行,不会相互干扰,平台更稳定; ·RestfulAPI接口:统一API接口形式,方便二次开发; ·Docker容器技术:更方便部署,提高分布式部署以及私有化部署效率; ·MongoDB技术:数据库存储技术,大数据存储及读取效率更高; ·Redis技术:高性能的key-value数据库,用来作为缓存服务,提高服务器的性能; ·分布式技术:多服务器并行,提高多节点并发运行效率。 争当小而专垂直领域的专家 对于基础设施层(IaaS),立功科技也会和公有云进行合作。立功科技常务副总李佰华说到:“一些大型的公有云的规模庞大,也有小型公司推出各色各样的云。但是架构都大同小异,唯一的区别是在PaaS层面上。从PaaS内容上可以看出,大多数公有云的PaaS层面的模块基本是按照行业区划分,他们的定位和规划方向是不一样的,而ZWS主要面向工业领域的垂直细分领域。更形象的说,那些大型公有云企业要建造的是摩天大厦,ZWS只需要建一个小型的商业楼宇就够了。 AWTK下一代开源GUI引擎 AWTK(Toolkit AnyWhere)是ZG倾心打造的一套基于C语言开发的GU框架,旨在提供一个功能强大、高效可靠,可轻松做 出高流畅性、交互效果好的交互界面的GU引擎,并开创性的支持跨平台同步开发,实现一次编程,终生使用。 随着手机智能手表等便携式设备的普及,用户对人机交互界面(GUI)的要求越来越高,嵌入式系统急需一款高效的GUI引擎,能工程师提供各类GUI设计所需的工具,快速地做出功能强大、交互效果极佳的GUI界面,而不用由零开始。为此,ZLG推出了开源GUII引擎AWTK。 可以说AWTK引擎是连接UI与后台程序开发的桥梁,在后台算法优化的同时给予用户在视觉上和体验上的全新升级。立功科技有专门的UI团队去进行界面的设计,代码算法则是由工程师在后台进行,两者之间则是由AWTK引擎作为支撑,而商用免费也是立功科技的一大亮点。 此外,在5G战略上,立功科技作为5G基础设施应用厂商的身份助力5G发展,将提供相关通讯设备和基础设施的服务。 只为改变世界的一小部分 立功科技已有20多年的硬件研发经验,他们的宗旨就是要让用户进入ZWS的云平台有一种简单,方便,高效的感觉,尽量减少用户的开发难度,旨在建立一个从数据采集、数据传输、数据处理再到云平台的系统化整体式的服务方案。基于此,花了2年的心血开发出了ZWS云平台。 此外立功科技掌控高精度数据采集、现场总线、嵌入式控制等关键核心技术,提供从“芯”到“云”的工业智能物联生态系统,具备独一无二的垂直产业链整合能力,面向用户输出整体方案和服务,提供最大化的价值。 李佰华谈到当今物联网云技术未来走向和难点,云平台的开发难度众所周知;针对行业用户将来要提出完全的系统化完整的方案;因此立功科技并不会像其他企业走那种大而广的路线,另辟蹊径,从小而专的垂直行业入手则是明智之举,只有这样才能从单点合作走向系统化。此外,立功科技最大的优势在于他们有着20年的硬件开发经验,因此垂直产业的整合能力可以说是名列前茅的。

    时间:2020-06-01 关键词: 射频 物联网 传感器

  • 中国正式进入5G商用元年

    中国正式进入5G商用元年

      2019年6月6日,工信部向中国电信、中国移动、中国联通、中国广电四家企业发放5G商用牌照。中国正式进入5G商用元年。   未来数据传输速率的提高有助于形成交互式生态系统,从而实现更智能、更高效、更互连的世界。据IHS预计, 2025年将有超过750亿台物联网(IoT)设备接入网络,其中大多数会采用无线技术;5G网络将有力支持该网络需求。然而,实现5G大规模商用绝非易事。就5G连接技术而言,AAS(有源天线系统)、MIMO(大规模多输入多输出)、C-RAN(云无线接入网络)、边缘计算等新架构的演进必将需要更先进的连接器技术。   蜂窝基站的演进将增加设计的复杂性。对于5G部署而言,了解其关键技术非常重要,如从单独的射频拉远单元(RRU)和天线系统转变为大规模多输入多输出(MIMO)AAU,需要集成天线元件和其他有源电子元件,可提升容量和覆盖范围,并降低射频线缆要求以及缆线损耗。新的有源天线系统将使用MIMO天线,通过多个无线信道服务多位用户,即多用户大规模MIMO,简称MU-MIMO。大规模MIMO被视为未来超快5G网络的核心基础组件。MIMO本质是一种无线复用技术,可在同一无线信道同时发射和接收多个数据信号,每个数据信号通常都需要单独的天线来发射和接收。大规模MIMO能够使无线网络的容量增加50倍左右,而更多的天线还可以实现更佳的数据传输功能、具备高可靠性及更强的抗干扰能力。我们希望新的天线系统能通过内部连接,如连接器和线缆,提高单位天线元件数据收发量。   5G部署的另一技术重点在于设计出高宽带、多模式、高效率以及高度集成的下一代无线射频系统,以处理大量不同的应用和服务组合,从而满足从农村通信塔到城市布设的各种需求。在5G射频单元内部,有源电子元件与无源天线阵列集成在一起。这些组件的布局离不开天线板、电子元件板和滤波器,例如:   • 通过高速连接,将输入/输出(I/O)接口连接至射频板;   • 有源天线系统(AAS)内部和外部需要高速输入/输出(I/O)接口   • 极可能包含电源、光纤以及混合(电源、射频和低速信号)接口   • 除了互连器件和传感器,还需要考虑硅晶、双工器以及振荡器等   因而,射频单元内部的连接必须能够处理高速、高功率信号,满足更严苛的电磁干扰(EMI)、信号完整性(SI)以及散热性能要求。连接器必须足够小巧,以满足有源天线系统(AAS)对于整体尺寸的限制。天线是无线系统中最重要的通信元件。考虑到天线元件数量庞大,元件之间需要大量的连接,连接器安装过程中的易操作性也很重要。   5G核心网依靠极其高效的云端基础设施。Cloud RAN(或称集中式RAN)是近年来的趋势,而亚太地区的运营商正在引领这一潮流。例如,中国、韩国和日本的运营商正大力部署先进的新型C-RAN架构。C-RAN(云无线接入网)架构主要将基带单元(BBU)的资源集中化,并采用虚拟化等云技术。OEM厂商可以选择BBU功能的切分位置, 不同的切分位置直接影响到I/O的带宽。借助C-RAN,许多蜂窝基站的基带处理可以实现集中化。C-RAN通过协调不同蜂窝基站来提升性能,同时整合资源以节省成本。   然而,随着在C-RAN中枢实现BBU的集中化,前传(Fronthaul)的概念被引入网络。前传指的是BBU池与蜂窝基站或小基站中的射频拉远单元之间的链路。光纤能够提供更高的带宽,因而成为前传的最佳选择。但由于切分位置的不同,微波链路依然会占有一席之地。一方面,这些变化将使大量电子元件将集中在大规模MIMO有源天线系统的盒内,产生大量热量,因此所有组件需要承受更大的热应力。另一方面,C-RAN将需要更高带宽的连接和更高带宽的收发器来支持。   随着数据中心在规模和能力方面的大幅提升,出现了一种新趋势——边缘计算和边缘云。5G边缘计算将为终端用户在核心网边缘的应用,提供更大容量、更低时延、更高移动性、更高可靠性和准确性。此外,云计算可将大数据中心的高效率和高能力赋予最紧凑的5G小型设备。这将实现更加标准化的基础设施及开放化的构建模块,从而形成数据中心的规模效应。在这种分布式计算中,大部分计算都可能在智能设备(内嵌传感器)或边缘设备等分布式设备节点上执行,而非由数据中心完成。这些设备的设计正在发生改变,将采用集成微控制器、执行器芯片和模块的智能传感器。这同样会改变连接器和线缆在系统中的角色和要求。   5G有望实现更快的传输速率、更强大的数据交换网络和更实时无缝的通信,将推动对先进、创新连接解决方案的需求快速增长。TE 作为高速、散热性能和EMI/SI解决方案以及严苛环境领域的创新领导者,正与全球各大5G无线通信设备OEM厂商和云服务商开展密切合作,以5G解决方案和专业能力,支持5G网络的成功部署。

    时间:2020-05-31 关键词: 无线网络 射频 mimo 5G

  • 5G时代下的移动终端射频前端市场的发展机遇

    5G时代下的移动终端射频前端市场的发展机遇

    基础通信设施的建设无疑是未来几年拉动相关半导体行业成长的动能之一。射频前端是无线连接的核心,随着5G支持的频段数量的增多,单个移动终端射频前端的数量和价值量也会迎来显著增长,未来射频前端市场增长空间广阔,市场增收也得到显著提升。 5G时代下的射频前端市场 事实上,射频器件是无线连接的核心,凡是需要无线连接的地方必备射频器件。随着通信技术的不断演进,需要支持的协议及功能越来越多,射频器件作用愈发重要,特别是射频前端。 在4G时代,手机需要支持的频段很多,射频前端复杂性及价格也不断提升,已经比基带芯片价格低不了多少。在接下来的5G时代,射频前端重要性将更加凸显。 随着5G商业化的逐步临近,5G标准下现有的移动通信、物联网通信标准将进行统一,因此未来在统一标准下射频前端芯片产品的应用领域会被进一步放大。同时,5G下单个智能手机的射频前端芯片价值亦将继续上升,预计未来射频前端市场也会继续保持增长。更多射频前端信息敬请关注“AI芯天下”微信公众号。 从2010年至2018年全球射频前端市场规模以每年约13%的速度增长,2018年达149.10亿美元,未来将以13%以上的增长率持续高速增长,2020年接近190亿美元。 目前正是4G网络向5G网络转型升级的阶段,未来全球射频前端市场规模将迎来大规模扩张。预计2023年全球射频前端市场规模将增长至313.10亿美元。 2018年全球RFFEM(射频前端模块)消费量为96亿个,预计未来随着5G的不断发展,2023年全球RFFEM消费量将增长至135亿个。 手机射频前端市场潜力巨大 5G时代对于设备的性能提出了更高的要求,因此射频器件的成本和所需数量都会得到提升。5G时代单部手机的射频器件成本将由4G时期的18美元上升至25美元。 而射频器件的数量方面都有较大提高,例如单部手机滤波器数量从4G时代的40个上升至5G时代的70个左右,频带从15个增加至30个,接收机发射机滤波器从30个增加至75个,射频开关从10个增加至30个,载波聚合从5个增加至200个等等。 2017年手机射频器件全球总市场为150亿美元,随着5G的发展,将在2023年达到350亿美元,年复合增长率CAGR预计为14%。 ·射频滤波器全球市场将在2023年达到225亿美元,CAGR为19%; ·射频天线调谐器将达到10亿美元,CAGR为15%;射频开关将达到30亿美元,CAGR为15%; ·射频功率放大器(PA)将达到70亿美元,CAGR为7%; ·射频低噪声放大器将达到6.02亿美元,CAGR为16%; ·随着5G时代的到来,5G毫米波射频前端将从0增长至4.23亿美元。 基站射频前端增长空间巨大 从5G的建设需求来看,5G将会采取“宏站+小站”组网覆盖的模式,历次基站的升级,都会带来一轮原有基站改造和新基站建设潮。更多5G信息关注公众号“AI芯天下”。 宏站数量方面,中低频段的宏站可实现与4G基站相当的覆盖范围,到2017年4G基站约为328万个(覆盖99%人口),如实现相同的覆盖,预计5G宏站将达475万个。 小站数量方面,毫米波高频段的小站覆盖范围是10~20m,应用于热点区域或更高容量业务场景,其数量保守估计将是宏站的2倍,由此预计5G小站将达到950万个。 因此在基站数量方面,5G基站的数量将大幅超过4G时代基站数量,因此基站的射频器件需求量也会大幅增长。由于单个5G基站对于滤波器、PA等射频器件需求数量的提升,再加上更高的性能要求导致其他射频器件成本的上涨,预计单个5G基站的BoM(物料成本)也将相较4G基站有所增加。 5G时代将会迎来基站数量和单个基站成本的双双上涨,叠加起来5G时代基站市场空间将会有巨大的增幅。预计2022年基站射频前端全球市场将由2018年的约5亿美元增长至2022年的16亿美元,增幅达220%,基站射频前端市场增长空间巨大。 射频前端市场空间预测 2021年全球5G宏基站PA和滤波器市场将达到243.1亿元人民币,CAGR为162.31%,2021年全球4G和5G小基站射频器件市场将达到21.54亿元人民币,CAGR为140.61%。 2016年全球射频低噪声放大器收入为12.80亿美元,而随着4G逐渐普及,智能手机中天线和射频通路的数量增多,对射频低噪声放大器的数量需求迅速增加,因此预计在未来几年将持续增长,到2020年达到14.75亿美元。更多5G信息关注公众号“AI芯天下”。 5G通讯手机和模块市场将促发射频器件需求大幅增长。5G通讯基站市场相对4G时代,射频器件的需求也是成倍增加。 WiFi路由器市场,在5G时代,射频器件的需求存在一定的不确定性。所以,未来射频器件最重要的市场需求来自:手机和通讯模块市场,NB-IoT市场。 到2023年射频前端市场规模有望突破352亿美元,年复合增长率达到14%,手机射频前端市场占据其中八成以上。 5G到来是机会,也可能会拉大国内射频公司与国际射频公司的差距。国内射频公司都还弱小,研发能力和资金都很有限,射频前端模组提高了研发门槛。 射频前端产业的发展不确定性 如今射频前端产业相当复杂。产品和技术的多样性是造成这种状态的原因但并非唯一。面对智能手机对更高分辨率视频和更宽带宽的需求。 正在到来的5G通信技术正在开创通信市场的新秩序。主要射频前端厂商都在致力于提供能集成在智能手机的功能强大的器件,不是所有的技术都适用5G,但每个厂商都可以从中获利。在低波段通信(如GSM、2G或3G)的SAW滤波器市场,低成本竞争对手拥有机会。更多射频前端信息敬请关注“AI芯天下”微信公众号。 而高质量产品的竞争对手将转战4G和5G的SAW滤波器市场。随之带来的是有益于所有前端通讯器件的整合,如今的模式还很单一。 结尾: 正如每一次通信升级都为产业格局带来撼动一般,5G对终端射频模块产业的影响将是系统而全面的,无论是集成度、材料或工艺都将发生变革。国内射频芯片厂商应推进整合和协同创新,才有机会追赶国际巨头。

    时间:2020-05-28 关键词: 半导体 射频 5G

  • 音频功放的关键指标 

    音频功放的关键指标 

    功放的主要技术参数 功放的主要参数有:输入灵敏度、谐波失真度、信噪比、频率响应、阻尼系数、转换速率。 1.输入灵敏度: 是指功放所需最小输入信号电平,它是要求将音源信号放大到足够推动后级功放所需要的必要条件。 2.谐波失真: 谐波畸变是放大器的一个非常重要的指标, 谐波畸变是一种非线性畸变, 它是由工作中放大器的非线性特性引起的, 失真的结果是产生了一种新的谐波分量,使声音失去了原来的色调, 严重的声音发破,失真 。谐波失真也有奇数甚至第二点, 奇次谐波会使人烦躁、厌恶、容易被人感知。 有些放大器听起来烦人, 感觉很累, 或由更大的失真引起。对放大器的最大影响是失真程度, 一般高保真要求谐波失真低于 0.05%, 越低越好。 除了谐波失真外, 还有互调失真、交叉失真、销波失真、瞬态失真、相位畸变等, 这些都是影响放大器质量的主要原因。评估的有效性, 首先要看其失真, 就像意大利的 Sinfoni (诗芬尼) 放大器的总谐波失真小于0.01%。 3.信噪比: 值越大, 越好, 一般使用 (s/n), 具有信噪数的信电ps和噪声功率 Pn 比, S/n增幅 10Lgss pn)随着信噪比和输入信号电平的增加, 信噪比逐渐增大, 但当输入信号电平达到一定值时, 信噪比基本保持不变。 根据高保真度要求, 信噪比也应达到90dB 以上, 进口高档放大器往往高达 110-120dB, 其性能可以想象。有些信噪比后面是 A 字,A计权指的是通过加权网络测量结果后的噪声信号,因为人们对高频和低频频带噪声的敏感性相对较低,所以有这样一种方法:信噪比。 计权噪声更直观地代表了人们实际感受到的噪声信号状态。总之, 信噪比越大, 表明信号中的噪声越小, 声音的质量越好, 音乐的重播就越清晰、干净、层次合理。 4.频率响应: 早期俗称功率带宽,指谐波失真不超过规定值时,功放的1/2额定功率频带宽度,即有高低端下跌-3dB的两个频率点之间所包括的频带,称之为功率带宽。 5.阻尼系数: 主要针对低频, 是直接影响低音音质的一个非常重要的技术参数。众所周知,喇叭的口径越大,低音的相对越好,但声音池的运动惯性也就越大, 这种惯性使得很难与音频信号运动同步。 往往显示出声音浊度不是清晰,特别是在100-400Hz 低频,容易引起声音染色,人的声音模糊, 很不自然。有的改装后的汽车低音喇叭, 低频信号强颤振多, 低音尾随严重, 这是音频惯性造成的音色。 6.转换速率: 放大器的转换率对高音重播的质量和性能有很大影响。转化率越快, 高音质量越好, 捕捉的高频信息就越准确。 高档放大器可以做10到几十个 V/us,低中档放大器一般都没有标记出来,这个转换率的价值高和低,与设计材料有密切的关系,但也不应该太高,过高就会产生人耳听不到超过20KHz 的超调信号,不仅对提高音质没有效果, 而且容易烧毁高音喇叭。 音频功放的关键指标  音频功放在蜂窝电话、便携式设备以及音响等领域都得到了广泛应用。在不同的应用领域,对于音频功放的参数指标的侧重点会有所区别。例如在手机领域侧重于对射频干扰的抑制能力,而在音响中更关注失真和频响特性。因此,根据市场需求对音频功放的关键技术指标进行定位,已经成为一个非常具有挑战性的课题  音频功放的基本参数包括静态工作电流(IDD)、关断电流(ISD)、输入失调电压(Vos)总谐波失真加噪声(THD+N)、输出功率(PO)等指标。另外诸如信噪比(SNR),电源抑制比(PSRR),增益(GAIN)、效率(η)、噪声(Noise)等参数也是衡量一个音频功放不可缺少的技术指标。当然,像THDN,SNR,PSRR,GAIN等参数都是在每一个固定频率,例如1KHz作为激励得到的,所以这些参数的扫频曲线,可以体现音频功放在整个音频范围(20Hz-20KHz)内的性能。 关键指标  音频功放从功能上可以分为很多类,无论单通道、立体声、驱动耳机还是驱动扬声器,在共同的应用领域内关注的指标都是相似的。目前Audio Precision的音频分析仪可以自动完成大部分参数的测试,已成为业内的一个评判标准。    可量化的指标  总谐波失真加噪声(THD+N)  THD+N是英文“Total Harmonic Distortion + Noise”的缩写,译成中文是“总谐波失真加噪声”。THD+N技术是极为吸引人的,因为输出中除了纯测量信号的任何成分都会使测量指标下降。低的THD+N测量结果不仅说明谐波失真低,而且也说明哼鸣声,干扰信号,以及宽带白噪声也是比测量值低(或等于测量值)。THD+N在音频测试中得到了广泛应用。    对于音响和高端手机用户来说,THD+N体现了音频功放的失真度,是非常重要的指标。为了完整地考察音频功放在整个音域内的表现,图 1所示的扫频曲线也是非常重要的,根据音频放大器和扬声器的特性在外围电路做适当的调整,可以得到令人满意的音色。 输出功率(PO)  输出功率是指在指定电压下,满足一定的失真度(THD+N)时,音频功放在负载上的输出能力。需要注意的是,比较这个参数的时候,要注意测试条件的区别,特别对于D类功放而言。因为不同的负载(扬声器是感性负载),不同的滤波器,不同的失真度要求会对测试结果产生很大影响。  对于低端手机用户和音响用户而言,输出功率的大的音频功放更有吸引力,因此要求输出功率在不失真的情况下尽可能的大。很多芯片供应商则直接把输出功率作为规格书的标题以增加卖点。  电源抑制比(PSRR)  提到音频放大器在手机中的应用,就不得不提到PSRR这个参数。PSRR (Power supply rejecTIon raTIo)是音频放大器的输出对于电源纹波的抑制能力。  在 TDMA 和 GSM 手机中,最严重的电源电压噪声来自 RF 级的开与关。GSM 电话的开关频率为 217Hz。当 RF 功率放大器接通时,从电源获得高电流,这时电源下降高达 500mV。PSRR 差的音频放大器将在扬声器产生大于 217Hz 的谐波“咔咔”噪声。图 2为PSRR为60dB的放大器对GSM信号的抑制能力。  相对而言,手机用户更关注217Hz的PSRR,因为这个参数直接影响到免提时的通话质量。如果处理不慎,再优美的音色夹杂了干扰声也是让人不堪忍受的。当然,这个指标也不是万能的,因为射频干扰不仅出现在电源,耦合到输入端和输出端的噪声也是需要慎重考虑的因素。 未量化的指标  以上提到的参数指标都是已经量化的,可以由音频分析仪完成自动测试。可是这些指标并不能涵盖所有的应用需求。还有很多现象出现在不用的应用环境中,却无法用一个统一的标准去衡量。   Pop Click  Pop ClicK是音频功放在打开或关闭过程中,音频瞬变信号在或扬声器中产生的杂音。   美信提出了用KCP来衡量Pop Click的大小,不过目前常用的方法还是以实际环境中的听觉效果作为最终的评判标准。    射频抑制能力  音频功率放大器的三大噪声源为:电源噪声 、输入耦合的噪声和输出耦合的噪声。射频干扰的方式又分为传导和空间辐射。因此音频功放射频抑制能力,很难用固定的指标去描述。以手机为例,不同的功放在设计良好的手机中都可以正常工作,只有在射频干扰比较严重的系统中,抑制能力较强的芯片才能脱颖而出

    时间:2020-05-21 关键词: 射频 放大器 音频功放

  • 够绝!美国对华为芯片限制升级,中方强势回应:坚决反对!

    够绝!美国对华为芯片限制升级,中方强势回应:坚决反对!

    虽然美国疫情依然严重,但特朗普却并没有放松对中国企业供应链的禁令。 当地时间5月15日,美国商务部发布声明称,将全面限制华为购买采用美国软件和技术生产的半导体,包括那些处于美国以外,但被列为美国商务管制清单中的生产设备,要为华为和海思生产代工前,都需要获得美国政府的许可证。 该商务部认为,尽管华为在2019年5月被列入美国经济“黑名单”,但该公司仍在继续使用美国的软件和技术来设计半导体芯片,进而破坏了“实体清单”的目的。但这一新计划将使得华为无法再度避开美国的出口管制,只要采用到美国相关技术和设备生产的芯片、半导体设计,或者使用美国芯片技术和设备的外国公司所供应的芯片时,都需先取得美国政府的许可。 (美国商务部网站截图) 不仅如此,美国商务部下属负责出口管制的产业安全局(BIS)在当天还发布了一则通知,指出对华为及其在“实体清单”上的关联公司的临时通用许可证(TGL)再延长90日,推迟到2020年8月13日。 对于此次延期,美国商务部表示,将给使用华为设备的用户的运营商提供空间,特别是在美国农村地区的用户和运营商,可以继续临时运营这些设备和现有网络,同时加快向替代供应商过渡。 根据这项规则变动,即使芯片本身不是美国开发设计,但只要外国公司使用了美国芯片制造设备,就必须获得美国政府的许可,才能向华为或其附属公司提供芯片。华为继续获取某些芯片或使用某些美国软件或技术相关的半导体设计,也需获得美国的许可。 这意味着,美国正在试图切断华为在全球的芯片供应。 (资料图) 然而,就在这一天,台积电正式宣布,在美国联邦政府及美国亚利桑那州的共同理解和其承诺支持下,计划在美国兴建并运营一个先进的晶圆厂。 据悉,台积电是华为重要的供应商,其刚刚宣布建厂,美国方面就出台了限制政策,也让不少人猜测,此举或是针对华为而来。不过,据金融时报称,美国商务部否认两者之间存在关联。 (台积电官网截图) 对此,华为并未做出正式回应,而是默默地在《心声社区》发布了一条题为“没有伤痕累累,哪来皮糙肉厚,英雄自古多磨难”的文章,并配上了一张图。 该文章只有两句话:“回头看,崎岖坎坷;向前看,永不言弃!”而配图则是一架二战中被打得像筛子一样,浑身弹孔累累的伊尔2攻击机,依然坚持飞行,终于安全返回。 与此同时,华为还在官方微博上回应道,“除了胜利,我们已经再无别的路可走”。 (华为《心声社区》公众号截图) 值得注意的是,针对美国对华为出口管制新规,中国商务部回应称,中方注意到美方发布的针对华为公司的出口管制新规。中方对此坚决反对。 美方动用国家力量,以所谓国家安全为借口,滥用出口管制等措施,对他国特定企业持续打压、遏制,是对市场原则和公平竞争的破坏,是对国际经贸基本规则的无视,更是对全球产业链供应链安全的严重威胁。这损害中国企业利益,损害美国企业利益,也损害其他国家企业的利益。 中方敦促美方立即停止错误做法,为企业开展正常的贸易与合作创造条件。中方将采取一切必要措施,坚决维护中国企业的合法权益。 (商务部网站截图) 俗话说,打铁还需自身硬。事实上,华为作为一家系统级公司,虽然目前已经在大部分芯片品类上实现了自给自足,但在存储、射频、模拟芯片上仍然存在短板,且受制于人。此次美国宣布出口管制新规,对于越战越勇的华为来说,未必就是一件坏事,这只会更加坚定了华为补齐短板,以及打造“无美”供应链的决心,并且有助于倒逼中国芯片企业崛起!

    时间:2020-05-18 关键词: 华为 射频 存储 模拟芯片

  • 干扰射频的因素,你知道有哪些吗?

    干扰射频的因素,你知道有哪些吗?

    你知道干扰射频的因素有哪些吗?如果直观的说干扰射频的原因,其实原因有很多,而且原因不好排查,甚至有的很难发现解决。其实大多数情况对干扰信号只能在源头处进行控制。本文讨论射频干扰的各种因素,了解其根源后将有助于工程师对其进行测量工作。 射频干扰信号会给无线通信 基站覆盖区域内的移动通信带来许多问题,如电话掉线、连接出现噪声、信道丢失以及接收语音质量很差等,而造成干扰的各种可能原因则正以惊人的速度在增长。 如今最新最先进的复杂电信技术还必须与旧移动通信系统(如专用无线通信或寻呼等)共存于一个复杂环境中,其中多数旧系统在以后若干年里还将一直用下去;与此同时,其它无线 RF 设备如数字视频广播和无线局域网等又会产生新的可能使通信服务中断的信号。由于环境限制越来越大,众多新业务竞相挤占有限的蜂窝站点,使得蜂窝信号发射塔上竖满了各种天线。而随着我们越来越多地通过移动电话联系、在互联网上观看多媒体表演和进行商业贸易,甚至不久我们的汽车、冰箱和电烤箱也将使用 RF 信号互相交流,通信的天空将变得更加拥挤。 引起 RF 干扰的原因 大多数干扰都是无意造成的,只是其它正常运营活动的副产品。干扰信号只影响接收器,即使它们在物理上接近发射器,发射也不会受其影响。下面列出一些最常见的干扰源,可以让你知道在实际情况下应该从何处着手,要注意的是大多数干扰源来自于基站的外部,也即在你直接控制范围之外。 ◆发射器配置不正确 另一个服务商也在你的频率上发射信号。多数情况下这是因为故障或设置不正确造成的,产生冲突的发射器服务商会更急于纠正这个问题,以便恢复其服务。 ◆未经许可的发射器 在这种情况下,其它服务商是故意在与你同一个频段上发射,通常是因为他根本没有拿到许可。他可能在一个频段上没有发现信号,于是假定没有人在使用该频段,于是擅自加以利用。发放许可的政府机构通常有助于赶走这类无照经营者。 ◆覆盖区域重叠 你的网络或其它网络的覆盖区域在一个或多个信道上超过规定范围。天线倾斜不正确、发射功率过大或环境变化等都会引起覆盖区域重叠,如某人砍掉了一片树林或推倒一个建筑物,而这些原本可以阻挡另一位置上所发出的信号。 ◆自身信号互调 两个或两个以上信号混在一起后会形成新调制信号,但却不是任何所希望的信号。最常见互调是三次信号,例如两个间隔为 1MHz 的信号会在原高频信号之上 1MHz 和低频信号之下 1MHz 各产生一个新信号,如果原来两个信号分别处于 800 和 801MHz 频段,则将在 799 和 802MHz 出现三次信号。 ◆与另一发射器信号互调 互调干扰也可能由于一个或多个外部无线信号通过天线馈送同轴电缆 ,然后进入造成冲突的发射器非线性终端放大器 造成,外来信号相互混杂并与发射器自己的信号混在一起,形成一个看上去像是通信频段中的“新”频率互调信号(经常都是不希望的)。 也可能由两个外部信号产生干扰信号,而造成冲突的发射器本身的信号没有参加,外部信号只是正好用到发射器的非线性级而混在了一起。在这种情况下,混在一起的两个信号没有一个有问题,肇事者是发射器。 解决这个问题有点难度,因为它要求对看上去工作正常的发射器进行改动。需要增加一个窄带滤波器 以尽可能衰减外面的信号,再加一个铁氧体绝缘子使 RF 从发射器传送到天线并衰减馈线上返回的信号。在同时使用多个不同频率的发射塔上,业主经常要求所有发射器都安装这类滤波器和绝缘子。 ◆生锈的围墙 / 房顶等造成的互调 发射器并不是互调信号的唯一滋生地,非线性连接也可能是附近生锈的白铁皮房顶或围墙。当无线发射功率很大时,房顶各部分之间生锈部分将起到非线性二极管 的作用,像这种来自物理结构的互调影响很难阻止,因为它们因天气状况而异,风会把金属生锈部分压在一起或分开,雨则改变铁锈特性。严重影响通信的必须进行维修或替换,以恢复可靠的通信连接。 ◆天线或连接器中的互调 有时即使同轴电缆或天线本身一点很小的腐蚀也会产生问题,尽管还不足以引起信号丢失或 VSWR 问题,但腐蚀会像一个品质很差的二极管一样造成细微互调。如果附近有几个大功率发射器,那么产生的互调会强到足以干扰移动手机与基站之间的微弱通信信号。找出这类问题根源最难的地方在于松开天线系统一个连接器会打乱氧化 程度并暂时使问题中止,此时你必须花更多时间认真记录旋松或拧紧的是哪一个连接器并在每步之后进行试验以确定它是否就是罪魁祸首。 ◆正规发射器超载 发射器发出的任何频率强信号都会使邻近系统超载,唯一解决办法是在接收器天线电缆上安装一个滤波器,使希望的信号通过,而将超载信号衰减。 ◆邻近发射器上相邻信道功率 随着分配的频谱越来越拥挤,互相竞争的无线业务所分到的频率越来越接近,从而使一个系统发射信道噪声边带出现在或阻止另一个临近接收信道的风险增加。如果发射器符合技术规范要求,则需要更改信道或增加发射器和接收器之间的物理分隔。 ◆广播发射器谐波 大功率源如商业广播电台等会产生大功率信号谐波,例如一个 5MW 发射器很容易产生 5W 谐波,足以干扰附近的移动通信。如果该发射器符合所有规范和政府规定,那么唯一的解决方法可能只有迁移通信天线以避开发射器,或者重新分配频率方案使得造成冲突发射器附近的通信基站使用的是不受其谐波能量影响的信道。 ◆“老爷”级 STL 用户 在蜂窝系统出现之前,900MHz 和 1,400~2,200MHz 波段通常分配用于广播电台的演播室与发射器连接(STL)。政府现已将这些频率重新分配给蜂窝运营商,但是他们常常又没有限制老用户,而让他们继续在没有冲突的频率上运营。当在这些频段开展新的蜂窝业务时,那些发射器应该转向新频率,但有些还需要加以“提醒”。 ◆音频整流 在极个别地方,基站控制器端还在使用模拟音频输入传送给无线输出,因此会受到附近 AM 广播或短波电台强信号的影响。AM 信号可能进入音频电路 后并被整流,使得电话交谈中混入广播音频信号。在与基站连接的音频部分周围进行良好屏蔽应能解决这个问题。 认识干扰源类型 干扰可以按其自身特性进行分类,也可以按它对基站和手机通信的影响来分,冲突频率是显示干扰源和干扰结果最常用的指示器。 ◆频外干扰源 这是一种主要干扰,包括一些与接收器频率相近而不相同的强信号,强度很大足以影响输入。这些信号通常很接近预定频率,因为接收器输入滤波器会滤掉其它相差太远的信号。 让我们来看一看接收器受到的两种影响。一种是前端阻塞,它由于强信号进入接收器使第一级(前置放大器或混频器)过载完全饱和引起,这样会使更强信号无法接收。另一个影响是减感效应,附近的信号进入接收器后被 AGC(自动增益控制)发现或者启动限制器电路,造成增益下降。接收器表现得就像是灵敏度降低,因此微弱信号会丢失,对强信号的信噪比也将减小。 ◆频内干扰源 第二类干扰包括和预定通信信号频率一样的信号(无论强弱),通常由下列情况引起: ·正常手机信号超出其预定范围 ·发射器故障或配置不当 ·正常发射器的信号谐波 ·其它电气装置辐射出的无意干扰信号 ◆频外干扰源产生的频内影响 这类干扰源最难跟踪,看上去是在频率内的信号,但却没有明显的干扰源,例如两个或以上在其自己频率上完全正常的信号在非线性元件内混合后形成的互调信号。 ◆有意干扰 不怀好意的故意干扰通常是在信号频率内,表现得更像是一个配置不当的发射器。我们将它单独分类是因为它通常具有特别难以捉摸和有害的特性。 有这样一个有意干扰的例子,有人在丛林山上某处远距离攻击一个双向无线转发器系统。系统开始时在其输入频率上收到一个非常微弱的信号(其中正确的音频解码激活了转发器),只在夜间出现,该信号一直留在空中,最后使转发器超时继电器 失效并使系统瘫痪直到早晨信号消失。干扰源特别难查找是因为信号太弱而无法发现,并且它只在夜里发射。最后找到时才发现干扰源是位于转发器天线杆附近一棵树顶上的一个带小型太阳能电池板的微型发射器,发射器白天关闭,其太阳能电池 板则利用此时给电池充电。 ◆谐波 上面几种还是指相对干净的原始信号,在实际情况下,信号中还有强到能产生干扰的基频谐波,例如美国甚高频电视发射器就要求安装一个滤波器将其谐波至少减小到主载波 60dB 以下。最麻烦的谐波是三次谐波,因为它很容易由发射器中小的非线性元件产生。一个在 621.25MHz 下工作的 5MW 电视信号发射器,其三次谐波为 1863.75MHz,即使在 60dB 以下(滤波之后)三次谐波还有 5W!从俯瞰城市的高处发出这种频率和功率信号很容易给全城蜂窝移动通信信号带来极大破坏。 谐波信号还有一个特性使它更难辨识其来源。产生谐波的乘法过程会改变频谱图,其宽度和偏差都要乘以和载波频率一样的因数。例如一个位于 157.54MHz 下 13kHz 宽的双向无线 FM 信号的 10 次谐波为 130kHz 宽,基波只有 5kHz 偏移在谐波频率 1575.4MHz 下会变成 50kHz。如果这种发射器与一个基站共用一个发射塔,其 10 次谐波将完全覆盖 GPS 接收器,使基站瘫痪。对一个 100W FM 发射器,总共需要约 195dB 的衰减才能避免这种干扰,要用天线隔离和滤波器抑制才能实现。 结论 我们讨论了移动通信系统中常见 RF 干扰产生的原因,并提出一些排除故障的方法。有了比较多的了解后,工程师就能更好地应用新的干扰测量工具来认识和跟踪干扰源。以上就是干扰射频的因素解析,希望能给大家帮助。

    时间:2020-05-15 关键词: 射频 移动通信系统 广播发射器谐波

  • 益莱储专注于创新服务,解决物联网测试的五大挑战

    益莱储专注于创新服务,解决物联网测试的五大挑战

    从电源管理到无线兼容及其性能 作者:益莱储 在未来几年,AI、5G、IoT和工业自动化(IIoT)的进步将加快行业变革和创新的步伐。跨行业的各种物联网传感器将用于自动数据传输和远程设备控制。在万物互联的时代,连接将变得司空见惯,到2020年,Gartner预计将有超过200亿台物联网设备投入使用。 2019年是5G商用新起点,结合物联网设备,5G增加的带宽、更快的速度和更低的延迟将带来以前被认为不可能的应用,物联网将持续向多个产业深入渗透,如制造业、运输业、医疗行业、消费领域等。 随着创新步伐的加快,工程师、设计师、供应商和制造商将面临更快的上市压力。对于物联网设备,每代产品都需要更小、更强大、更易于配置,并且比以前的设计使用更少的功率。由于许多物联网设备都是由电池供电的,节能至关重要,必须使用低功率组件,并且不使用时要确保这些组件断电。为了优化电池寿命,组件必须在现实的场景和条件下进行测试,以确保选择正确的组件以最大限度地延长物联网设备的寿命。 || 物联网挑战#1 - 电源管理 由于物联网设备通常是远程部署或在移动环境中部署,因此大多数设备都会使用电池作为主要电源。了解设备的功耗曲线,是确保设备使用寿命期间最大可靠性和性能的关键。 为了完全表征物联网设备的功耗,必须在通常遇到的所有操作条件下进行测量。由于物联网设备旨在最大限度地降低功耗,因此它们可能仅在短时间内处于活动状态,其大部分使用寿命都处于“睡眠”模式。 在所有工作模式下精确测量器件的功耗曲线,可能会遇到如何使用常用电流测量技术(如分流器、数字万用表DMM或电流探头)的挑战。在睡眠模式下,电流可能处于‘nA’或‘uA’范围内;在激活模式下,例如在传输数据时,电流可能会突然变为“mA”到“A”范围。此外,当前需求中的这些较大的峰值通常在微秒内发生,功耗转换对于某些测试仪器来说可能具有较大挑战性。 虽然它们在正确的环境中使用时能够非常精确,但是由于涉及到较大的动态范围(可能需要多个分流器),将当前分流器用于此类测量可能存在问题。即使使用多个分流器,也可能需要分别测试激活模式和睡眠模式,这就很难获得电流流失的真实情况。此外,由于固有的电压下降,如果选择过大的值来最大限度地测量动态范围,分流器本身就有冲击测试设备的风险。 || 物联网挑战#2 - 信号和电源完整性 物联网设备设计中经常使用混合信号集成电路,其中包括传感器/ MEMS,同一集成电路上以较低功耗工作的模拟和数字信号,它们对串音非常敏感。低功率分配网络通常具有非常小的工作容差,这增加了电源轨上的纹波和噪声干扰,可能会对时钟和数字数据产生不利影响的机会。 许多物联网设备都要求在很小的物理结构中高速信号通道密集,这就增加了串扰和耦合的风险。 使用良好的信号完整性设计原理(如可能的话,采用点对点信号路由拓扑),控制整个PDN和互连中的走线阻抗,保持返回路径长度短以及在相邻走线之间保持足够的空间以减少耦合,都有助于缓解信号诚信问题。尽管遵守诸如此类的良好设计原则对于实现可靠的设计至关重要,但具有全面表征在整个设备中承载信号的结构的电气性能的能力也至关重要。 矢量网络分析仪(VNA)是表征任何互连线或传输线电性能的最常用工具之一。影响信号完整性的重要特性,如插入损耗、衰减、反射、串扰、延迟以及差分到共模转换,都可以通过为应用程序正确配置的VNA进行评估。此外,一些VNA有能力(通常通过软件选项)对s参数测量执行时域转换,该转换将显示通道的脉冲响应。 关于电源完整性,最近开发的电源轨探头有助于在电源轨上进行超低噪音测量,它连同示波器一起使用。根据制造商的不同,这些探头的特点一般包括:  高达60V的偏移,以确保电源轨完全移位到示波器显示屏上。  动态范围高达1V。  Gigahertz运行带宽以确保高频噪声不会被检测到。  1:1衰减比,可降低测量系统噪音。  50kΩ阻抗,以减少负载。 选择合适的工具来检测信号和电源完整性问题,对于充分识别和解决性能不佳的原因以及验证设计的真实性能非常重要。 VNA、电源轨探头和示波器只是帮助实现这一目标的一些工具。 || 物联网挑战#3 - 无线标准兼容性 无论您正在开发通过Zigbee或Wi-Fi进行近距离连接的设备,还是通过LoRa或LTE-M进行长距离连接设备,您所选择的无线协议将决定您的设备连接的方式,以及与世界共享数据的方式。 通过遵循无线标准的规范来确保互操作性是实现最大市场影响力的关键。与EMI/EMC一样,在设计周期的早期进行测试可以帮助您识别可能导致延迟的问题,并在资格验证阶段之前增加开发设计的成本。 能够产生符合标准的信号的矢量信号发生器和能够解调这些信号的频谱/信号分析仪,是根据所选择的无线标准评估设备性能的理想工具。 || 物联网挑战#4 - EMI / EMC和共存测试 我们可以将EMC定义为衡量产品是否按预期执行的指标,同时也不会妨碍其他产品在共享操作环境中按预期执行的能力。EMI还可以被定义为阻止设备按预期执行的任何电磁能量。随着无线通信设备的数量持续呈指数增长,操作环境中的电磁噪声也相应增加,其性能因干扰而降低的风险也随之增加。 虽然使用预先认证的RF模块有助于降低已完成设备未通过法规EMC一致性测试的可能性,但它并不能保证最终产品符合相关要求。 从设计开始就使用良好的EMI工程对策,以及在一致性测试阶段之前(预一致性测试)评估设备的实际电磁兼容性能,有助于避免代价高昂的重新设计和延迟,从而影响产品上市时间。 在物联网设备市场中,医疗设备市场近年来增长迅猛。能够传输实时生命体征的设备,无论是固定的、可穿戴的还是可植入的,在医院和家庭护理环境中越来越普遍。与其他物联网设备一样,医疗设备也有可能成为操作环境干扰的来源和接收者。然而,考虑到它们在提供医疗服务方面的用途,如果它们不能按预期操作,就可能造成危及生命的后果。 由于这些无线设备的关键功能,共存测试已经成为物联网医疗设备设计过程中的一个重要部分。IEEE/ANSI C63.27是其中一个标准,它概述了测试程序和方法,以验证无线设备与运行在相同RF频段的其他无线服务共存的能力。AAMI TIR69是另一个标准,它提供了针对医疗设备的指导,以及如何根据操作环境中的潜在危险(包括制造商可能无法控制的外部危险)评估无线技术。 与EMC测试一样,完成的产品可能会被发送到一致性测试机构进行最终测试。然而,在设计过程期间的初步共存测试可用于确定设备对其他无线电信号的容限并确保可以实现可接受的操作水平。如果在早期发现性能问题,就可以采用缓解技术,并在最终设计建立之前重新评估性能。 频谱/信号分析仪是EMC预一致性测试和共存测试的关键测试设备。尽管完整的EMC测试需要完全兼容的EMI接收器,但许多现代分析仪可配备软件包,以帮助促进辐射和传导发射的预兼容性测试,包括符合CISPR和MIL-STD标准的带宽、探测器和频段预设,以及国际公认的EMC标准限制的限制线,以及创建用户可选限制的选项。 共存测试利用实时频谱分析仪,并利用高速模数转换器(ADC)连续采样频谱,然后使用实时快速傅里叶变换(FFT)显示测试设备所处射频环境的频谱视图。矢量信号发生器还用于生成在预期的模拟操作环境中会遇到的信号类型,如WiFi和蓝牙。 || 物联网挑战赛#5 - 无线连接的射频性能 虽然一些物联网设备将使用有线通信,但大多数将依赖某种形式的无线技术来获得对网络的访问。在确定如何最好地实现无线通信时,物联网设备的设计者面临着许多决策。其中最重要的是确定使用哪种无线通信技术和协议(WiMax、Wi-Fi,Zigbee、BLE、LoRa、Z-Wave和NB-IoT等) - 以及是否使用预制RF无线模块或内部设计。 无论如何解决这些设计问题,RF通信的性能必须在真实条件下使用适合该任务的设备进行测试。一些常见的测试包括: 频谱分析仪/信号分析仪通常是发射机测量的首选工具,而信号发生器通常用于产生接收机测量的信号,网络分析仪通常用于天线测量。 许多现代信号发生器和信号分析仪为在物联网设备中实现的大多数常见无线通信标准提供软件应用支持。它可以生成基于标准的波形,并且可以使用在测试设备本身或具有远程控制的PC上运行的测量应用来分析测试信号。如果您的无线连接使用自定义设计,还有一些应用程序可能会对您有所帮助。 结论 随着新技术的发展和测试标准的演进,物联网、云机器人和自动化方面的创新不断发展,对测试和验证的需求也将会增加,特别是为了支持电源管理而需要面对的现有的和未来的挑战。所有这些新技术都需要电源和验证。管理物联网设备的电源是一项具有挑战性的任务,因为即使在最具挑战性的环境中,这些设备也必须始终处于通电状态并满负荷运行。 作为全球领先的测试技术、租赁和资产优化解决方案的供应商,益莱储/Electro Rent始终专注于提供创新服务,并持续改进,以优化客户在测试设备上的投资。凭借在各行业中有效地为全球公司机构降低测试费用和资产成本,益莱储/Electro Rent通过处理未充分利用、技术陈旧或不需要的设备,帮助众多组织从其测试设备中创造更多的价值;通过租用或租赁来管理设备的高峰需求;减少重复的资产购买需求,并从不需要的资产中获得最大价值。 关于益莱储 益莱储/Electro Rent是全球领先的测试和技术解决方案供应商,专业从事测试设备租赁、二手设备销售、资产管理的公司,世界各地设立测试实验室超过20个,管理租赁设备10.7万台,总资产规模达11亿美元,442位测试设备专家,服务范围超过100多个国家、地区。我们是是德科技、安立、泰克、罗德与施瓦茨、福禄克以及VIAVI、EXFO等全球设备租赁合作伙伴。

    时间:2020-05-13 关键词: 射频 物联网 益莱储

  • 小型化超宽带接收前端设计方法详解

    小型化超宽带接收前端设计方法详解

    0 引言 随着无线电通信技术和综合电子信息技术的不断发展,系统对微波接收机的要求向着超宽带、通用化和小型化方向不断加深[1-2]。作为微波接收机的核心组成部分,接收前端将天线或天线接口单元输出的射频信号转化为信号处理机所需的窄带中频信号,其尺寸和性能直接关系到整个接收机的能力。 目前国内的超宽带小型化接收前端产品受限于低频段滤波器尺寸,其射频输入频率最低下探至0.4 GHz[3],中频输出频率大多选择在1 GHz以上[4],或是仅针对变频前的滤波放大电路进行阐述[5]。 本文设计的小型化超宽带接收前端采用成熟的、高集成度的多芯片微组装技术(Multi-Chip Micro-package,MCM),选用多功能芯片滤波器和小型化LC滤波器,在满足产品性能要求的前提下大幅缩小产品尺寸。该产品实现了对0.1 GHz~18 GHz微波频段全覆盖,易于集成到各种单/多通道微波侦收系统中,具有广泛的应用前景。 1 接收前端的技术要求 接收前端的工作频段为0.1 GHz~18 GHz,典型增益为35 dB,全频段增益在±3 dB波动。接收前端要求先进行预选滤波再进行放大,全温范围内噪声系数要求≤22 dB。输出中频中心频率为140 MHz,具有80 MHz和2 MHz两种带宽可选,相应的50:3矩形系数要求分别为≤1.75和≤2.5。输出P-1≥10 dBm,输出限幅≤15 dBm,中频抑制和镜频抑制度均≥70 dBc。射频输入和中频输出端口驻波系数要求均为≤2.5:1。 2 接收前端的设计与实现 2.1 电路方案设计 接收前端电路原理框图如图1所示,可划分为射频部分与混频部分两大部分。 接收前端的射频部分采用先预选滤波再放大的电路布局。射频部分输入级为手动增益控制(Manual Gain Control,MGC)数控衰减器,用于大信号时的增益控制,然后通过单刀双掷开关分为0.1 GHz~6.2 GHz和6.2 GHz~18 GHz高低两段。0.1 GHz~6.2 GHz分为10段滤波器进行预选滤波,并分三段使用低噪声放大器(Low Noise Amplifier,LNA)进行放大;6.2 GHz~18 GHz分4段滤波器进行预选滤波并使用LNA进行放大。总共14段预选频段,除第一段和第二段之外,其余频段均采用亚倍频滤波以提高系统抗干扰能力,并在相邻频段间保留足够的频带交叠以保证信号完整性。具体预选频段划分如表1所示。 混频部分电路采用超外差接收架构,通过三次变频方案将0.1 GHz~18 GHz信号下变频至中心频率为140 MHz的IF信号。第一级混频时,将输入信号根据频段变频为高/低两种IF1:0.1 GHz~6.2 GHz频段上变频至8.2 GHz,6.2 GHz~18 GHz频段下变频至4.2 GHz。采用这种变频方案,第一级本振信号(Local Oscillator,LO)仅需覆盖8.3 GHz~19.7 GHz,可以降低频综的实现难度。两种IF1通过开关选择,在第二次混频时均与LO2下变频至频率为1.2 GHz的IF2,最后通过第三次混频与LO3下变频至IF3频率140 MHz,并使用两种不同带宽的滤波器进行带宽选择后输出,送至信号处理系统。 2.2 关键指标分析 对于超宽带接收系统,全频带的增益平坦度、中/镜频频率抑制度和组合干扰的抑制度等技术指标实现难度较大,并直接影响系统的使用性能。噪声系数本身也是接收系统的关键指标,但在本接收前端的应用场景中,前级端接了具有一定增益的低噪声天线接口单元,要求接收前端先进行预选滤波,因此对噪声系数要求较低。 2.2.1 接收前端增益平坦度分析 接收前端频率覆盖0.1 GHz~18 GHz,为保证全频段增益满足≤±3 dB的平坦度要求,在以下3个方面进行了针对性设计: (1)混频前电路根据频率共划分为4段,每段使用独立的LNA,如图1所示,将全频段增益平坦度指标分解至4个相对较易实现的子段增益平坦度指标。 (2)选用宽带性能良好的元器件,并选用均衡器或自带均衡的放大器对平坦度进行补偿。同时在链路上预留温补衰减器,对高低温下的增益波动进行补偿。 (3)在三次变频后的IF3放大链路上预留一级MGC,通过数控增益补偿的方式,对不同射频频率下的增益波动进行补偿。 通过上述设计,可以保证全频段及全温范围内增益波动在±3 dB以内。 2.2.2 接收前端中/镜频频率抑制度分析 接收系统的中/镜频频率抑制度一般要求至少比系统的动态范围大10 dB。中/镜频频率抑制度设计有两个要点:(1)正确计算接收系统各级的中/镜频频率;(2)根据频率合理规划各级滤波器的带外抑制度。 本文设计的接收前端首先根据变频方案计算第一级、第二级和第三级中频频率和镜频频率,包括可能间接产生第二级或第三级中/镜频信号的频率,然后将对计算得到的各种频率的抑制度指标分配至各级带通滤波器和低通滤波器中,并在设计时预留足够的余量,确保最终的中/镜频频率抑制度满足≥70 dBc的指标要求。 2.2.3 接收前端组合干扰的ADS仿真 上节提到的中/镜频频率属于最显而易见的干扰来源,但在宽带接收系统的使用中,还可能会出现各种其他的、在设计时不易发现的干扰来源,如各级LO信号间的频率组合,或是特定频率RF信号和LO信号的高阶组合等,统称为组合干扰[6]。在接收前端设计时,为消除组合干扰的影响,实现对组合干扰的抑制,首先需要确定存在哪些组合干扰。本文在完成电路方案设计和元器件选型后,使用AdvancdDesign System(ADS)仿真软件全链路S参数仿真,对组合干扰进行了分析和排除[7-8]。链路仿真模型如图2所示。 该模型将接收前端中关键元器件(滤波器、放大器等)的S21实测数据代入仿真,模拟接收系统的工作模式,使用固定LO改变RF和固定RF改变LO两种方式来寻找干扰点。通过这种方式,在电路实施前定位了数种在方案设计时难以发现的组合干扰,并通过优化电路方案和元器件参数将其排除。 该仿真方法确认的组合干扰抑制度与实物相差在10 dB以内,可精确指导接收前端的设计与实现。同时该模型还用于接收前端增益平坦度的仿真设计。 2.3 接收前端小型化设计 在结构上,采用正反两面布局,正面为射频链路,背面为电源与控制电路,通过合理规划两面的腔体深度,将模块总厚度控制在9.5 mm,便于系统集成;射频接插件选用SMP型超小型推入式射频同轴连接器,低频接插件选用J63A型微矩形电连接器,均具有体积小、重量轻、抗振性能优越等特点。 射频链路部分,选用全芯片方案,通过MCM工艺实现芯片器件与微带线之间的连接。射频腔体采用两层盖板设计,内层盖板使用沉头螺钉钳装固定,提高传输线之间的隔离度,并确保腔体不会产生可能影响性能的谐振;外层盖板使用激光缝焊,保证射频部分的气密性。 滤波器的小型化是超宽带接收前端的重点与难点。本文设计的接收前端,0.8 GHz~18 GHz频段选用了3片MMIC开关滤波芯片作为预选滤波器,每片开关滤波芯片内部集成了两个开关和数个滤波器,3片共集成了10段滤波器;对于开关滤波芯片暂时无法覆盖的0.1 GHz~0.8 GHz频段预选滤波,选用了3个小型化LC滤波器来实现,该LC滤波器使用定制的芯片电容和绕线电感,在9 mm×5 mm×2 mm体积内实现了常规LC滤波器的性能。IF2和80 MHz带宽的IF3带通滤波器也使用了这种形式的LC滤波器。其他滤波器选用了MEMS带通滤波器、MMIC高/低通滤波器和窄带声表面波滤波器等。 3 接收前端实物与指标测试结果 小型化超宽带接收前端实物如图3和图4所示。接收前端的RF输入、IF输出端口和低频J63A端口位于图3的左侧窄边,3路LO输入端口位于右侧窄边,上述接口布局与左右两侧,易于系统集成。上下两侧的接口为调试端口,可与第一级混频器前的电路相连,便于调试宽带电路平坦度,调试完成后与内部电路断开。 由于接收前端工作频带较宽,覆盖多个倍频程,因此测试时,首先使用矢量网络分析仪从调试端口对混频前的直通链路进行测试,调试并确定各个频段的增益平坦度补偿量,部分频段测试结果如图5所示。 将通路从调试端口切换至变频部分,使用多台信号源和频谱分析仪对增益补偿后的全链路的各项技术指标进行测试,测试结果如表2所示。 接收前端增益通过数控衰减器进行补偿,大幅降低了超宽带模块全频段增益平坦度指标的调试难度;通过合理设计,实现了端口驻波的免调试;其余各项指标,根据首件的调试结果,确定了后续产品的各调试点的元器件参数。经过成功批量生产,验证了该接收前端具备免调试能力,仅需测试人员或自动测试系统对指标进行测试即可,具备良好的可生产性。 4 结论 本文设计了一种小型化超宽带接收前端,内部集成了多种MMIC器件和小型化滤波器,工作频率覆盖整个0.1 GHz~18 GHz,尺寸仅为119 mm×61 mm×9.5 mm,可供各类通信/微波侦收项目使用。该模块采用了数控增益补偿的方式,解决了超宽带模块增益平坦度调试难度大的问题,实现了批量生产的免调试,大幅提高了生产效率并降低了生产成本。该超宽带通用化小型化接收前端已成功应用于多个超宽带微波通信信号侦收系统中,充分验证了设计的可靠性,未来还将在各类超宽带侦收系统中广泛使用。 参考文献 [1] 石超,乔召杰,徐亮,等.S波段小型化发射通道设计[J]。电子技术应用,2018,44(7):38-41. [2] 刘博源,徐军。基于MEMS滤波器芯片的X波段混频通道设计[J]。电子技术应用,2017,43(6):52-55,59. [3] 余高干.0.4~18 GHz超宽带雷达接收前段小型化的研究[D]。成都:电子科技大学,2015. [4] 荀民。超宽带接收前端的设计与实现[J]。火控雷达技术,2017(3):58-61. [5] 张越成。新型小型化超宽带微波接收前端设计[J]。电子科技,2017(5):107-110. [6] 漆家国。基于宽带射频接收机功能电路的虚假响应分析[J]。无线电工程,2016,46(7):84-88. [7] 魏宪举.ADS在TR组件方案论证中的作用[J]。现代电子技术,2008(13):55-60. [8] 闫鸿。综合化射频信道的半实物仿真设计[J]。电讯技术,2010(7):145-148.

    时间:2020-05-11 关键词: 射频 超宽带 无线通信

  • PCB射频电路的一些基础特性,你知道多少?

    PCB射频电路的一些基础特性,你知道多少?

    什么是PCB射频电路的一些基础特性?你知道什么?此处将从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路四大基础特性,并给出了在PCB设计过程中需要特别注意的重要因素。 1、射频电路仿真之射频的界面 无线发射器和接收器在概念上,可分为基频与射频两个部份。基频包含发射器的输入信号之频率范围,也包含接收器的输出信号之频率范围。基频的频宽决定了数据在系统中可流动的基本速率。基频是用来改善数据流的可靠度,并在特定的数据传输率之下,减少发射器施加在传输媒介(transmission medium)的负荷。因此,PCB设计基频电路时,需要大量的信号处理工程知识。发射器的射频电路能将已处理过的基频信号转换、升频至指定的频道中,并将此信号注入至传输媒体中。相反的,接收器的射频电路能自传输媒体中取得信号,并转换、降频成基频。 发射器有两个主要的PCB设计目标:第一是它们必须尽可能在消耗最少功率的情况下,发射特定的功率。第二是它们不能干扰相邻频道内的收发机之正常运作。就接收器而言,有三个主要的PCB设计目标:首先,它们必须准确地还原小信号;第二,它们必须能去除期望频道以外的干扰信号;最后一点与发射器一样,它们消耗的功率必须很小。 2、射频电路仿真之大的干扰信号 接收器必须对小的信号很灵敏,即使有大的干扰信号(阻挡物)存在时。这种情况出现在尝试接收一个微弱或远距的发射信号,而其附近有强大的发射器在相邻频道中广播。干扰信号可能比期待信号大60~70 dB,且可以在接收器的输入阶段以大量覆盖的方式,或使接收器在输入阶段产生过多的噪声量,来阻断正常信号的接收。如果接收器在输入阶段,被干扰源驱使进入非线性的区域,上述的那两个问题就会发生。为避免这些问题,接收器的前端必须是非常线性的。 因此,“线性”也是PCB设计接收器时的一个重要考虑因素。由于接收器是窄频电路,所以非线性是以测量“交调失真(intermodulation distortion)”来统计的。这牵涉到利用两个频率相近,并位于中心频带内(in band)的正弦波或余弦波来驱动输入信号,然后再测量其交互调变的乘积。大体而言,SPICE是一种耗时耗成本的仿真软件,因为它必须执行许多次的循环运算以后,才能得到所需要的频率分辨率,以了解失真的情形。 3、射频电路仿真之小的期望信号 接收器必须很灵敏地侦测到小的输入信号。一般而言,接收器的输入功率可以小到1 μV。接收器的灵敏度被它的输入电路所产生的噪声所限制。因此,噪声是PCB设计接收器时的一个重要考虑因素。而且,具备以仿真工具来预测噪声的能力是不可或缺的。附图一是一个典型的超外差(superheterodyne)接收器。接收到的信号先经过滤波,再以低噪声放大器(LNA)将输入信号放大。然后利用第一个本地振荡器(LO)与此信号混合,以使此信号转换成中频(IF)。前端(front-end)电路的噪声效能主要取决于LNA、混合器(mixer)和LO。虽然使用传统的SPICE噪声分析,可以寻找到LNA的噪声,但对于混合器和LO而言,它却是无用的,因为在这些区块中的噪声,会被很大的LO信号严重地影响。 小的输入信号要求接收器必须具有极大的放大功能,通常需要120 dB这么高的增益。在这么高的增益下,任何自输出端耦合(couple)回到输入端的信号都可能产生问题。使用超外差接收器架构的重要原因是,它可以将增益分布在数个频率里,以减少耦合的机率。这也使得第一个LO的频率与输入信号的频率不同,可以防止大的干扰信号“污染”到小的输入信号。 因为不同的理由,在一些无线通讯系统中,直接转换(direct conversion)或内差(homodyne)架构可以取代超外差架构。在此架构中,射频输入信号是在单一步骤下直接转换成基频,因此,大部份的增益都在基频中,而且LO与输入信号的频率相同。在这种情况下,必须了解少量耦合的影响力,并且必须建立起“杂散信号路径(stray signal path)”的详细模型,譬如:穿过基板(substrate)的耦合、封装脚位与焊线(bondwire)之间的耦合、和穿过电源线的耦合。 4、射频电路仿真之相邻频道的干扰 失真也在发射器中扮演着重要的角色。发射器在输出电路所产生的非线性,可能使传送信号的频宽散布于相邻的频道中。这种现象称为“频谱的再成长(spectral regrowth)”。在信号到达发射器的功率放大器(PA)之前,其频宽被限制着;但在PA内的“交调失真”会导致频宽再次增加。 如果频宽增加的太多,发射器将无法符合其相邻频道的功率要求。当传送数字调变信号时,实际上,是无法用SPICE来预测频谱的再成长。因为大约有1000个数字符号(symbol)的传送作业必须被仿真,以求得代表性的频谱,并且还需要结合高频率的载波,这些将使SPICE的瞬态分析变得不切实际。以上就是PCB射频电路的一些基础特性,希望能给大家帮助。

    时间:2020-05-11 关键词: 射频 PCB 电路

  • 面向物联网系统的ST连接芯片组或模块可破解射频设计难题

    面向物联网系统的ST连接芯片组或模块可破解射频设计难题

    引言 Stastita预测,到2025年,物联网设备数量将超过750亿,远远超过联合国预测的2025年全球81亿人口数量。物联网可能是科技公司的最大推动力量之一。物联网设备最重要的特点便是联网。 无线联网的设备通过射频无线电、天线和相关电路将电信号转换为电磁波,反之亦然。设计人员有两个选择可实现该电路:a)使用射频芯片组并设计相关的射频部分;b)使用已经安装了射频芯片组和相关射频部分的模块。在本文中,我们将比较这两种方法,并帮助设计人员做出明智决定。 使用芯片组和模块的射频部分 采用芯片组方式实现的射频部分由射频IC、天线、巴伦和滤波器、匹配网络、晶振、以及其他无源器件组成。下面是使用意法半导体的BlueNRG BLE SoC的参考实现原理图 图1:BlueNRG-2 参考原理图 使用模块方法的实现要简单得多。与图1相同的电路也可以使用现成的模块来实现。下面是意法半导体的BlueNRG-M2SA模块的引脚分配和内部框图。该模块是利用BlueNRG-2 SoC和相关电路实现的。 图2:BlueNRG-M2SA引脚分配和内部框图 芯片组方法与模块方法的比较 在选择合适的方法时,要考虑三个主要方面:a)上市时间,b)认证,c)成本。我们将对每个方面进行回顾,以便从逻辑上理解透彻。 上市时间 使用芯片组设计射频部分的步骤如下: i) 设计原理图和布板 ii) 请PCB制造商制板 iii) 焊板 iv) 微调无源器件的值,以优化性能 v) 订购模块的所有组件,然后生产出模块 vi) RF测试和认证 基于芯片组设计的射频部分几乎要花费3 - 6个月时间。它还需要多种资源,如射频设计师、供应链和多个服务合作伙伴,如PCB制造商和EMS公司。该方法适用于大批量生产,但不适用于原型制作和小批量生产。 模块则是为快速上市而设计的。使用模块添加连接不需要具备任何RF专业知识。无线连接比较简单,就像一个模块化的即插即用组件,因为设计师得到一个现成的射频部分,模块化的实现非常快。因此,设计人员可以非常快速地将自己的产品推向市场。这对于原型制作和小批量生产尤其重要。 认证 几乎任何电子设备都要经过通用放射测试。此外,配有射频部分的器件也被视为有意放射体。因此,它们需要额外的认证,以确保它们放射的功率不会超过允许值,或干扰其他设备或频段。在这方面,没有全球通用的认证,每个国家或地区都有自己的标准。通常这些标准是相似的,但是它们仍然需要通过申请和相关过程。 此外,大多数射频技术(如BLE、Wi-Fi或GPRS)都必须符合特定组织制定的标准。所以,它们也要通过这些认证。例如,意法半导体的BlueNRG SoC和BlueNRG-M2SA 模块的认证过程。 蓝牙低功耗设备需要通过蓝牙技术联盟(管理蓝牙标志使用的机构)的认证。它们还需要获得不同国家和地区的RF认证。一些国家和地区确定的认证有FCC(美国)、RED(欧洲)、WPC(印度)、IC(加拿大)、SRCC(中国)、以及Type(日本)。 由于模块已经经过测试并被认证为辐射装置,通过模块实现的设计无需再做辐射装置认证,可被视为所用模块的派生设备。下面是芯片组方法和模块化方法的成本比较。 认证过程耗时、繁琐且成本高昂。如果产量够大,可以通过规模经济来分摊成本,但对小批量产品来说,分摊成本过高。 费用 本文已经讨论了成本的一些要素。一般来讲,成本包括 - 电路设计成本 - 设计人员成本、供应链成本和生产成本 - 认证成本 - 机会成本 一般来说,如果年产量超过100-150K件,或者产品的形状不允许采用专用模块,这些成本是合理的。 意法半导体提供的模块 意法半导体是世界领先的半导体公司,生产各种低功耗射频器件和模块。意法半导体提供的射频芯片组和相关模块见下表 一个需要考虑的非常重要的方面是,上面提到的所有芯片组和模块均已纳入10年长期供货计划。这意味着如果一家公司在其设计中使用了这些组件,那么意法半导体将从产品发布之日起的10年内持续提供这些组件,或提供完全兼容的替代品。 结论 如果终端设备的形状不能适应模块或产量非常大,则应采用芯片组方法以期实现合理的设计成本、生产成本和认证成本。如果公司希望专注于自己的核心竞争力并避免射频设计的麻烦,模块化方法应该是首选。模块化方法也是原型制作和小批量生产的首选。如本文所述,意法半导体是低功率射频技术领域的领军企业,为各种应用场景提供广泛的芯片组和模块。

    时间:2020-05-09 关键词: 射频 芯片组 物联网

  • 采用UHF射频卡读写器与MSP430处理器实现圆极化天线的设计

    采用UHF射频卡读写器与MSP430处理器实现圆极化天线的设计

    在当今的现代化社会,科技发展迅速,物品向小型化、微型化发展已经成为一种必然。本设计通过在指定的物品上挂载标签,采用UHF射频卡读写器作为控制核心对目标标签加以识别与读取,配合链接MSP430处理器及自制的圆极化天线,实现了物品的定位功能,并通过配合使用GSM模块,以短消息的方式告知主人物品的位置及安全信息。标签的信息可通过PC机键盘输入进行更改。UHF射频卡读写器中的防碰撞算法保证了标签读取的抗干扰性和稳定性,自制天线的高增益和优良性能为有效搜索范围提供了保障。 1 、原理分析与硬件电路图 1.1 整体原理结构图 按图1所示,整个系统由UHF射频读写器与天线、GSM模块、MSP430处理器、屏显设备及输入设备相连接而成。有效地实现了物品——系统——用户的紧密联接,从而达成了设计功能要求。 1.2 天线部分 1.2.1 天线的设计原理 根据腔模理论,微带贴片天线用带线或同轴探针激励时,电磁场在贴片和接地板间建立。矩形贴片可当成一个等效的开路边界的谐振腔,它四周为理想磁壁,周壁磁场等于零; 上下壁为理想电壁[4]。 贴片形状结构的不同会导致天线性能的迥异,在方形贴片对角线上像波导拐弯那样切掉一个45°的角。该分离单元就可以使馈电场形成两个空间正交简并模的谐振频率发生分离。为实现圆极化, 这两个模必须达到幅值相等、相位相差90°。相等幅值可以通过适当选择馈电位置实现,需选取馈电点选取位于切角贴片中心线上。90°相移的产生有两个因素,一个是馈电点位置,另一个是分离单元的尺寸。由腔模理论知微带贴片天线激励模可等效为一并联的RLC 谐振电路[5]。为了使电子标签在各个位置都能被识别,设计采用圆极化天线。微带天线的圆极化带宽近似与其Q值成反比,因此为了得到宽频带的圆极化微带天线,我们选择空气作为介质,既节约了成本也降低了天线的损耗,并且也能保证天线拥有良好的圆极化特性。用4个辅助支撑柱配合金属探针固定贴片,保证了贴片平整稳固的同时,让金属探针起到更好的馈电作用。通过仿真、测试,可以最终选定天线的特性及优化其性能。 1.2.2 天线的结构及尺寸 本设计天线为圆极化贴片天线,具体设计要求和参数性能如表1所示。 1.3 UHF射频读写器模块 1.3.1 UHF射频读写器基本原理 UHF系统结构如图3所示,读写器作为整个系统的重要组成部分,其基带处理性能的优劣将直接影响读写器性能的优劣。 读写器通过射频信号与标签进行通信,完成信息交换。在 UHF RFID 系统中,一般读写器先发送一条命令给电子标签,标签收到命令后进行应答响应。标签根据命令返回有用数据信息给读写器。读写器对标签返回信号处理后再传回上位机。 本设计中的UHF主要实现了以下几个功能: (1)读写器与电子标签进行通信。读写器向电子标签发送命令,电子标签根据命令进行响应,返回有用数据。 (2)读写器与上位机进行通信。读写器通过特定接口与上位机相连接,如RS-232、USB、RJ45 等。上位机向读写器发送控制命令,控制读写器对标签的操作。读写器将标签返回的信息传回给上位机。 (3)读写器可以完成对多个标签的读写功能,实现了防碰撞处理。 (4)读写器具有数据校验的功能。能够对数据的正确性进行判断。 1.3.2 UHF射频读写器的硬件部分 射频模块是读写器射频信号处理模块,设计要解决的主要问题是抑制干扰,正确进行信号收发,射频模块的主要任务如下: (1)根据协议要求发射一定功率的射频信号,激活工作区域内的无源标签并为其正常工作提供能量; (2)将待发射的编码信号调制到射频,把数据和命令传送给标签; (3)接收标签返回的射频信号并进行下变频处理; (4)控制频率综合器进行跳频处理。本次设计中的UHF采用AS3992 射频芯片,AS3992支持 PM 调制和AM 调制,这样射频芯片在 I/Q 两路信号自动选择时不会出现通信的盲点,而且射频芯片还自带 A/D 转换电路,可以用于测量读写器的发射功率。 对于读写器的射频发射电路部分,AS3992 可以采用低功率线性输出模式或低功率差分输出模式,我们采用低功率线性输出模式。通过外部的功率放大器,将输出功率放大到 23dBm-30dBm 之间。AS3992 射频发射电路主要由耦合匹配电路、功率放大电路、差分转单端电路、滤波电路和定向耦合电路构成。输出匹配电路将解耦、差分转单端电路、匹配电路作为整体由匹配电路输出,输出匹配电路如图4所示,功率放大电路如图5所示。 UHF RFID 读写器可以使用两个天线,将接收和发送分开或者使用一个天线但需要射频隔离电路,考虑到使用射频隔离电路可以降低设计成本,所以采用了定向耦合器作为收发隔离电路,具体电路如图6所示。 RFID 读写器从功能模块上划分为射频模块和基带模块,缺少任何一个模块都不能构成完整的读写系统。基带模块主要功能如下: (1)控制标签与读写器间的数据交换; (2)执行单标签识别和防冲撞算法; (3)与上位机软件进行通信,并执行从上位机软件发来的命令; (4)控制读写器和标签间的身份验证; (5)控制频率步进和发射信号功率。 基带模块由微处理器、通信接口电路、电源电路及辅助电路等部分组成。基带模块总体框图,如图7所示。 1.4 GSM模块 在本次设计中,MSP430F149单片机通过RS232串口与GSM模块通信,使用标准的AT命令控制GSM模块实现各种无线通信功能。通过GSM模块与MSP430F149单片机的配合使用,我们可以将重要的信息在第一时间以短信的方式发送给用户,如果标签所标记的物件超出我们设定的安全范围,用户的手机将收到GSM模块发送的报警提醒信息,达到了防止失窃的目的;物品丢失后,用户也能收到包含丢失物品名称、丢失具体时间等信息的短信,方便用户找回失物。 1.5 PC输入导致显示模块 通过PC键盘输入,可以编写或修改电子标签所标记的物品信息,设置保护物品的安全范围,在实现寻物目的时,可以设定寻物范围,方便用户进行失物的搜索。并将这些设定的内容与信息在屏幕上显示,显示屏幕采用液晶触摸屏,显示清晰简洁操作方便,实现了人机界面友好的目的。 2、软件设计与流程 2.1 系统的软件整体 下面将介绍本次设计系统的软件部分,整体软件的设计思路如下图所示,软件主要包括三个部分:(1)UHF部分的防碰撞算法;(2)MSP430F149单片机整体控制程序;(3)GSM模块短信发送程序编写。 2.2 UHF读写器整体软件模块 读写器软件模块划分以及模块间结构关系如图8所示。 2.3 UHF防碰撞算法 读写器在没有采用多址访问控制机制的情况下,如果个能被同一读写器识别的多个电子标签同时处在读写器能够识别的范围内,电子标签将同时响应读写器的指令。信道会被电子标签争用,导致信号互相干扰,读写器不能正确接收数据,也不能准确识别电子标签信息。当多个电子标签使读写器发生判断错误,读写器会认为电子标签不在自己的作用范围内或无法读取信息,即发生了碰撞问题。 通过查阅相关资料,了解到目前广泛应用的防碰撞算法基本上都是 TDMA(Time Division MulTIple Access,时分多址)法。主要分为两类TDMA法:分别是基于ALOHA的防碰撞算法和基于二叉树的防碰撞算法,这两种算法在RFID系统中都有广泛的应用。在 RFID中ALOHA算法被分为:纯ALOHA算法、时隙ALOHA算法、帧时隙ALOHA算法、动态帧时隙 ALOHA算法。本次设计的UHF读写器采用动态帧时隙 ALOHA算法。 读写器可以统计出一帧时隙中成功识别的时隙数Nr,发生碰撞的时隙数Nc,如果当前读写器周围的电子标签数为N,则剩余的电子标签数为N-Nr。 根据对动态帧时隙算法的分析可知,下一帧的时隙数为L1=N-Nr。通过查阅相关算法资料得知,电子标签的估计公式为:N=Nr+2.39Nc。 动态帧时隙 ALOHA 算法先初始化帧长F=M,M的值可根据实际情况设定;帧周期内初始化:Nc=Nr=0,Nc为碰撞时隙数,Nr 为正确接收时隙数。读写器发送带有帧时隙长度的指令,等待读写器识别范围内的电子标签响应指令。图5-3表示整个电子标签防碰撞算法的识别过程。 读写器对一帧中各个时隙进行检测,检测结果可分为三种情况: (1)正确接收电子标签信息Nr+1; (2)电子标签发生碰撞Nr+1; (3)无电子标签应答信号。 在上述的三种情况中,每检测完一个时隙都要使时隙数M-1,如果时隙数M为0则判断Nc是否也为0,如果Nc也为0就表示没有电子标签发生碰撞且都被识别;如果Nc不为0则表示电子标签发生碰撞,根据Nc的大小重新调整M的值,对剩余电子标签进行读写,直到所有电子标签都被识别。 3 、系统测试与误差分析 3.1 天线仿真与测试结果(数据) 利用HFSS软件,我们仿真了天线,其仿真数据如下: 通过矢量网络测试仪测试,实际天线在0.92GHz处S11达到-17.5dB,其增益为8.7dB。通过旋转标签,测试天线的圆极化特性,发现无论标签如何放置,都可准确读取,确认圆极化特性良好。 3.2 UHF读写器测试结果 利用贴有电子标签的物品对UHF读写器的有效识别范围、标签识别个数以及灵敏度等性能进行测量,测量结果如下表所示。 3.3 GSM短信功能测试结果 GSM模块的挂载使系统人机交流更加丰富,智能化得到体现。

    时间:2020-05-08 关键词: 射频 天线 读写器

  • WLAN双频低噪放电路的设计及测试仿真

    WLAN双频低噪放电路的设计及测试仿真

    简介 高集成低成本的射频电路目前已经成为便携式无线设备设计的基本原则,而接收灵敏度已经成为无线网络应用的瓶颈。低噪声放大器在保证无线设备稳定接收信号起到了重要的作用。本文主要描述了满足IEEE 802.11g/a标准的双频低噪放的设计与实现。这种双频低噪放封装在3mm*3mm模块内,只需要两个额外的旁路电容即可实现器件性能。 双频低噪放 能够同时覆盖IEEE 802.11g/a标准的双频的低噪放必须同时在2.4GHz和5GHz频段上具有低电流、高增益和低噪声的特性。另外,5GHz频段的放大器必须覆盖4.9GHz-5.9GHz的带宽,因为不同的国家在5GHz频段的具体频率有所不同,这表示低噪放必须在20% 的带宽范围内表现相同的性能。 这篇文章讨论的是能够同时满足2.4GHz和4.9GHz-5.9GHz频段的WLAN双频低噪放设计。这种低噪放的制造工艺采用安华高特有的增强型pHEMT GaAs工艺,3mm*3mm塑料封装。 表格1显示了双频低噪放的主要性能参数 显然以上这个双频低噪放的特性是非常具有挑战性的,而且这种特性必须满足批量生产制造的要求。图1显示了800微米工艺的场效应晶体管在不同偏置电压下的噪声系数特性,测试误差在0.05dB左右,噪声特性非常优秀。 图1、NFmin vs Id and Vd for a 800 μm gate width pHEMT FET 仿真模型是从不同的器件中提取,包括小信号和大信号特性。精确模型需要在ADS软件器件库中获取,这种模型适用于宽偏置范围,这点对设计师比较重要能够找到最优的解决方案。 2.4GHz低噪放设计 2.4GHz低噪放需要用到级联结构,两级设计能够提供更高的增益和电流再利用。另外级联结构能够在相同的电流驱动下获得更高的线性,图2显示级联结构的原理图。 图2、Cascode LNA for the 2.4 GHz band Q1和Q2形成了增益级联场效应晶体管结构,电感L2和电容C2形成L-C振荡器负载用于在2.4GHz输出信号。Q1源极电感到地能在提供反馈的同时改善输入匹配和噪声。Q1栅极的输入阻抗可由以下公式计算: 公式中的gm是Q1的跨导,Ls是Q1源端的总感抗值,这个值是晶圆间的金线连接和PCB的通孔电感之和。L3用于贴片元件低噪放器件的输入端匹配,需要尽可能靠近输入端来减小噪声系数阻抗。电容C3是Q2的射频旁路电容。电容C1和C8是隔直电容。场效应晶体管Q4起到镜像电流偏置作用。Q2栅极电压由电阻R1和R2分压提供,场效应晶体管Q3起到关断开关作用。 在2.4GHz频段,寄生参数效应明显的影响器件性能,包括绕线电感的插损和封装接线的耦合效应。例如,Q2漏极的L-C谐振电路需要封装在芯片内部,因此需要严格的模型仿真。绕线电感的仿真结果如下图 图3、Inductance value vs. frequency and number of turns 图4、Q factor vs. frequency and number of turns Figure 图3和图4显示电感和Q值随频率的变化曲线。这些仿真结果用于电路级元件来仿真完整的低噪放器件。不需要优化电路,这些仿真结果也显示2.4GHz中心频率的峰值增益。在高频条件下,电感的金属化部分产生的表面效应相当于串联电阻。增益,噪声系数和回波损耗都需要满足规格指标。在ADS软件中的进一步优化能有效的改善性能。下图显示了优化后的低噪放性能。 图5、Gain, return loss and Noise Figure of the 2.4 GHz LNA after optimizaTIon 5GHz低噪放设计 不同于2.4GHz低噪放,5GHz的低噪放需要在20% 的带宽内保持增益和噪声系数的平坦性。两级放大器能够满足这些规格要求,图6显示5GHz低噪放设计原理图。 在每一级放大器中仍然采用了感性负载,L2和L4均集成在芯片里。输入阻抗和噪声匹配采用2.4GHz设计中类似的处理方式,即采用源极电感和栅极分流输入电感。R10和C3构成的R-C反馈电路用于第二级改善输出匹配。电感L3和电容C2形成了高通级间匹配。这种匹配补偿了由第一级造成的负增益,因此总的增益能够形成以5.5GHz为中心的频率的带通效应。C3是匹配网络的射频对地电容。R4和C4构成的R-C网络通过C3提高放大器的稳定性。Q2的源极通过背面过孔接地。 ADS不同的模型能够实现无源器件的非理想特性。封装接线的耦合效应在5GHz设计中比较明显,各种模型通过仿真能够精确的模仿实际性能。图7显示了理想元件下的5GHz低噪放仿真结果(a)和优化后的非理想元件仿真结果(b)。 图6、SchemaTIc of a two-stage LNA for 5-6 GHz band 图7、Gain, return loss and Noise Figure for ideal components (red) and non-ideal components (blue) 在S22表中显示了非理想参数模型下增益峰值移动现象。更完全的仿真是在多端口S参数下进行版图仿真,如图8所示。 图8、Momentum simulaTIon of the complete layout 仿真结果显示电感耦合效应明显的影响了频率响应特性。电感耦合通过高电流密度区域影响了器件的1dB压缩点性能,仿真结果如图9 图9、5 GHz LNA simulaTIon result with Momentum data 图10、Fabricated die picture of the dual band LNA 双频低噪放的测量与仿真结果对比如图11和12。两者之间的差异主要是晶圆与PCB地的相互作用和芯片塑料封装造成的影响。这些因素导致器件的频率响应特性曲线移动和降低电路元件的Q值,进一步影响到S22响应特性和高频增益曲线。忽视这些影响,符合WLAN 频段的响应曲线能够表现出好的噪声系数和增益特性。 图11、Measured (solid) vs. simulated (dotted) performance for 2.4 GHz LNA 图12、Measured (solid) vs. simulated (dotted) performance for 5-6 GHz LNA 结论 双频WLAN低噪放需要进行权衡设计。文章中显示的E-M仿真和电路级仿真都是紧凑设计中不可缺少的。在2.45GHz频段,低噪放特行如下:增益17dB,电路14mA,噪声系数0.9dB,输入P-1dB是-5.5dBm,输入IP3是5.5dBm。在5GHz频段,低噪放特性如下:增益22-24dB,电路22mA,噪声系数1.5dB,输入P-1dB是-14dBm,输入IP3是-2dBm。在模块中采用了一种输入匹配设计,这种双频低噪放采用3mm*3mm塑料封装,只需要两个额外的旁路电容即可实现器件性能。

    时间:2020-05-08 关键词: 无线 射频 放大器

  • Avago高增益4W PA的优点及在Small cell射频前端设计中的应用

    Avago高增益4W PA的优点及在Small cell射频前端设计中的应用

    Small cell 随着4G通信时代的到来,数据通信已取代话音成为运营商的主流业务。来自中国移动的一份报告称,未来超过50%的业务将会发生在室内,因此运营商必须找到室内覆盖的有效方法。在这样的背景下,Small cell将会取代传统的直放站,成为运营商解决网络覆盖的主流方案。 Avago Technologies(安华高科技)推出了一系列4W 高增益PA,可以简化Small cell射频前端的设计,同时实现良好的线性指标和可靠性。 图1、Small cell射频前端 Avago 高增益4W PA 表1、Avago 高增益4W PA Avago 高增益4W PA应用于Small cell射频前端,可实现的优点: ? 高集成度,只需一颗PA即可解决发射链路的射频放大; ? 输入、输出50欧姆全匹配,可节省大量射频调试时间; ? 高达40dB左右的增益,无需推动级; ? 实现业界最佳的线性指标,线性输出27dBm时ACPR可达到-50dBc; ? 全系列拥有一样的封装和管脚定义,轻松实现硬件平台化。 Avago 高增益4W PA 设计指导 内部框图 Avago MGA-43x28系列PA提供高达40dB的增益,内部集成了两级或三级功放,该系列集成PA的内部框图如下: 图2、集成两级功放的内部框图 图3、集成三级功放的内部框图 MGA-43428 / 43828 / 43013内部集成了两级功放,如图2所示,因为在1GHz以下的频段,两级功放已经足以提供高达33dB左右的增益。MGA-43528/ 43628 / 43728 / 43003 / 43040 内部集成了三级功放,因为在2GHz左右的频段,需要三级功放才能提供高达40dB左右的增益。 管脚定义以及应用电路 为了方便在硬件上实现平台化,该系列PA使用相同的封装和管脚定义。 MGA-43428/4382/43013的管脚定义如下图: 图4、两级功放的管脚定义 MGA-43528/43628/43728/43003/43040的管脚定义如下图: 图5、三级功放的管脚定义 由以上的管脚定义图可知,两级功放与三级功放的区别只在于Vc1和Vd1。在做兼容性设计时,只需在Vc1和Vd1走线上各串联一个0欧姆电阻,在使用三级功放时将该电阻焊上,使用2级功放时该电阻空贴,即可轻松实现一个PCB拓扑兼容所有的型号和频段。 该系列PA内部集成了射频匹配、漏压供电电路、栅压供电电路以及功率耦合电路,在电路设计时,外围电路非常简单,典型的应用电路如图6所示。 图6、应用电路 PCB Layout 设计 在射频电路中,PCB Layout的设计往往会影响到射频器件的性能,好的PCB Layout设计可以实现射频器件的最佳性能并保证稳定性和可靠性,射频功放尤其如此。 Avago 高增益4W PA在一个5×5mm的芯片中集成两级/三级功放,提供高达40dB左右的增益,此类芯片在应用中,管脚间的隔离显得尤为重要。在PCB Layout设计时一定要做好管脚之间的隔离,尤其是漏压供电管脚。在射频PCB板的设计中,我们一般通过拉远距离、增加地面积、增加接地过孔等办法来提高隔离度。 Avago 高增益4W PA 的PCB Layout建议如下: 图7、芯片封装建议 图8、Vd走线建议 图9、Vddbias旁路电容放置建议 对于Avago 该系列高增益PA来说,PCB Layout的好坏直接关系到器件能否实现datasheet中标称的性能。如下图就是一个非常完美的Layout,在应用中可以直接借鉴: 图10、Avago 高增益4W PA Layout图 TDD系统中的开关电时延 在TDD系统中,由于要频繁地进行收发切换,因此射频链路上的器件的开关电时延都必须达到一定要求。Avago 高增益4W PA可以实现足够快的开关电时延,完全可以满足TDD系统的要求。 图11、Avago 高增益4W PA开关电时延 由图11可知,只要栅压电路的串联电阻和旁路电容选择合适,Avago 高增益4W PA的开关电时延可以达到0.2uS。 总结 Avago Technologies(安华高科技)一直为射频领域提供高性能、高可靠性的器件。很多射频工程师甚至在想到LNA(低噪声放大器)的时候,就会想起Avago,其提供的LNA在业界领先几十年并成为标杆。现在,Avago通过其高性能设计和集成能力推出高增益4W PA,这将给Small cell的射频前端设计带来极大便利。

    时间:2020-05-08 关键词: 射频 中国移动 4g

  • 射频无源器件的适用范围及对无线网络的通信造成怎样的影响

    射频无源器件的适用范围及对无线网络的通信造成怎样的影响

    1、 引言 无线通信经过几十年的快速发展已经成为人们生活中不可或缺的重要通信手段。近年来伴随城市建设,用户的激增和业务的多元化,传统的广域覆盖模式已经不能满足用户的需求。城市建设中大量楼堂馆所的兴建,钢筋混凝土建筑的大量兴起使得无线信号传播受到严重阻碍,地铁、地下通道和地下停车场等地下建筑空间也是无线覆盖盲区,用户在建筑物内使用移动通信业务受到严重制约,运营商为改善用户体验提高服务质量和自身竞争力,着力加大网络建设和优化力度。通过兴建大量基站和进行信号室内分布来解决室内覆盖问题,以达到提供无缝覆盖,为用户提供高效可持续无盲点的无线网络服务。 2 、射频无源器件应用 射频无源器件主要应用于无线通信系统基站建设和室内分布系统中。特别是在建筑物内的无 线信号室内分布覆盖中应用种类繁多,数量庞大。射频无源器件在基站建设和室内分布工程中起到连接或分配射频信号的作用。室内分布系统是将基站发射的信号通过射频无源器件进行连接或分路,经由馈线分散到各覆盖点天线处,从而达到室内无线信号连续良好的覆盖。 室内分布系统主要包括信源和天馈分布系统两部分。无源器件是天馈系统的主要组成部分。 典型天馈系统拓扑如图1 所示。 图1 典型天馈系统拓扑图 多种制式的射频信号由各基站发出后经由多频合路器或电桥等具有合路功能的无源器件合路后通过线缆传送到建筑物各处分布的吸顶天线或壁挂天线,由天线发射出去进行覆盖。合路后的信号也可经由耦合器,通过耦合器耦合出一部分信号直接覆盖。另外,由于多级级联因使用较多的无源器件插入各器件的插入损耗累加会对信号产生较大衰减,或进行较远距离传输射频信号会在电缆传送的过程中产生较大的衰减,可将合路后的信号接入多频合路器的输出端口(即反向使用腔体多频合路器)作为功分器使用,信号经过多频合路器滤波后,由多频合路器的输入端口输出,由于各端口的带通滤波特性,各端口仅输出该端口工作频段带内的信号,这些信号可传送到各制式专门的直放站进行放大后再输出后合路再覆盖,以 补偿信号在链路上的损耗和衰减,最终满足链路预算设计各项参数,以保证各点的覆盖效果。 无线射频信号从信源发射出来通过电缆传输到各个天线口,是一个信号合路、传送、分配的过程。射频无源器件在无线通信工程中主要起到连接路由或分配调控的作用,因此射频无源器件按照在工程中的应用主要分为连接路由型和分配调控型。连接路由型是指为射频信号提供连续的传输路径,是将射频信号的通路连接起来或者将多路射频信号进行合路再传输。目前,无线通信工程中常用的射频无源器件有功分器、耦合器、衰减器、滤波器、合路器、负载、电桥和双工器等。连接路由型射频无源器件主要包括合路器、电桥等。分配调控是指将一路信号等分成多路或分成不同频段不同大小的射频信号,以满足设计施工要求。分配调控型器件主要包括功分器、耦合器、滤波器等。当然,分配调控型器件也是可以起到连同信号的作用,但是之所以将两者区分开来,是因为在工程上主要是通过后者对无线射频信号的大小或频段的改变的特点来满足设计和施工的要求。如利用不同耦合度的耦合器改变耦合端口输出信号大小来满足覆盖要求,或利用双工器、滤波器将上下行或不同频段的信号分离出来。 3 、射频无源器件应用对无线通信的影响 射频无源器件质量对网络质量和用户体验产生极大的影响。目前,我国有中国电信、中国移动和中国联通三大运营商,运营的无线通信制式包括GSM、CDMA、TD-SCDMA、cdma2000、WCDMA、LTE 和PHS,以及无线局域网WLAN等,近年来出于节约成本减少重复建设的目的,越来越多的室内分布系统采用多系统合路共用室分系统的模式,多系统、多频段的信号,以公共合路平台共用室内分布系统的方式进行融合,实现多频段、多系统合路单向或者双向传输。这样的好处是减少重复基础设施建设,节约空间,但是多系统共站址共室内分布系统带来的问题越来越突出,多系统共存不可避免地引入系统间干扰,特别是工作频段相近中间隔保护频带较小的情况下,不同制式之间杂散和互调产物的影响。在这种情况下,良好品质的无源器件则会减轻这种干扰带来的影响,不良的器件则会引起或加深这种影响。射频无源器件自身质量欠佳也会导致一些网络指标的下降,而质量优良的器件会对网络质量产生积极的作用,对抑制杂散、干扰和阻塞的发生有积极的作用。复杂环境下多制式共存室分系统对无源器件的技术指标和性能参数的要求提升到了一个新的高度。 目前,无线网络中主要干扰类型分为系统内干扰和系统间干扰。具体体现主要是发射机杂散、接收机阻塞和互调干扰。 系统内的杂散干扰是指发射频段的杂散落入接收频段导致的系统自身的干扰。 系统间的杂散干扰就是一个系统的发射频段外的杂散落入到了另一个系统的接收频段内而造成的干扰,杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 阻塞干扰是各系统信号和其工作频率的组合成分,落在各自系统自身或其它系统中接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰导致接收机饱和时候,就会引起接收机无法正常接收正常工作频带内的信号,使接收机灵敏度性能恶化。 由于射频无源器件和功放电路等非线性的元器件的存在,两路或两路以上信号作用于非线性器件上会产生新的频率信号即互调产物,这种信号对正常通信的干扰就是互调干扰。无线通信系统中 有源互调和无源互调两类,有源互调是由发射机发射两个及以上载波时产生的,无源互调是由于无源器件,射频连接链路中不良的机械结点、射频器件的材料具有磁滞现象、射频通道中的表面或接触面受到污染和不同材料的连接处的具有非线性的特点等导致产生的互调产物,无源互调产物如落入上行接收频段,由于终端发射信号强度较小,落入上行的互调产物会对基站接收灵敏度产生不利影响。 上述这些干扰是我们在工程实践中不愿遇到但是又很难避免的问题,无源器件在室内分布系统中起到连接、多系统合路或分配的作用,在这个过程中选取适当规格与参数的无源器件或减轻、或避免干扰造成的影响,而不当地使用无源器件或器件规格不符或性能不达标则会产生或加剧干扰。我国目前主要移动通信所占用频率划分参见表1。 若基站产生两载波信号,频率分别 为f1和f2,则三阶互调产物频率为F3,五阶互调产物为F5,即: F3=2f1- f2和F3=2f2- f1 F5=3f1- 2f2和F5=3f1- 2f2 将各制式发射频段频率最低和最高边缘频率代入上述公式,则可得出各发射频段产生互调产物频率。通过计算可知这些互调产物的频率有可能落在系统本身的上行频段造成自身干扰,也有落入其它系统上行频段造成系统间干扰,另外信号的倍频和谐波也有可能造成干扰。系统内和系统之间干扰是普遍存在的,特别是在多制式共用室内分布系统中这种干扰更为普遍,因此在无源器件的选择上特别是起到合路作用的器件应特别注意。 射频无源器件性能参数主要包括工作频段、插入损耗、输入输出驻波、端口隔离度、带内波动、带外抑制、互调产物和功率容量等。根据现网情况和测试情况,无源器件是影响现网的关键性因素。 关键性因素主要包括: ●端口隔离度 隔离度不好会造成各制式之间干扰,传导杂散和多载波互调产物对终端上行信号干扰。 ●输入输出驻波 无源器件驻波比较大的情况下,反射信号变大,极端情况基站驻波告警,损坏射频元件和功放。 ●带外抑制 带外抑制不好会加大系统间干扰,良好的带外抑制能力和良好的端口隔离度一样有助于减轻系统间串扰。 ●互调产物 较大的互调产物会落入上行频段,会导致接收机性能恶化。 ●功率容量 多载波、大功率输出、大峰均比信号条件下功率容量不足会导致容易出现底噪抬升,出现无法呼通或掉话等网络质量严重下降情况,会引起飞弧和打火情况,极端情况会击穿烧毁导致网络瘫痪造成不可逆的损失。 ●器件加工工艺与材质 材质和加工工艺不过关直接导致器件各项参数性能下降,同时器件耐久性和环境适应性大大降低。 一般性因素主要包括: ●插入损耗 插入损耗过大会使信号在链路上损失较多的能量影响覆盖范围,同时增加直放站又会引入新的干扰,而一味提高基站发射功率又不环保,而且超出功放线最优线性工作区间时发射机信号质量会恶化,会影响室内分布设计预期的实现。 ●带内波动 带内波动较大会导致带内信号平坦度不好,当带内有多载波时候会覆盖影响,会影响室内分布设计预期的实现。 ●工作频段。 (1)合路功能射频无源器件对网络的影响 室内分布中主要使用3dB电桥和多频合路器进行合路。 3dB电桥在室分系统中一般采用两种方式的连接,即同基站双极化两扇区不同载波合路方式或两基站同频段多载波的合路连接方式。由于目前3dB电桥隔离度指标要求定在25dB,一般不超过30dB,致使两个合路端口的载波信号互为干扰。这种连接方式,会使基站产生互调,如增大相互之间的隔离度,会使其影响降至最低。 由于无源器件非线性会导致互调产物,同时当网络馈送的载波数量增多时,这种干扰会加剧,以致被干扰频段的低噪抬高。在这种情况下,多频合路器要优选于3dB电桥,因为3dB电桥两端口隔离度一般只有25~30dB,而现网使用的多频合路器端口之间隔离度至少要达到80dB,因此在多个制式多载波基站合路时候是应该首选多频合路器的,因为较大的端口隔离度会抑制端口之间的互调及杂散串扰。 在使用合路功能的无源器件的时候,首先要考虑其端口隔离和带外抑制的问题,在理论上存在合路信源相互间干扰的情况下,应遵循选取的器件确保有效的隔离度和良好的带外抑制能力。同时,合路信号存在较大功率的情况,要保证选取功率容量足够的腔体器件,否则会引起击穿或短路,同时要确保器件的材质制造工艺如焊接、连接、电镀等方面满足要求,避免打火飞弧现象的发生。 目前,运营商在大型建筑的室内分布工程较为广泛使用多系统接入平台(POI,Point of Interface),它的主要功能是将各基站不同频段的载频信号合成送至共用的天馈分布系统,主要由宽频带的桥路合路器、多频段合路器、负载等无源器件组成。利用POI 采用前级合路上下行天馈系统分开的模式,这样就可以在一定程度上避免下行对上行的干扰。 (2)分配功能射频无源器件对网络质量的影响 分配器件主要起到功率分配和频率分配的作用,主要包括功分器、耦合器,电桥和多频合路器也可作为分配器件使用。 分配器件一般直接与基站连接,直接与基站相接的器件应考虑器件的类别和材质工艺的要求,耐功率程度和互调指标和隔离度是关键选择的重要指标。避免使用较小功率的耦合器和功分器。器件功率容量不足回导致打火,会导致击穿或烧毁,驻波较大会增大反射信号,过大的反射信号会对信源的功放造成损害。 (3)射频无源器件的设计与制造对应用的影响 现网中使用的无源器件按照设计制造原理和生产工艺来区分,可分为腔体和微带两种类型。腔体器件主要包括腔体功分器、腔体耦合器、腔体滤波器、腔体合路器和腔体电桥等;微带器件主要包括微带功分器、微带耦合器和微带电桥等。腔体器件体积普遍大于微带类器件,同时腔体器件的加工工艺和制造难度要大于微带器件,成本也高于微带器件。但是腔体器件插入损耗小、使用寿命长、同时功率容量大,特别是耐功率性能要好于微带器件,目前条件下运营商现网大多倾向采用腔体无源器件。 无源器件按照接口类型分类主要有N、BNC、SMA、TNC、DIN7-16 型等,同时绝大多数接口也有极性之分,即分为Male 阳头和Female 阴头。由于N型和DIN7-16 型接口,使用螺纹锁紧连接非常坚固可靠,防护等级高、气候耐受性好并且互调性能较好,DIN7-16型特别适用于大功率和户外应用。这两种系列连接器在无线通信工程建设中使用最为广泛。 无线通信中无源器件与有源设备相比种类相对较少,结构简单,无源器件制造技术和工艺门槛较低,但是无源器件质量优劣直接影响网络质量和运营的稳定程度。由于计算机辅助设计软件的兴起,无源器件原理设计和参数定制趋于规范化和程序化,因此在设计方面器件厂商不存在瓶颈,而是由于降低成本或生产能力方面的因素,在选材和加工工艺方面的不当和欠缺是导致无源器件性能指标无法达到设计要求的重要原因。 影响无源器件产品质量的主要因素包括设计、选材与加工工艺等方面。设计上要精确,材料选取上要符合工程器件要求,加工工艺上要能够保证实现设计的精度要求并保证产品稳定可靠。 加工工艺上首先要保证加工精度。腔体表面洁净对器件整体性能有较大影响,毛刺尖角会导致飞弧噪声和互调较差。器件加工要在放水、防腐、防尘等方面采取积极有效的措施,充分考虑到实际网络的工作环境。如在腔体器件加工是采用数控铣床加工或一次压铸成型,连接紧固螺丝采用防锈金属,器件表面防腐处理同时采用导电密封胶进行密封等。优质大功率一般内导体与内芯一体化完成,采用DIN或N型接头,采用腔体空气结构,腔体采用铝合金一次压铸成型,先镀铜后镀银处理,密封无缝隙,表面光滑。接头外导体采用黄铜或三元合金并镀镍,内芯采用延展性好的铍青铜镀银处理。 4、 结束语 无源器件的应用范围应与其类型与规格参数相适应。每种器件有各自的功能和规格参数,在使用中应注重工作频段及室内分布链路设计时对各部分参数的限制。每类器件都有各自的应用场景,同时各类器件功能特性规格参数各不相同,在使用时也是需要充分考虑,尽量避免无源器件对网络产生不利影响。

    时间:2020-05-07 关键词: 无线 射频 无源

  • Picocom获得CEVA DSP授权许可,用于5G新射频基础设施SoC

    Picocom获得CEVA DSP授权许可,用于5G新射频基础设施SoC

    CEVA,全球领先的无线连接和智能传感技术的授权许可厂商宣布Picocom公司已经获得授权许可,在其即将发布的分布式单元(DU)基带卸载系统级芯片(SoC)中部署使用CEVA-XC12 DSP。 Picocom是致力于为5G新射频基础设施设计和销售产品的半导体企业,该公司连同Airspan、英特尔、IP Access和高通都是小蜂窝论坛(SCF) 5G功能性API (FAPI)规范的主要贡献者。这项规范旨在推动5G RAN /小蜂窝供应商生态系统发展,并且加速5G网络中开放式多供应商小蜂窝设备的部署使用。在开放式RAN倡议下,部署在建筑物中的Picocom 5G DU SoC不仅能够增加5G覆盖范围,并可减少5G宏蜂窝的处理负荷。CEVA-XC12软件定义无线电(SDR) DSP为6GHz以下和mmWave网络中的5G基带处理运作提供了所需要的灵活性和高性能,而其低功耗确保Picocom SoC适用于电源受限的小蜂窝应用。 Picocom总经理Peter Claydon表示:“小蜂窝使得网络设备的供应链多样化,增强网络覆盖范围并提高网络可靠性,将成为5G网络的成功关键之一。我们即将推出采用了CEVA-XC12 DSP的SoC,为网络运营商提供功能强大的可扩展解决方案,可将5G覆盖范围带到任何地方,并支持从工业自动化到主机网络的各种新应用。” CEVA副总裁兼移动宽带业务部门总经理Aviv Malinovitch表示:“Picocom在小蜂窝领域拥有丰富的经验,其通过完整PHY解决方案来把握5G小蜂窝市场机会的方法令人赞赏。我们很高兴与该公司合作开发其5G处理器架构。我们的CEVA-XC12提供了以软件方式处理复杂5G工作负荷的性能,确保满足任何5G小蜂窝用例所需的完整灵活性。”

    时间:2020-05-07 关键词: 射频 SoC 5G

  • 基于仿真RS-232串行端口的射频通信协议使引导加载器实现无线触发

    基于仿真RS-232串行端口的射频通信协议使引导加载器实现无线触发

    引导加载器支持产品固件的现场更新。引导加载器可使用 UART、I2C、SPI 或 USB 等常见通信接口更新固件,而引导加载器主机和目标之间通常采用有线连接方式。在蓝牙到串行适配器的帮助下,这个引导加载操作能通过无线方式实现。如果目标所处的位置难以物理地访问,或者目标位于密封设备内,那么这种无线连接功能就会特别有用。 使用引导加载器的第一步就是配置产品,让引导加载器(而不是应用)去执行。一旦引导加载器运行,主机就会通过通信通道发送“start bootload”命令。如果引导加载器发出“OK”回应,那么就会开始引导加载。在引导加载期间,主机读取新应用文件,将其解析为闪存写入命令,并发送命令到引导加载器。在整个文件发送后,引导加载器会确认文件完整性,并发送控制到新应用。 采用蓝牙到串行适配器的无线引导加载过程可在任何支持 UART 引导加载器的目标上进行,无需使用蓝牙串行端口配置文件(SPP)对运行在目标设备上的主机或引导加载器固件进行任何修改。蓝牙配置文件是指定蓝牙设备一般行为的蓝牙核心规范上额外的协议,可用于支持蓝牙设备与其它具有相同配置文件的设备进行通信。 SPP 基于仿真 RS-232 串行端口的射频通信(RFCOMM)协议,它定义了如何设置两个设备之间的虚拟串行端口,如何利用蓝牙互联。支持蓝牙功能的 PC 能连接到目标侧的蓝牙串行适配器,并进行引导加载操作。引导加载命令可通过发送串行命令到当前运行在目标器件上的应用而实现无线触发。 引导加载器 引导加载过程会通过标准通信接口更新嵌入式系统的固件。主机可以是带引导加载器主机应用工具的 PC,也可以是另一个微控制器。引导加载器是加电启动或系统重设后将要执行的第一行代码。引导加载器会预编程到微控制器中,与主机通信,并获得新的应用镜像,将其写入微控制器的内部闪存。在引导加载操作成功后,微控制器会开始执行新的应用固件。如果没有从主机接收到新的应用,那么引导加载器会执行微控制器中现有的应用。 应用固件镜像的格式取决于使用的微控制器。举例来说,PSoC 控制器使用 .cyacd(应用代码和数据)作为引导加载应用的格式。如果采用标准的蓝牙到串行适配器,那么我们可在支持 UART 引导加载器的目标器件上无线执行同样的引导加载操作。 在利用蓝牙到串行适配器进行无线引导加载的情况下,基本的引导加载操作保持不变。不过,我们需要在主机和目标器件之间建立虚拟串行连接,通过蓝牙无线发送应用镜像。SPP 定义了如何设置虚拟串行端口和两个蓝牙设备的互联,随后允许设备进行 RS232(或类似的)串行线缆仿真。这种配置文件涵盖的情境能支持传统应用,这里蓝牙作为线缆连接的替代,使用虚拟串行端口抽象。利用 SPP,互联设备发送和接收数据就像互联的 RX 和 TX 线路一样。 图 1 显示了 SPP 中使用的协议和实体。基带、LMP 和 L2CAP 是 OSI 中的第 1 层和第 2 层蓝牙协议。RFCOMM 是蓝牙版 GSM TS 07.10 标准,GSM 手机用它在一个物理串行线缆上多路复用多个流,为串行端口仿真提供通信协议。SDP 是蓝牙服务发现协议,支持蓝牙设备发现其它蓝牙设备提供的服务和相关参数。 图 1:配置文件协议栈包括 SPP 使用的不同协议和实体。 就使用 SPP 的无线引导加载而言,两侧运行的应用为 PC 上的引导加载器主机应用或主机微控制器上的 UART 接口以及目标系统上的 UART 引导加载器。 Bluefruit EZ-Link 模块或 JY-MCU 模块等标准蓝牙到串行适配器能配对具备蓝牙功能的计算机,并显示为串行 COM 端口。将蓝牙模块和 PC 配对后,设备管理器中会列出两个串行 COM 端口。之所以会出现这种情况,是因为蓝牙串行端口是基于 RFCOMM,与物理串行端口不同,它在建立蓝牙虚拟连接时同时需要服务器和客户端。 设备管理器中列出的一个端口是入站端口(服务器),另一个则是出站端口(客户端)。然而,用其中一个串行端口建立连接后,它就是双向的。如果 PC 发起与蓝牙模块的连接,则使用出站端口。如果蓝牙模块发起连接,则使用入站端口。对于目标系统的无线引导加载而言,必须使用出站端口,因为 PC 是主机,它必须发起与蓝牙模块的连接。 蓝牙模块必须连接到运行 UART 引导加载器的目标系统上的 UART 接口。举例来说,在关闭电路板的 USB 到串行部分以无线引导加载 PSoC 4 的情况下,蓝牙模块可连接到 CY8CKIT-049 PSoC 4 原型设计套件。PSoC 4 原型设计板易于使用,成本较低,能在主板兼容报头上提供 PSoC 4 微控制器的所有 I/O 引脚,从而支持快速原型设计,而且配套提供预编程的 UART 引导加载器。 蓝牙模块的波特率应匹配目标系统上引导加载器配置的波特率。大多数蓝牙模块支持 AT 命令来配置模块的波特率,这需要用到 USB-UART 桥接器或配备 UART 接口的微控制器。PSoC 4 原型设计板的 USB- 串行器件部分也可利用 AT 命令配置蓝牙模块的波特率。引导加载器主机应用工具则用蓝牙虚拟串行端口来无线执行引导加载操作。 图 2:系统级方框图显示主机和目标系统的不同组件。 如果引导加载器主机是另一个微控制器,那么无线引导加载程序仍会在其它蓝牙到串行适配器(连接到主机微控制器 UART 接口)的帮助下进行。对于不支持蓝牙的 PC 而言,标准的 USB 蓝牙收发器可用来建立蓝牙模块连接。 成功引导加载后,目标系统会开始执行新的应用。如果需要引导加载另一个新应用,那么目标系统必须重启,以再次启动引导加载器。如果应用调用引导加载器,就能避免这一过程。引导加载的应用响应于某种外部事件,如按下按键或主机发出的具体数据命令,从而再次启动引导加载操作,在目标系统上载入新的应用。 此外,低功耗蓝牙(BLE)模块也可用于无线引导加载。与传统蓝牙不同的是,低功耗蓝牙不使用 SPP。不过,对于低功耗蓝牙而言,所有配置文件和服务支持全部位于应用空间内。产品开发人员能在通用属性配置文件(GATT)基础上开发自己的串行端口服务,满足 BLE 模块需求,并将其用于无线引导加载。 引导加载器的设计考虑因素: 稳健可靠的引导加载器应当能够检测、报告并有效处理无线引导加载过程中出现的错误,如传输过程中的数据包丢失、数据损坏和闪存写入错误等。通过存储应用的校验和或循环冗余码(CRC),可以执行闪存错误校验。在引导加载操作开始后,位会被清空。如果应用成功下载并安装,就会更新。举例来说,如果在引导加载时断电,那么在重启时引导加载器应检测无效的校验位,而且不会让部分加载的应用获得控制权,而是等待主机启动新的引导加载操作。 一旦新应用实现引导加载,那么引导加载器必须确认引导加载镜像是否有效,并让新应用获得控制权。引导加载器还应当能检查闪存中的自身镜像,判断其是否有效。另一个重要考虑因素是避免应用覆盖引导加载器本身。如果引导加载器损坏或被应用覆盖,那么系统就无法工作,需要对系统的引导加载器进行重新编程。为了避免这种情况,闪存的引导加载器区域必须进行保护,避免引导加载器代码被意外覆盖。 引导加载器设计的另一个重要考虑因素就是何时开始与主机通信。在确认应用有效后,引导加载器可等待一定时间让主机开始新的引导加载操作。如果等待时间过短,主机可能还无法可靠启动通信。如果等待时间过长,产品的整体启动时间就会太长。与引导加载新应用时避免设备重启的解决方案类似,这个时序问题可通过让应用调用引导加载器进行解决。 为了确保目标系统无错误,我们可用多应用引导加载器在闪存中存储多个应用镜像。如果引导加载器检测到某个应用镜像被损坏,那么引导加载器能跳到另一个应用镜像。能够保存的应用数量取决于目标系统的闪存大小。 此外,引导加载器中还可包含简单的调试功能,可用 UART 接口和 Tera Term 等终端仿真程序实现,从而在 PC 上显示调试信息。调试信息还能用相同的蓝牙到串行调试器无线发送。 定制引导加载器主机工具: 不同微控制器可直接使用标准的引导加载器主机工具应用,无需对 SPP 的无线引导加载进行任何修改。然而,引导加载器主机工具可以进行定制,从而更好地满足无线引导加载需求,并嵌入终端仿真器窗口,以查看调试信息,甚至能通过 SPP 无线发送具体数据来从应用中调用引导加载器。图 3 显示了具有嵌入式终端仿真器窗口的定制引导加载器主机工具应用实例。为充分利用终端仿真器,引导加载到目标系统的任何新应用都必须包含 UART 接口,并能在主机向目标系统发送具体数据时调用引导加载器。UART 接口可在引导加载器和应用之间共享。 图 3:具有嵌入式终端仿真器窗口的定制引导加载器主机工具应用实例。 如果采用稍微复杂的多应用引导加载器设计,我们也能利用 SPP 从主机向目标系统无线发送不同消息,从而在闪存中切换存储的多个应用,这就能节约新应用引导加载所需的时间。

    时间:2020-05-06 关键词: 蓝牙 无线 射频

  • 机载大功率射频同轴继电器的工作原理及设计方案分析

    机载大功率射频同轴继电器的工作原理及设计方案分析

    一、引 言 随着科学技术快速发展,航空航天领域使用的射频同轴继电器数量越来越多,对其耐恶劣环境条件和严酷力学条件要求也越来越高。和地面应用不同,对应用于机载的大功率射频同轴继电器有许多特殊要求: 1)驱动电流小、功耗低。可以节省有限的能源,减少系统发热。 2)重量轻。可以提高整机的有效载荷、飞行速度、续航距离、机动性能。 3)环境(低温、高温、电磁干扰、振动、低气压)适应能力强。 4)大功率。功率直接决定了机载或地面雷达的探测距离和探测精度,功率越大探测的距离越远且越精确。 我所研制的一款机载大功率射频同轴继电器产品,其触点形式为单刀双掷,控制方式为TTL、自保持、自关断、带辅助触点,技术指标完全能够满足机载使用,以下对其进行重点介绍。 二、机载大功率射频同轴继电器设计 1、技术指标 机载大功率射频同轴继电器主要技术指标见表1。产品特点是驱动电流小,功耗低、振动等级高、耐大功率。 表1技术指标 2、产品结构及工作原理 机载大功率射频同轴继电器主要由电路控制、电磁系统、推动系统、射频切换、射频接口、辅助触点切换、D型低频接口七部分组成。产品结构图见图1,工作原理框图见图2。 图1 机载大功率射频同轴继电器结构图 产品总体结构为长方体,上端部的对外接口是标准的9芯D型连接器低频接口,其与辅助触点直接焊接在印制电路板上,电路板、电磁系统通过四个螺杆固定在微波通道腔盖上。推动系统包括铁芯内部的两个塑料推杆、微波通道内与微波簧片相连的两个推杆以及可以绕轴自由转动的衔铁共三部分组成,衔铁转动时可以实现辅助簧片与微波传输簧片的连动。射频切换由矩形同轴传输线组成,微波传输簧片在传输线的中间位置,微波通道内的弹簧可以实现微波传输簧片的自动复位。在下端部的对外接口是标准的N型射频连接器。 产品的外罩、微波腔体、腔盖均使用铝合金材料,可以大大减轻自重,外罩表面通过氧化处理有效防止盐雾腐蚀。电路控制、电磁系统及射频部分上下放置,防止相互之间电磁干扰。D型连接器低频接口与外罩接触处装有密封垫,微波腔体周围与外罩接触处装有矩形密封圈,电路控制、电磁系统、推动系统、射频切换部分被外罩包裹在一个相对封闭的空间内,防止灰尘、水汽等的进入。 机载大功率射频同轴继电器工作原理是:D型连接器低频接口接电源,额定工作电压通过电路控制部分施加到电磁系统,电磁系统的作用是把电能转换为机械能,通过推动系统完成射频及辅助触点同步切换,射频信号通过射频接口输入或输出,辅助信号通过D型接口输入或输出。 图2 机载大功率射频同轴继电器功能框图 3、方案设计 (1)控制电路设计 从节能及减少线圈发热角度出发,电路控制采用了自保持及RC自关断的结构形式。为了便于自动控制,设计了辅助触点及TTL控制方式。控制电路部分的9芯D型连接器、电子元器件、辅助触点焊接在一块PCB上,电路原理图见图3。 图3 控制电路原理图 D型连接器1、2端子施加28Vd.c.激励电压,当端子4为高电平时,激励电压施加到线圈L1上,线圈L1上有电流通过,并生产电磁力带动机构动作,射频开关S1闭合、S2断开,由于RC冲放电电路,随着充电的连续,电容C两端电压不断升高,当完全截止时,线圈L1上电流为零。由于本产品为自保持型,即使线圈L1电流变为零时,机构并不发生翻转,仍保持在如图所示状态,当需要发生翻转时,只需在D型连接器端子5施加高电平,原理同上。 本项目产品的实际动作时间不大于15ms,为了保证产品可靠动作,线圈中电流的持续时间应大于25ms,该时间由电容充电时间决定,其理论计算公式如下: 05(暂缺) 式(1)中:C为充电电容,R为充电回路电阻,V为电容终电压,V0为电容初始电压,Vt为t时刻电容电压。 (2)电磁系统设计 射频同轴继电器类产品中,用电磁力驱动是普遍的方法,通常电磁系统采用的类型主要是“平衡旋转式”和“螺旋管式”。“平衡旋转式”电磁系统其优点是转轴两端衔铁部分质量相对平衡,对转轴的总力矩为“零”,可以耐较高的冲击、振动,以保证恶劣环境下的可靠性。“螺旋管式”电磁系统优点是磁的利用率较高,磁路系统的漏磁小,铁芯的行程较大。 依据产品应用于机载条件,电磁系统采用了“平衡旋转式”结构,见图4,磁路原理见图5。 图4 平衡旋转式 图5 磁路原理图 HL-磁钢磁势;(IW)-线圈通电时产生的磁势;R钢-磁钢磁阻; R芯-铁芯磁阻; R轭-轭铁磁阻;R衔-衔铁磁阻;Rδx-磁钢与衔铁间气隙磁阻; Rδ1-衔铁在左回路中气隙磁阻;Rδ2-衔铁在右回路中气隙磁阻。 当线圈在激励状态下,驱动机构的静态吸力F为: φm2、φm1为磁钢的磁通量,由公式(3)求得: 式(3)中:Hm导磁体中的磁场强度,由磁钢的去磁曲线求得,lm为磁钢的长度,k1为修正系数,Rδ为气隙磁阻,μ0为真空磁导系数,S为极靴面积。 φn为线圈的磁通量,由公式(4)求得: 式(4)中:N为线圈匝数,I为线圈电流,Rm为磁路磁阻。 电磁系统的电磁吸力计算比较烦琐,通常使用Ansoft Maxwell软件进行仿真, 为了提高产品的可靠性,保证在全温度范围(-55℃~+85℃)正常工作,实际动作电压按+85℃时进行设计。由于额定工作电压范围24v~32v,为了保证可靠的驱动电流,设计中必须考虑到电磁线圈漆包线铜材料的电阻随环境温度变化的趋势,由公式(5)确定: 11(暂缺) 式(5)中:R20为20℃的电阻值;Rt为在t温度范围下测量的电阻值;t为测量的环境温度;α为电阻温度系数,单位1/℃。 (3)射频切换及射频接口设计 射频切换是在矩形同轴传输线中完成的,矩形同轴传输线截面见图6,在矩形传输线中设置中间簧片的通断切换结构,它的结构特点就是中间簧片位于上下接地板的对称面上。 图6 矩形同轴传输线截面图 矩形同轴传输线的传输功率,由以下公式决定: 13(暂缺) 式(6)中:Pmax为最大峰值的击穿功率(KW); ρ为电压驻波比;p为空气大气压力(atm);b为接地板高度(cm);t为中间簧片厚度;Z0为特性阻抗,50Ω。 通过式(6)可以看出,要增加矩形同轴传输线的传输功率,可以增加中间簧片厚度t、接地板之间距离b,减少电压驻波比,而电压驻波比ρ由同轴线特性阻抗Z0相关,而影响矩形同轴线特性阻抗Z0的重要参数为中间簧片厚度t、宽度w和接地板高度b、宽度w′。其相关尺寸关系计算时参照矩形同轴线特性,见表1。 表1矩形同轴线特性 射频输入输出端口均为N型同轴连接器,是圆形同轴传输线,截面见图7,其设计主要是根据同轴传输线理论相关公式(7)、(8)、(9)(10)确定内外导体尺寸。 图7圆形同轴传输线截面图 同轴线的特性阻抗Zc为: 式(7)中:Z0为特性阻抗,50Ω;εr为内外导体间介质材料的相对介电常数;μγ为介质相对导磁系数,b为外导体内半径,mm;a为内导体外半径,mm。 式(8)、(9)、(10)、中:为同轴线传输的最高频率;为同轴线最大传输功率;Vm为同轴线行波峰值电压;c为光速3×108米/秒,;Z0为特性阻抗;Ebr为介质击穿场强。 由式(7),当特性阻抗Z0一定时, b/a是定值,由式(8),a、b增加时,截止频率降低,由(9)、(10),a、b增加,最大传输功率也增加。由于射频同轴继电器随着工作频率的下降,其传输功率上升,所以,其截止频率不宜设计过高,而应略高于其最高工作频率,这是保证产品较大功率的重要方法,即在满足产品最高工作频率时,为提高功率,应尽量加大b和a的尺寸。 在初步确定相关尺寸后,进行建模,见图8,采用HFSS软件对射频传输线进行电场仿真验证,射频输入端口输入350W@8GHz功率信号,电场分布图见图9。 图8射频传输线模型 图9射频传输线电场仿真模型 该产品中间簧片与接地板最小距离为1.5mm,空气击穿场强约为4.5×106V/m,通过仿真得到的射频传输线最大场强为4.6672×105V/m,完全满足设计要求,并且产品已经多次通过了耐功率试验验证。 三、结论 根据机载产品的特殊要求,通过封闭式结构及上下放置结构设计、提高了产品耐环境适应性及抗电磁干扰性能。TTL自关断电路设计、自保持结构设计降低产品驱动电流及功耗,“平衡旋转式”电磁系统设计,提高了抗冲击、振动性能,采用射频大功率设计技术提高了产品射频功率传输能力。目前该产品通过鉴定试验,性能指标完全达到了机载要求,性能稳定并得到了广泛应用。

    时间:2020-05-05 关键词: 射频 继电器 功率

  • HOLTEK推出BM5602-60-1 2.4GHz收发器模块

    HOLTEK推出BM5602-60-1 2.4GHz收发器模块

    Holtek推出全新RF 2.4GHz射频模块BM5602-60-1,基于BC5602 2.4GHz GFSK收发芯片设计,集成了匹配电路和板载天线。射频特性符合FCC/ETSI规范,能满足IoT产品低功耗、反应快的要求,可广泛应用于智能居家、工业/农业控制器等,建构稳定的2.4GHz无线双向传输。 BC5602支持跳频功能,最高发射功率+7dBm,可编成的数据率125Kbps、250Kbps和500Kbps,125Kbps下接收感度达到-98dBm。封装引脚直插和邮票孔(Stamp hole)兼具,同时满足产品开发和量产使用需求,支持3线和4线的SPI接口方便不同资源的MCU控制。此模块可满足不同场景的应用需求,更多细节可参考BM5602-60-1和BC5602规格说明。

    时间:2020-04-27 关键词: 射频 HOLTEK 收发器模块

  • 射频芯片是什么_射频芯片的用途是什么

    射频芯片是什么_射频芯片的用途是什么

      什么是射频芯片   射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形, 并通过天线谐振发送出去的一个电子元器件。射频芯片架构包括接收通道和发射通道两大部分。对于现有的GSM和TD-SCDMA模式而言,终端增加支持一个频段,则其射频芯片相应地增加一条接收通道,但是否需要新增一条发射通道则视新增频段与原有频段间隔关系而定。对于具有接收分集的移动通信系统而言,其射频接收通道的数量是射频发射通道数量的两倍。这意味着终端支持的LTE频段数量越多,则其射频芯片接收通道数量将会显著增加。例如,若新增 M个GSM或TD-SCDMA模式的频段,则射频芯片接收通道数量会增加M条;若新增M个TD-LTE或FDD LTE模式的频段,则射频芯片接收通道数量会增加2M条。LTE频谱相对于2G/3G较为零散,为通过FDD LTE实现国际漫游,终端需支持较多的频段,这将导致射频芯片面临成本和体积增加的挑战。   为减小芯片面积、降低芯片成本,可以在射频芯片的一个接收通道支持相邻的多个频段和多种模式。当终端需要支持这一个接收通道包含的多个频段时,需要在射频前端增加开关器件来适配多个频段对应的接收SAW滤波器或双工器,这将导致射频前端的体积和成本提升,同时开关的引入还会降低接收通道的射频性能。因此,如何平衡射频芯片和射频前端在体积、成本上的矛盾,将关系到整个终端的体积和成本。   此外,单射频芯片支持TD-LTE和FDD LTE不存在技术门槛,众多厂家已有相应产品问世。与基带芯片略有不同的是,在多模射频芯片增加对TD-SCDMA的支持难度相对较低。   射频芯片的用途是什么   射频前端芯片主要作用是实现号发射接收。要无线连接,就必须要有射频前端芯片。它包括射频开关、射频低噪声放大器、射频功率放大器、双工器、射频滤波器等多种芯片模组。   射频芯片和基带芯片的关系   先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。   基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。   但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。   言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。   所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。

    时间:2020-04-27 关键词: 射频 射频芯片

  • 基于CAN总线结合射频和USB实现车载故障诊断仪的设计方案

    基于CAN总线结合射频和USB实现车载故障诊断仪的设计方案

    设计一款基于2.4G射频的车载CAN总线故障诊断仪,详细介绍其工作原理及系统硬件电路,最后分别阐述接收端、发射端和PC端的软件模块。 该方案采用自动跳频的2.4G空中协议,经测试统计误码率保持在有效范围之内,在14m内仍能正常工作。采用USB作为接收端和PC接口,保证了系统的即插即用及数据的高速传输。 控制器局域网络CAN(Controller Area Network)为汽车内部各种复杂的电子设备、控制器、测量仪器等提供了统一数据交换渠道,已得到广泛的应用。目前,太多数汽车部件都提供了CAN总线通信接口。 在当今的中高档汽车中,都采用了CAN总线技术。针对车载CAN总线会出现的故障.结合射频和USB的优点,依靠KWP2000应用层规定的故障代码,本文提出了一种基于车载CAN总线故障诊断仪设计方案。本方案成本低廉,携带方便,具有很强的灵活性与适应性。 1 、方案设计 由于采用射频技术,使汽车CAN总线数据采集部分和CAN总线数据诊断部分得以分离,无需连线,不受空间场地限制,安装携带方便。按照ISO有关标准,CAN总线传输速率最高可达1 Mbps;但由于汽车内部特殊环境,车载CAN总线速率一般在250 kbps。本系统中射频速率最高可达l Mbps,可以很好地满足数据传输要求。 发射端采用USB作为接收模块和PC接口。USB与RS232或PCI接口相比,具有用户使用方便,设备自动识别,自动安装驱动程序和配置,支持动态接入和动态配置等优点;其传输速率可达几十Mbps,并且支持同步和异步传输方式,保证带宽,传输失真小。 PC端应用层软件整合KWP2000的应用层协议。KWP2000是由瑞典制定的一种车载故障诊断协议,已在微机控制的自动变速器、防抱死制动系统、安全气囊、巡航系统中得到广泛应用。它基于OSI七层协议,符合IS07498标准。其中第1~6层实现通信服务的功能,第7层实现诊断服务的功能。其应用层提出了一套完整和标准化的诊断代码,本系统利用KWP2000的应用层协议,对采集到的CAN总线数据进行分析,以实现故障诊断的功能。 2、 硬件实现 2.1 系统所用芯片简介 2.1.1 nRF2401芯片 nRF240l是单片射频收发芯片,工作在2.4~2.5GHz ISM频段;内置频率合成器、功率放大器、晶体振荡器、调制器和标准SPI等功能模块;输出功率和通信频道可通过软件进行配置,共有125个频道可使用,而且最高速率可达l Mbps。芯片具有1.9~3.6 V宽工作电压,工作能耗非常低。当以一5 dBm的功率发射时,工作电流只有10.5 mA;接收时,工作电流只有18 mA。 nRF240l有4种工作模式:收发模式、配置模式、空闲模式、关机模式。其工作模式由PWR_UP、CE、CS三个引脚和配置字节最低位TX_EN来决定。 收发模式分为DirectMode和ShockBurst。前者在片内对信号不加任何处理,与其他射频收发器相同。后者使用片内FIFO堆栈,数据从 MCU低速送入,但高速发射,而且与射频协议相关的所有高速信号处理都在片内进行。例如,nRF240l在ShockBurst收发模式下自动处理字头和 CRC校验码,在接收时自动把包头和CRC校验码移去;在发送数据时自动加上字头和CRC校验码。 2.1.2 TMU3100芯片 TMU3100是台湾Tenx公司2005年推出的RISC内核的单片机。它嵌入了完全兼容USBl.1协议的USB控制器,并且提供了低速USB接口和3个端点,其中1个控制输入/输出端点和2个中断输入端点。 TMU3100可以配置为标准的HID类,可以使用Windows操作系统自带的HID类驱动程序。这样可以省去开发设备驱动程序的工作,缩短开发周期。TMU3100芯片结构框罔如图2所示。 2.1.3 PICl8F2682芯片 PICl8F2682是Microchip公司新推出的8 位低功耗CAN微控制器,主要资源有:内置标准CAN模组、80KB闪存程序存储器、1 KB数据E2PROM、3.3 KBRAM存储器、8通道ADC、1个8位和3个16位T1MER、1个SPI和I2C串行通信端口和可编程欠压复位功能及低电压检测电路。 PIC18F2682内置增强型的CAN总线模块,该模块包含CAN协议引擎、信息缓冲和信息控制。CAN协议引擎自动处理CAN总线上所有接收和发送的消息,它可以在接收或发送信息时对数据帧进行解析。只需要首先设置适当的寄存器就可以发送信息,通过相关的寄存器即可得到信息传输的状态。 2.2 硬件电路 2.2.1 发射端电路原理 是系统发射端电路原理。CAN总线接口使用Microchip公司内置CAN模块的PIC18F2682单片机,并由光耦6N137进行总线隔离;CAN总线收发器采用MCP2551。 PIC18F2682与射频芯片nRF2401之间通过标准SPI接口SCK、SDI、SDO来完成,这样可以大大提高发送速率。对nRF2401配置控制使能CS和接收、发送使能CE分别由RB4和RB5进行控制。当nRF240l接收到数据包时,DRl将被置高电平,因此PICl8F2682通过查询INT0的状态可以判断是否接收到数据。 2.2.2 接收端电路原理 由于TMU3100由PC供电,而PC机USB接口所提供的电压VDD干扰较大,故对VDD进行了π滤波。 由于TMU3100没有SPI模块,故可以通过PB[1]、PB[0]按照SPI协议与nRF2401的SPI口来进行通信。对nRF2401配置控制使能CS和接收、发送使能CE分别由KSO[3]和KSO[13]控制。nRF2401接收到数据包后,DRl将被置高电平,因此TMU3100可以通过查询KSl6的状态判断足否接收到数据。 3、 软件设计 系统的软件设计包括发射端软件设计、接收端软件设计和PC端软件设计。 3.1 发射端软件设计 发射端流程如图5所示。软件设计主要实现两项功能:第一是实现CAN总线上数据的采集;第二是实现将采集后的数据通过射频进行发射。 上电后,首先对CAN模块进行初始化。然后初始化nRF2101,并与接收端建立连接。当发送完CAN数据后没有收到ACK信号时,就跳频;然后通知发送端准备接收重发的CAN数据,直到接收到ACK信号。 为了防止空中干扰,采用了自动跳频的空中协议,即无论是否接收到ACK信号都进行跳频,因此可以防止某个频段的强干扰,进而降低误码率。 3.2 接收端软件设计 接收端软件流程如图6所示。软件设计主要实现两项功能:第一是实现枚举;第二是实现将接收到的数据通过USB上传到PC。上电后,首先完成对 TMU3100的配置,并与PC机枚举;枚举成功后就对nRF2401进行配置,并与发射端建立连接。当接收到数据包后,首先判断是CAN数据还是重传数据命令。如果是CAN数据包,则向发射端返回ACK信号并跳频,然后将接收到的数据通过USB传至PC;如果是重传命令,则先跳频,然后置重传标志,表示下个数据包是重传的数据包。 TMU3100被配置为标准HID类,这样就不用为设备开发驱动程序,而是使用Windows提供的标准HID类驱动程序。 3.3 PC端软件设计 PC端软件由应用程序和设备驱动程序组成。Windows为标准USB没备提供了完善的内置驱动,本系统采用Windows自带的HID类驱动,只要将 TMU3100配置为HID类,即可完成与PC机的通信。这省去了开发设备的驱动程序,极大地简化了上位机软件的开发。 上位机的应用程序首要实现的功能是,要实现对TMU3100端点的读写,用VC++语言编写,可以把USB设备当成文件来操作。用CreateFiile()函数获得USB句柄,为读访问或写访问打开指定端点。用DeviceControl()来进行控制操作,用ReadFile()从指定端点读取数据,用 WriteFile()向端点写入数据。 当CAN总线上的数据被采集到PC后,就可以进行故障诊断了。故障诊断代码是依照 KWP2000应用层规定的故障代码设计的,是目前国际上通用的,现将其应用于CAN的应用层,将来可以用全新的CAN上层协议取代。故障诊断代码定义在 SSF14230中。SAE J1979中,由车辆制造商或系统供应者定义的服务标志符数值的不同范围,如表1所列。 此表中以十六进制数表示的服务标志符,同数据链路层中数据字节内的SID服务识别字节对应。不同的SID值代表不同的服务请求,故障诊断程序必须符合此应用层标准,才能识别不同的十六进制代码所代表的不同的故障信息。 4、 结论 本文设计的2.4G无线车载CAN总线故障诊断仪,由于采用了自动跳频的空中协议,所以误码率几乎接近零,在14 m内仍能进行可靠的工作。系统使用国际上通用的诊断代码,使程序具有通用性和实用性;以PC作为硬件平台,无需专门开发硬件平台,可大大降低开发成本并且易于实现设备的升级和维护;使用USB接口和2.4G无线通信,具有即插即用、不受空间限制、数据传输实时性强的特点。

    时间:2020-04-27 关键词: USB 射频 can总线

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包