当前位置:首页 > 异步电机
  • 吃透异步电机,大佬带你聊聊这5种异步电机

    吃透异步电机,大佬带你聊聊这5种异步电机

    电机在生活中具有重要应用,很多基础设备里,电机都是不可或缺的组成。上篇电机相关文章中,小编对变频电机和定频电机的区别有所探讨。为增进大家对电机的认识,本文将对异步电机展开详细介绍。如果你对电机具有兴趣,不妨继续往下阅读哦。 一、交流异步电动机 交流异步电动机是领先交流电压运行的电动机,广泛应用于电风扇、电冰箱、洗衣机、空调器、电吹风、吸尘器、油烟机、洗碗机、电动缝纫机、食品加工机等家用电器及各种电动工具、小型机电设备中。 交流电异步电动机分为感应电动机和交流换向器电动机。感应电动机又分为单相异步电动机、交直流两用电动机和推斥电动机。 电机的转速(转子转速)小于旋转磁场的转速,从而叫为异步电机。它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率, ns为磁场转速,n为转子转速。 基本原理: 1、当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。 2、该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。 3、根据电磁力定律,载流的转子导体在磁场中受到电磁力作用,形成电磁转矩,驱动转子旋转,当电动机轴上带机械负载时,便向外输出机械能。 异步电机是一种交流电机,其负载时的转速与所接电网的频率之比不是恒定关系。还随着负载的大小发生变化。负载转矩越大,转子的转速越低。异步电机包括感应电机、双馈异步电机和交流换向器电机。感应电机应用最广,在不致引起误解或混淆的情况下,一般可称感应电机为异步电机。 普通异步电机的定子绕组接交流电网,转子绕组不需与其他电源连接。因此,它具有结构简单,制造、使用和维护方便,运行可靠以及质量较小,成本较低等优点。异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电机还便于派生成各种防护型式,以适应不同环境条件的需要。异步电机运行时,必须从电网吸取无功励磁功率,使电网的功率因数变坏。因此,对驱动球磨机、压缩机等大功率、低转速的机械设备,常采用同步电机。由于异步电机的转速与其旋转磁场转速有一定的转差关系,其调速性能较差(交流换向器电动机除外)。对要求较宽广和平滑调速范围的交通运输机械、轧机、大型机床、印染及造纸机械等,采用直流电机较经济、方便。但随着大功率电子器件及交流调速系统的发展,适用于宽调速的异步电机的调速性能及经济性已可与直流电机的相媲美。 二、单相异步电动机 单相异步电动机由定子、转子、轴承、机壳、端盖等构成。 定子由机座和带绕组的铁心组成。铁心由硅钢片冲槽叠压而成,槽内嵌装两套空间互隔90°电角度的主绕组(也称运行绕组)和辅绕组(也称起动绕组成副绕组)。主绕组接交流电源,辅绕组串接离心开关S或起动电容、运行电容等之后,再接入电源。 转子为笼型铸铝转子,它是将铁心叠压后用铝铸入铁心的槽中,并一起铸出端环,使转子导条短路成鼠笼型。 单相异步电动机又分为单相电阻起动异步电动机,单相电容起动异步电动机、单相电容运转异步电动机和单相双值电容异步电动机。 三、三相异步电动机 三相异步电动机的结构与单相异步电动机相似,其定子铁心槽中嵌装三相绕组(有单层链式、单层同心式和单层交叉式三种结构)。定子绕组成接入三相交流电源后,绕组电流产生的旋转磁场,在转子导体中产生感应电流,转子在感应电流和气隙旋转磁场的相互作用下,又产生电磁转柜(即异步转柜),使电动机旋转。 四、罩极式电动机 罩极式电动机是单向交流电动机中最简单的一种,通常采用笼型斜槽铸铝转子。它根据定子外形结构的不同,又分为凸极式罩极电动机隐极式罩极电动机。 凸极式罩极电动机的定子铁心外形为方形、矩形或圆形的磁场框架,磁极凸出,每个磁极上均有1个或多个起辅助作用的短路铜环,即罩极绕组。凸极磁极上的集中绕组作为主绕组。 隐极式罩极电动机的定子铁心与普通单相电动机的铁心相同,其定子绕组采用分布绕组,主绕组分布于定子槽内,罩极绕组不用短路铜环,而是用较粗的漆包线绕成分布绕组(串联后自行短路)嵌装在定子槽中(约为总槽数的2/3),起辅助组的作用。主绕组与罩极绕组在空间相距一定的角度。 当罩极电动机的主绕组通电后,罩极绕组也会产生感应电流,使定子磁极被罩极绕组罩住部分的磁通与未罩部分向被罩部分的方向旋转。 五、单相串励电动机 单相串励电动机的定子由凸极铁心和励磁绕组组成,转子由隐极铁心、电枢绕组、换向器及转轴等组成。励磁绕组与电枢绕组之间通过电刷和换向器形成串联回路。 单相串励电动机属于交、直流两用电动机,它既可以使用交流电源工作,也可以使用直流电源工作。 以上便是此次小编带来的“电机”相关内容,通过本文,希望大家对上面介绍的5种异步电机具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-07 关键词: 电机 指数 异步电机

  • 三相鼠笼异步电机的缺相保护

    三相鼠笼异步电机的缺相保护 看了贵报今年第一期18版《电动机缺相保护又一法》一文,笔者觉得有不妥之处。按此法,如在电机启动前线路就已缺相,电机不能启动,的确能起一定保护作用。但文章中说:"按下启动按钮……,电动机转动。若万一C相熔断体熔断,则KQ立即释放,KM亦断电而脱开,起到保护作用。"实际情况是:按此方法接线,只要电机转动起来,A、B、C三相无论那一相熔断体熔断,也会发生断相事故,KQ决不会释放。因而KM不会断电脱开,而电机将在缺相情况下继续运转直致烧毁,根本无法保护电机! 以后又看了今年13期20版、28期18版、29期18版、34期18版、37期18版等各期中所刊各篇有关电机缺(断)相保护的讨论文章,这些文章中所提出的各种具体方法,最好的也仅能做到:如电机启动前就已缺相。启动电机时可起到保护作用。而在电机运行中断相就根本全部不管用,照样会烧毁电机!有的文章虽肯定了此方法的缺失,但分析并不到位,并没有找到真正原因。下面笔者就从三相异步电机的原理和构造上谈起.浅析三相异步电机的断相保护问题! 现在工、矿企业大量使用的中、小型三相电机绝大部分属鼠笼转子式三相异步电机。这种电机已有200多年的历史,之所以它能长盛不衰,是因为其性能优良,启动力矩大,构造简单易于生产,且价格不高。 鼠笼转子式三相异步电机,当定子线圈中通三相交流电时,定子铁芯将产生很强的旋转磁场。这个磁场将推动转子铁芯旋转。而嵌在转子铁芯上的鼠笼条就如变压器的次级线圈,将感应出与定子相对应的交变电压。因鼠笼条两端是闭合的就如变压器次级线圈短路一般。将产生很大的短路交变电流。这个交变电流又使转子产生一个附加的交变磁场。这个磁场与定子的磁场相互作用,加强了定子与转子的电磁作用力,使转子的转矩增大,力矩平稳。因转子的这个附加磁场在高速旋转相对定子线圈来说,使定子线圈切割了转子的这个附加磁场而使定子线圈产生一个附加的电动势。这个电动势也称为反电动势。正因这个反电动势的存在,使鼠笼转子式三相异步电机(定子线圈交流阻抗都比较小)有一个重要特性:即在直接启动初期,转子没转动时反电动势为0,启动电流很大,启动力矩也很大,启动电流可达正常工作电流的7倍左右。启动完毕,转子正常转动起来后,反电动势建立,它抵消了输入电压的大部分(可达到85%左右)。因此电流大幅下降(到启动电流的1/7左右),这才是电机额定负荷下的正常工作电流。 也正是这个反电动势的存在,使工作中的电机在断一相时(如C相),A、C或B、C在电机端的线电压并不是0,也不是380V的一半。而是350V左右。此时断了的C相在电机端相电压可达185V左右(此时的线电压、相电压视电机的大小,负荷的轻重等具体情况决定)。大家想想350V左右的电压加在已经吸合的380V继电器上,它会释放吗?当然不会!因此1期18版《电动机缺相保护又一法》一文中的继电器KM绝不会释放。而电机因缺一相电源,另两相电流将大幅增加,大大超过额定电流.时间稍长电机就会因过流而烧毁这两相绕组!但是,如果电机在刚启动时电源就缺一相电,电机就不能启动。如缺A相或B相,继电器KM因断电不能吸合。如缺C相,按下启动按钮SB2,因缺C相电继电器KQ不能吸合,KM也就不会吸合,电机无法启动。因此,只有在这种情况下.这种线路才能起到保护电机的作用。 同样道理,星形接法的三相电机在运转中断相时,因反电动势的存在,电机星形绕组中点电压变动并不大,与零线间电压很小,是无法带动继电器的。至于用电容或电阻星形接法人为找出中点的方法,与把电机星形绕组中心点接出来控制继电器的原理是一样的,是无法在电机运行中断相时用继电器直接保护电机的。 上世纪70年代及80年代就有企业生产过这种根据星形接法电机中心点电位在断相时会有变化的原理,生产专门的保护器来保护电机。虽然用了电子器件放大了星形接法中点的变化量。可起到一定的断相保护。但如灵敏度调低了会不起作用.调高了会因三相电压的不平衡波动、输电线路连接节点的变化及负载的不断变化,一经电子器件放大,即使不断相也会产生误动作。因此效果大打折扣,使用率并不高! 至于如13期20版图中A相,29期18版图中A相,34期18版图中A相或B相,如在电机启动前就已断相,按下启动按钮就属于断相强行启动。如果电机较大,将有很大的电流.在开关或继电器不能启动电机而分断电源时,会有较大电弧产生,极易产生危险损坏设备或伤人! 这几款利用星形接法中点接继电器来保护电机断(缺)相的电路,在电机工作中断相时.如前所述中点与零线间电压增加很小.如果用高电压继电器接在中点与零线间来保护电机,根本不起作用。如在电机工作前就已缺相并正好符合强行启动条件时,如强行启动。中点电压将会很高。用低电压的灵敏继电器是会烧毁的!因此在实际中使用这些线路会带有很大的不确定性和危险性! 现在使用的电机保护器原理是:监测电机三相电流的变化。只要断一相,此相的输入电流就会大幅降为0,保护器就能让电机立即断电停机。如上世纪90年代初泰华电器有限公司生产的JD-5B型电动机综合保护器就很不错。它适用电流宽,整定电流在8A至200A之间。如多次穿线,电流最小可用于4A以下。不但能显示和保护断(缺)相,还能显示和起到过载保护,且价格并不高。 现在科技飞速发展,新出的电机保护器控制部分很多都已经用上了单片机,把数字电路应用到了电机保护中,效果当然不同一般了,不过价格也不一般了。

    时间:2020-09-10 关键词: 异步电机

  • 异步电机无速度传感器交流调速系统调试

    异步电机无速度传感器交流调速系统调试

    本文介绍了一种采用MATLAB及CCS对异步电机无速度传感器交流调速系统进行调试的方法。应用MATLAB语言强大的分析能力和绘图功能,与DSP高速运算的优势相结合,在自行搭建的无传感器矢量控制系统平台进行了调速实验,实验结果表明,采用Matlab调试及直接目标代码生成的方法能避免传统计算机模拟的复杂编程过程,减少了工作量,有助于提高系统的综合效率, 且能够保持系统良好的动静态调速控制性能。 1. 引言 Matlab 是一个强大的分析、计算和可视化工具,特别适用于控制系统的分析和模拟,但由于其依赖 的平台是计算机及其CPU,因而由于CPU 系统功耗的原因,使得MATLAB 程序的执行速度相对于高速信 号的输入/输出显得很慢,远不能满足实时信号处理的要求,而DSP 就其软件的编程能力而言,与单片机 及计算机的CPU 的编程设计方法有类似之处,但DSP 比单片机的运算速度快得多,又比CPU 的功耗及 设计复杂度低得多,但是其分析和可视化能力远不及Matlab,开发过程比较复杂。不过,目前有一种新 的技术,可以将DSP 和Matlab 两者密切结合起来,充分利用两者的特长,有力的促进控制系统的实现。 伺服驱动装置是印刷机无轴传动[3]控制系统中重要的组成部分,国内大部分产品是采用带速度传感器 的专用变频器调速,控制精度不高[4],而国外的产品价格又非常昂贵,由此,本文自行开发了一套基于PI 调节器的无速度传感器矢量控制系统,并且在自行搭建的实验平台进行了调速实验,在实验过程中,运用 了Matlab 与DSP 混合编程的调试方法,实验结果表明,采用Matlab 调试及直接目标代码生成的方法能 避免传统计算机模拟的复杂编程过程,减少了工作量,有助于提高系统的综合效率, 且能够保持系统良好 的动静态调速控制性能,很好地满足了印刷机无轴传动控制系统的要求。 2. 无速度传感器矢量控制系统介绍 由于采用高性能的矢量控制方法且缺省了速度传感器,那么如何准确的获取转速信息,且保持伺服系 统较高的控制精度,满足实时控制的要求,也就成为本课题研究的重要方向。在这里我们采用PI 自适应控 制方法 [9] ,利用在同步轴系中q 轴电流的误差信号实现对电机速度的估算 [9-10] ,整体结构如图1 所示。 角速度给定值ω*与推算角速度反馈值ω 的误差送入速度调节器,速度调节器的输出即为电磁转矩的给定 值te*,由iq1 = LrTe/PmLmФd2 可以计算出电流的q 轴分量给定值iq1*,当q 轴电流没达到设定值时,可由 Rs 产生的q 轴电压和ω1σLs 产生的d 轴电压来调节。因此,iq1*与定子电流q 轴分量的实际值iq1 的误差 信号送入PI 调节器调节器的输出 uq1’为定子电流q 轴分量误差引起定子电压q 轴分量的调节量。 图1 算法原理结构框图 其中速度推算模块以不含有真实转速的转子磁链方程以及坐标变换方程作为参考模型,以含有待辨识 转速的PI 自适应律为可调模型,以定子电流转矩分量作为比较输出量,采用比例积分自适应律进行速度估 计,经过PI 调节后,输出量就是待求的电机转速。这种方法计算量小,结构简单,容易实现。 3. Matlab 与DSP 混合编程的调试方法 在传统的开发过程中,总是先用MATLAB 进行仿真。当仿真结果满意时再把算法修改成C/C++语 言, 再在硬件的DSP 目标板上实现。发现偏差,需要再用Matlab 对算法进行修正,再在DSP 上编写修 正的算法程序。如此过程反复进行,在DSP 的开发工具、Matlab 工作空间之间来回多次切换,非常不 便,当系统比较复杂时,还需要分步验证各个中间结果和最终结果。 如果能够把Matlab 和DSP 集成开发 环境CCS 及目标DSP 连接起来,利用Matlab 的分析能力来调试DSP 代码,那么操作TI DSP 的存储器 或者寄存器就可以像操作Matlab 变量一样简单。工具包Matlab Link for CCS Development Tools 的 使用,可以使上述问题迎刃而解,利用此工具箱,在Matlab 环境下,就可以完成对CCS 的操作,即整 个目标DSP 对于Matlab 像透明的一样,所有操作只利用Matlab 命令和对象来实现,简单、方便、 快 捷。以下用调试上述无速度传感器矢量控制系统的例子来说明Matlab-DSP 集成开发环境在控制系统中的 应用。 在Matlab 命令窗口中输入Simulink, 打开Simulink 模块窗,建立异步电动机矢量控制变频调速系 统的模型[12],如图2 所示,结构简单明了,全部实现模块化,容易扩展,可以根据实际需要,改变每一模 块的参数。 图2 算法原理结构框图 接下来设置仿真参数和Real-TIme Workshop 选项,编译仿真模型。并利用Matlab Link for CCS Development Tools 建立与目标DSP 的连接。利用CCSLink 工具 ,可以把数据从CCS 中传送到 Matlab 工作空间中,也可以把Matlab 中的数据传送到CCS 中,而且通过RTDX(实时数据交换技 术),可以在Matlab 和实时运行的DSP 硬件之间建立连接,在它们之间实时传送数据而不使正在DSP 上 运行的程序停止,这项功能可以在程序运行期间为我们提供一个观察DSP 实时运行状态的窗口,大大简化 了调试工作。Matlab、CCSlink、CCS 和硬件目标DSP 的关系如图3 所示。 图3 CCSlink 把Matlab 和CCS 及目标DSP 连接在一起 我们可以在Matlab 中修改一个参数或变量,并把修改值传递给正在运行的 DSP,从而可以实时地调 整或改变处理算法,并通过观察探针点数据来调试程序。最后把 CCSlink 和Embedded Target for C2000 DSP Platform. 相结合,可以直接由调试好的Simulink 模型生成DSP2812 的可执行代码,并加载 到DSP 目标板中,这样我们就可以在同一的Matlab 环境中完成系统算法的设计、仿真、调试、测试,并 最终在DSP2812 目标板上运行。 4. 系统调试 实验台硬件结构[14-15]如图4 所示,变频器系统用DSP 作为运算控制单元,用IPM 模块作为功率电 路交换单元,用霍尔电流传感器检测电机三相电的两相电流。DSP 控制器在对检测到的电流信号进行相应 的运算处理之后,将PI 控制算法产生的三对SVPWM 脉冲信号,作用于IPM 来驱动异步电机,通过改变 输出脉冲信号的频率来实现异步电动机的变频调速。 图4 系统整体结构框图 电机参数为:Rs=10Ω;Rr=5.6Ω;Ls =0.3119H;Lr=0.3119H;Lm = 0.297H;P = 4;J=0.001kg.m2 通过DSP 与CCS 的连接,可在Matlab 环境下对目标DSP 的存储器数据进行访问,再利用Matlab 强大的分析和可视化工具对其数据进行访问,也可以实现对工程的编译、链接、加载、运行,设置断点和 探点,最后将满意的调试结果生成的目标代码直接加载到实验台上。转速输入设定为一阶跃函数,电机带 额定负载运行,获得的动态响应曲线如下图所示。 图5 实验结果 由图5 可见,d-q 轴电压电流及磁通角响应曲线平稳,在动态过程中,在Matlab 环境下[10]的电机转矩和实际DSP 实验平台下[11-13]的转矩曲线基本一致,系统响应快,且超调量小,只需0.6S 即可 达到稳定。转速的阶跃响应如图5(d)所示,系统在电机起动时有一定的波动,但是在PI 自适应控 制器的作用下,只需0.5S 系统就可以达到稳定状态,证明速度观测器下的转速能够较好地跟踪实际 速度变化,在稳态时实际速度等于仿真速度值。 5. 结论 本文提出的Matlab 下的DSP 集成设计方法确实可行,实验证明:在此环境下可以完成对DSP 目标 板的操作,包括访问DSP 存储器和寄存器等,又可利用Matlab 的强大工具对DSP 存储器中的数据进行 分析和可视化处理,因此系统结构简单,调试工作量小,易于实现。同时,具有一定自适应能力的PI 速度 估算方法能够对电机转速做出准确的估计,实验结果验证了此系统设计方案的正确性和可行性。

    时间:2020-07-30 关键词: DSP 传感器 异步电机

  • 感应电动机与异步电机的区别

    感应电动机与异步电机的区别

    感应电动机,又称“异步电动机”,是将转子置于旋转磁场中,在旋转磁场的作用下,获得一个转动力矩,因而转子转动的装置。转子是可转动的导体,通常多呈鼠笼状。由电气工程师尼古拉·特斯拉于1887年发明。词条介绍了感应电动机的概念、发明者、工作原理、基本结构、工作方式、制动方式、异步特征、规格以及故障检查。 异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。三相异步电机主要用作电动机,拖动各种生产机械,例如:风机、泵、压缩机、机床、轻工及矿山机械、农业生产中的脱粒机和粉碎机、农副产品中的加工机械等等。 结构简单、制造容易、价格低廉、运行可靠、坚固耐用、运行效率较高并具有适用的工作特性。 感应电动机与异步电机的区别 「异步电动机」和「感应电动机」这两个词在电机专业课本中非常常见,并且经常换用。那么这两个词到底有没有区别呢? 1、辞海 辞海收录了「异步电动机」词条(链接),其解释为: 异步电动机,又称「感应电动机」。利用定子与转子间气隙旋转磁场与转子绕组感应电流相互作用的一种交流电动机。其转子转速低于旋转磁场的同步转速。电力传动机械中有90%左右由其驱动。 可见,辞海认为「异步电动机」和「感应电动机」这两个词是等价的。 2、维基百科 维基百科「异步电动机」词条(链接)中给出了异步电动机和感应电动机的区别: 异步电动机是一种交流电动机,其负载时的转速与所接电网频率之比不是恒定值。感应电动机(InducTIon motor)是一种仅有一套绕组连接电源的异步电动机。在不致引起误解和混淆的情况下,一般可称感应电动机为异步电动机。IEC标准中指出:「感应电动机」一词,在许多国家中实际上是作为「异步电动机」的同义词使用,而其他一些国家则只使用「异步电动机」一词来表示这两种概念。 按照维基百科的解释,「感应电动机」仅仅是「异步电动机」的一个子类。 3、教材惯例 在陈伯时的教材「电力拖动自动控制系统」一书中,陈老先生明确在书中指出(第4版,第113页): 交流电动机有异步电动机(即感应电动机)和同步电动机两大类…… 在辜承林老师的「电机学」异步电机章节的开篇中,作者就提出 异步电机是一种交流电机,也叫感应电机,主要作电动机使用…… 可见,陈伯时和辜承林都认为异步电机和感应电机是一回事。 4、中文文献 在知网中,同时搜索主题「异步电机」和「绕线」,有381条结果;同时搜索「感应电机」和「绕线」,有85条结果;同时搜索「异步电机」和「鼠笼」,有495条结果;同时搜索「感应电机」和「鼠笼」,有133条结果;同时搜索「感应电机」和「双馈」,有419条结果;同时搜索「异步电机」和「双馈」,有305条结果。检索结果表明,研究人员在使用这两个词时并没有明确的偏好。 小结 对鼠笼式异步电机和鼠笼式感应电机,上述各种说法之间均相同;对绕线式异步电机,可以在其转子回路中施加电压(双馈),按照维基百科的解释,此时不应该再称之为感应电机。但实际上,从中文文献的关键词的检索结果可以看到,双馈感应电机的说法甚至比双馈异步电机的说法还广。可见,在中文语境中,感应电机和异步电机完全等同。

    时间:2020-07-28 关键词: 电动机 感应电动机 异步电机

  • 浅谈永磁同步电机与异步电机的区别

    浅谈永磁同步电机与异步电机的区别

    永磁同步电机 永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流,此时转子动能转化为电能,永磁同步电机作发电机用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120度,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机用。 异步电机 当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。感应电流和磁场的联合作用向电机转子施加驱动力。 永磁电机和异步电机的区别 1、效率高 这里所说的效率高不仅仅指额定功率点的效率离于普通三相异步电机,而是指其在整个调速范围内的平均效率。永磁同步电机的励磁磁场由永磁体提供,转子不需要励磁电流,电机效率提高,与异步电机相比,任意转速点均节约电能,尤其在转速较低的时候这种优势尤其明显。 2、启动转矩 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起倍1.8倍上升到2.5倍,甚至更大。 3、对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。 4、体积小,重量轻 由于使用了高性能的永磁材料提供磁场,使得永磁电机的气隙磁场较感应电机大先增强,永磁电机的体积和重最较感应电机可以大大的缩小。例如11kW的异步电机重最为220kg,而永磁电机仅为92kg,相当于异步电机重量的45.8%。

    时间:2020-06-22 关键词: 永磁同步电机 发电机 异步电机

  • 从结构特点性能三个方面比较永磁同步电机与异步电机

    从结构特点性能三个方面比较永磁同步电机与异步电机

    永磁同步电机 结构 永磁同步电机主要是由转子、端盖及定子组成,一般来说,永磁同步电机的最大特点是它的定子结构与普通的感应电机的结构非常的相似,主要是区别于转子的独特结构与其它电机形成了差别。和常用的异步交流电机的最大不同则是转子独特的结构,在转子上放有高质量的永磁体磁极。 特点 (1)本身的功率效率高以及功率因数高 (2)发热小,因此电机冷却系统结构简单、体积小、噪声小 (3)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护 (4)允许的过载电流大,可靠性显著提高 (5)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大 (6)由于没有齿轮箱,可对转向架系统随意设计:如柔式转向架、单轴转向架,使列车动力性能大大提高。 性能 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1。从永徽同步电机与异步电机的效率及功率因数曲线(下图)可以看出,永磁同步电机在负载率》20%时,其运行效率和运行功率因数随之变化不大,且运行效率》80%。 异步电机 结构 异步电动机的结构可以分为定子、转子两大部分,此外还有端盖、风扇等附属部分。定子就是电机中固定不动的部分,转子是电机旋转部分。由于异步电动机的定子产生励磁旋转慈场,同时从电源吸收电能,并产生且通过旋转磁场把电能转换成转子上的机械能,所以与直流电机不同,交流电机定子是电枢。另外,定、转子之间还必须有一定的间隙(称为空气隙),以保证转子自由的转动。 特点 (1)三相交流异步电动机具有结构简单、运行可靠 (2)价格便宜、过载能力强 (3)使用、安装、维护方便等特点 性能 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(下图)可以看出,异步电动机在负载率(=P2/Pn)《50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。

    时间:2020-06-22 关键词: 永磁同步电机 齿轮箱 异步电机

  • 基于SVPWM的异步电机矢量控制模型设计方案浅析

    基于SVPWM的异步电机矢量控制模型设计方案浅析

    引言 在交流电机变频调速中pwm控制已经得到了日益广泛的应用,其中经典的正弦脉宽调制(spwm),它主要着眼于使逆变器输出的电压尽量接近正弦波,使pwm电压波的基波成分尽量大,谐波成分尽量小,但是该方法仅仅是一种近似,抑制谐波的能力有限。而电压空间矢量脉宽调制(svpwm)是把逆变器和电机视为一体,控制电机获得幅值恒定的圆形旋转磁场。它能够明显地减少逆变器的输出电压的谐波成分及电动机的谐波耗损,降低了转矩的脉动。本文根据矢量控制和svpwm调制原理,建立了仿真模型,并对仿真中的关键问题和仿真结果进行了分析。 系统仿真模型的建立 基于svpwm的矢量控制模型 图1为位置伺服控制系统框图,该系统通过clarke变换和park变换将检测到的三相定子电流变换成同步旋转坐标系下的直流分量id、iq作为电流反馈。给定位置与位置反馈的偏差值经过p调节器,输出作为用于转速控制的转速输入,位置环的输出与反馈转速的偏差经pi调节器,输出作为用于转矩控制的电流q轴分量,和通过变换计算的电流d轴分量,与电流反馈的偏差经pi调节器分别输出q、d同步旋转坐标轴下的电压分量vq、vd、vq、vd再经过park逆变换转换成两相静止坐标系下的电压分量vα、vβ。最后采用svpwm技术产生pwm控制信号来控制逆变器。 根据svpwm矢量控制的原理,在matlab/simulink下建立系统的仿真模型,如图2所示。整个仿真模型主要由电机本体模块、逆变器模块、svpwm生成模块、矢量变换模块、转子磁链位置观测模块等几部分组成。为了使仿真模型更加接近于实际系统,仿真模型中的电机和逆变器模型采用matlab/simulink中simpowersystems模块中的模型,相当于实际系统中的硬件部分。而其他模型是利用simulink中各个基本模块搭建起来的子系统,并通过封装技术将其封装而成,在实际系统中可以利用软件实现。 位置、转速及电流pi调节器 在系统中有四个pi调节器,分别是位置p调节器,转速pi调节器,转矩电流pi调节器,励磁电流pi调节器。这四个pi调节器的输出都需要限幅,其中位置调节器输出的限幅值为电机能够输出的最大转速,转速调节器输出的限幅值为电机能够输出的最大转矩,两个电流pi控制器的限幅为电压空间矢量的最大电压。另外,这四个pi调节器参数的设置是关系到系统能否稳定的关键,也是系统仿真调试时的难点。因为四个pi调节器是相互关联的任何一个调节器参数的变化都会引起系统的不稳定。对于这四个pi控制器参数的调试经验非常重要,首先根据经验确定四个pi控制器参数的大致范围;然后在这一范围内慢慢调,一般情况下外环即位置环的p参数对系统的影响较为明显,所以一般情况下pi参数的调节顺序为先外环(位置)后内环(电流环),先比例系数后积分系数。 仿真实验中,通过反复的调试,最后得到的各个pi参数如下: 位置p调节器kp=20; 转速pi调节器kp=10,ki=5; 转矩电流pi调节器kp=200,ki=70; 励磁电流pi调节器kp=200,ki=70。 svpwm生成模块 svpwm生成模块是该仿真系统中的关键部分,该模块以电压矢量两相静止坐标系的分量vα、vβ作为输入内部给以开关周期tpwm信号,其内部通过电压矢量区间判断,根据输入量产生x、y、z,然后计算功率器件导通时间,再由区间信号及导通时间产生的svpwm脉冲信号控制逆变器的工作模式,结构如图3所示。 仿真结果及分析 仿真参数为三相异步电机额定电压400v,频率为50hz,rr=1.395ω,rs=1.405ω,l1r=0.005839h,l1s=0.005839h,lm=0.1722h,电机极对数p=2,电机额定功率pn=4kw,转动惯量j=0.0131kg·m2。仿真结果如图4所示。 结语 仿真结果表明,在带负载情况下,系统具有良好的动态跟随性,能很快达到稳定运行状态,也证明本文中设计的位置伺服矢量控制系统的可行性。

    时间:2020-06-09 关键词: svpwm 异步电机

  • 相对永磁同步电机,特斯拉为何热衷异步电机

    相对永磁同步电机,特斯拉为何热衷异步电机

    永磁电机,使用永磁体做转子,是同步电机,效率相对会比异步电机高点,从力矩的控制角度而言,控制效果会好很多,如果使用那种方波形式,调速器的结构也会比异步电机简单,这也是电动车基本上都使用永磁电机的根本原因,放眼全球,似乎只有特斯拉等少部分厂家使用了异步电机,而其他厂家,几乎都使用永磁同步电机。 异步电机,自从发明家特斯拉改进性发明以来,结构一直比较稳定,而且非常简单可靠,维修容易,制造和维护成本非常低,这是它在工业场合广泛应用的根本原因。 但是异步电机的调速系统,很长时间都没有突破,异步电机,基本上局限于定速场合,一直到上个世纪80年代以后,因为功率关键技术突破,IGBT等产品上市了,变频器调速出现了,异步电机的调速才得到了大规模的应用,在国内使用异步电机变频调速,也是上个世纪末才开始的。矢量和直接转矩控制技术成熟后,异步电机的调速性能已经和有刷直流调速媲美了,中小型的异步电机调速系统,性价比也赶超了有刷直流电机。 在性能和价格都突破的前提下,特斯拉以往的车用电机,就大胆使用了异步电机来做车子的动力心脏。虽然异步电机效率低点,但是因为稳定可靠,对于车载恶劣环境下,使用它还是有优势的,而特斯拉的异步电机,使用了铜转子(普通异步电机一般使用铝转子),这样能提升一点效率。 而永磁同步电机,虽然成本会贵点,效率始终会高于异步电机。永磁同步电机,需要用到稀土材料,中国是稀土大国,在应用这种电机时候,有成本优势,这也是国内几乎所有的车企,都使用永磁同步电机的重要原因。 看满大街跑的小电驴,也使用了永磁同步电机,调速系统简单,虽然电机贵点,但是调速器成本降低了,综合起来,反而会性价比更高。 在电池容量迟迟没有突破前提下,续航里程是电动车的焦虑重点,使用同步电机,可以让车子在同样容量电池下能跑出更远的里程,相信这也是特斯拉也使用永磁同步电机的最根本原因。 但是永磁同步电机,也有软肋,因为稀土材料都怕高温,车载环境温度比较高,使用时间长了,会有丢磁的问题存在,这样会让电机扭矩下降,功耗增加,所以如何让电机运行温度低,也是各车企头痛的问题了,想想当年的有刷直流电机,虽然调速性能出色,效率也很高,但是因为碳刷维护麻烦问题,所以逐步退出很多市场了。永磁体如果不能处理好可靠性问题,也变成成为使用者的另外一个“碳刷”。很多小电驴,使用一段时间后,的确会出现电机退磁问题,这也是给消费者带来了很大的不方便了。 还有一种情况,稀土材料目前生产,绝大部分集中在中国,稀土本身也是一种资源材料了,逐年成本加贵,如果大家都是使用永磁同步电机生产汽车,很可能会让稀土价格猛涨,生产成本会成为一个大问题,但是异步电机,并不存在这个问题了。

    时间:2020-05-14 关键词: 特斯拉 永磁体 同步电机 异步电机

  • 浅谈永磁同步电动机的节能原理

    浅谈永磁同步电动机的节能原理

    一、异步电机(感应电机)的工作原理是通过定子的旋转磁场在转子中产生感应电流,产生电磁转矩,转子中并不直接产生磁场。因此,转子的转速一定是小于同步速的(没有这个差值,即转差率,就没有转子感应电流),也因此叫做异步电机。而智能工业电机转子本身产生固定方向的磁场(用永磁铁或直流电流),定子旋转磁场“拖着”转子磁场(转子)转动,因此转子的转速一定等于同步速,也因此叫做同步电机。智能工业电机的转速n始终为n=60f/p不变,式中f为设定频率,p为电机极对数。 由于不需要从电网吸收无功电流,转子上既无铜耗又无铁耗,所以同步电机在很宽的负载范围内能保持接近于1的功率因数,机器效率比同容量的异步电动机提高8%左右,力能指标(ηXcosΦ )提高18%左右。 二、智能工业电机的功率密度比同容量的异步电动机提高25%左右。同样功率的电动机,智能工业电机要比异步电动机小2个机座号,体积小意味着铁损小,以及机械损耗小。 三、智能工业电机比同功率的异步电动机效率高,同时高效区宽,智能工业电机的转速范围在25%-990%额定转速时,效率达到95%-97%,而异步电动机的转速范围在70%-99%额定转速时,效率只有88%,当转速低于70%额定转速时,效率会急剧下降。 四、智能工业电机和异步电机在不同转速情况下的转矩比较 五、异步电机起动时,电流是额定电流的6-7倍,对电动机寿命不利,为了达到需要的扭矩,甚至还有加大电机型号,而电机运行时处于低负荷工作,效率降低。而智能工业电机启动时,电流是逐渐增加的,不会超过额定电流,扭矩也能达到额定扭矩,没有电流冲击,延长了使用寿命,电机处于合理的负荷工作。 节能原理说明六 永磁同步电动机转速控制精准。 在转速要求高的场合有更大的优势。

    时间:2020-05-14 关键词: 永磁电机 工业电机 异步电机

  • 浅谈电动机工作模式分类及原理

    浅谈电动机工作模式分类及原理

    电机的工作制表明电机在不同负载下的允许循环时间。电动机工作制为:S1~S10; 其中: (1)S1工作制:连续工作制,保持在恒定负载下运行至热稳定状态;简称为S1; (2)S2工作制:短时工作制,本工作制简称为S2,随后应标以持续工作时间。如S2 60min; (3)S3工作制:断续周期工作制,按一系列相同的工作周期运行,每一周期包括一段恒定负载运行时间和一段停机、断能时间。本工作制简称为S3,随后应标以负载持续率,如S3 25%; (4)S4工作制:包括起动的断续周期工作制。本工作制简称为S4,随后应标以负载持续率以及折算到电机轴上的电机转动惯量JM、负载转动惯量Jext,如S4 25% JM=0.15kg.m2, Jext=0.7 kg.m2; (5)S5工作制:包括电制动的断续周期工作制。本工作制简称为S5,随后应标以负载持续率以及折算到电机轴上的电机转动惯量JM、负载转动惯量Jext,如S5 25% JM=0.15kg.m2, Jext=0.7 kg.m2; (6)S6工作制:连续周期工作制。每一周期包括一段恒定负载运行时间和一段空载运行时间,无停机、断能时间。本工作制简称为S6,随后应标以负载持续率,如S6 40%; (7)其他还有: S7工作制:包括电制动的连续周期工作制; S8工作制:包括负载-转速相应变化的连续周期工作制; S9工作制:负载和转速作非周期变化的连续周期工作制; S10工作制:离散恒定负载工作制。 电机可以运行直至热稳定,并认为与S3~S10工作制中的某一工作制等效 电动机的工作原理: 电动机(Motors)是把电能转换成机械能的一种设备。它是利用通电线圈(也就是定子绕组)产生旋转磁场并作用于转子鼠笼式式闭合铝框形成磁电动力旋转扭矩。 电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。 电动机主要由定子与转子组成,通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。

    时间:2020-05-14 关键词: 电动机 同步电机 交流电机 电机 异步电机

  • 三相异步电机绕组短路现象及处理方法

    三相异步电机绕组短路现象及处理方法

      三相异步电机绕组短路现象   (1)外部观察法。观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。   (2)探温检查法。空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。   (3)通电实验法。用电流表测量,若某相电流过大,说明该相有短路处。   (4)电桥检查。测量个绕组直流电阻,一般相差不应超过5%以上,如超过,则电阻小的一相有短路故障。   (5)短路侦察器法。被测绕组有短路,则钢片就会产生振动。   (6)万用表或兆欧表法。测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。   (7)电压降法。把三绕组串联后通入低压安全交流电,测得读数小的一组有短路故障。   (8)电流法。电机空载运行,先测量三相电流,在调换两相测量并对比,若不随电源调换而改变,较大电流的一相绕组有短路。      三相异步电机绕组短路的处理方法   (1)短路点在端部。可用绝缘材料将短路点隔开,也可重包绝缘线,再上漆重烘干。   (2)短路在线槽内。将其软化后,找出短路点修复,重新放入线槽后,再上漆烘干。   (3)对短路线匝少于1/12的每相绕组,串联匝数时切断全部短路线,将导通部分连接,形成闭合回路,供应急使用。   (4)绕组短路点匝数超过1/12时,要全部拆除重绕。

    时间:2020-05-13 关键词: 三相异步电机 异步电机

  • 三相电机额定50HZ,工作在变频70Hz会有什么情况发生?

    三相电机额定50HZ,工作在变频70Hz会有什么情况发生?

    普通电机可以使用变频器吗? 普通的三相异步电机,当然都可以使用变频器了,看变频器的主要市场占有率,还是重点落在在风机水泵类和一些简单传送的场合,这些场合都使用了普通的三相异步电机,变频器能在短短几十年时间内普及,当然是靠着能解决掉普通三相异步电机的调速问题来成为最重要的工业调速系统的,毕竟普通三相异步电机在工业市场里边占有率是非常高的,很多年前的数据是说超过7成,现在随着变频器带来的便利解决了很多问题可能占有率还要高很多。 普通电机可以使用变频器。不过值得注意,普通电机的额定频率为50Hz,冷却风扇、轴承及机座都是按照50HZ定频、输出转矩设计的。 变频器驱动三相交流异步电动机最大的优点就是可以在设置的上限频率下,进行无极调速; 首先我们来了解一下普通电机的转速的问题;这里就普通四极电机来说,三相交流异步电动机的转速计算公式为: n=60f/p;其中n表示电动机的转速(转r/分min);60则表示每分钟(秒s); f则表示电源频率(赫兹Hz); p则表示电动机的磁场极对数。正常四极三相电机转速为1450r/min;假如现在要求普通电机运行高于50Hz,达到频率为70Hz时,根据计算公式 n=60fp=60×70/2=4200/2=2100r/min;频率上升20Hz,转速增加了600r/min,平均每秒钟增加10转。即使是不超载,普通电机时间稍微一长,电机会发热温度烧毁绕组线圈或由于转速增加而损坏轴承。 三相电机额定50HZ,工作在变频70Hz会有什么情况发生? 很多变频器,可以输出0-400HZ的频率,对于一些主轴电机,的确可以在这个频率下运行的,不过是特殊的电机了,普通的异步电机,一般都不能超频到100HZ来使用了,主要问题是轴承承受不了,但是70HZ以下,完全是可以长期工作使用的。 实际上,对比异步电机的高频运转,异步电机更加要避免工作在低频状态,一般不宜低于8HZ下工作,主要是变频器使用斩波形式来输出方波模拟正弦波效果,低频时候脉冲个数少了,模拟的效果很差,电机会发热而且无力,转速波动很大。所以很多厂家设计的电机调速范围,一般都要避免运行在低频状态下,而让电机工作在高频状态,这样电机反而会工作得好。 电机在高频状态下,除了轴承会有影响外,似乎没有太多问题,只要扭力足够,避免让电流超过额定电流,运行起来会转速非常平稳。所以特斯拉汽车在使用变频器控制电机的时候,也是避免让电机低频运转,而是让电机工作在高频状态,然后通过一个齿轮来让高转速降低下来,保证扭矩和车轮的工作转速范围。 异步电机一般是靠轴来带动风机自我冷却,电机转速越高,风扇的转速越快,冷却效果反而会好很多。实践中也有一些偶尔开的设备,使用了100多HZ甚至200HZ的频率来运转普通异步电机,这样不是长期使用,也没有什么问题。 当然,超过50HZ的工作频率,电机处于恒功率调速状态,也就是转速越高,电机输出的扭力会越小,扭矩和转速是反比例关系,这时候需要考虑负载是否能拖动得了,一般就是保证电机的工作电流不要超过额定电流就可以,,当然如果电机温度随着频率增高而变高,也要考虑单独的散热措施。 还有一种情况,频率越高,电机声音会越大,噪音污染严重,对于长期在设备边上工作的人而言,会引起听力受损,所以建议使用带着耳塞来工作。 目前电机的倍频运行能去到多少,实际上很多都是经验数字,牌子不同效果也会有差异, 在机床行业和木工旋切机设备上,可以说全部都是超频运行,一般的经验值如下: 2极电机为20——65hz范围内长期运行。 4极电机为25——75hz范围内长期运行。 6极电机为30——85hz范围内长期运行。 8极电机为35——100hz范围内长期运行。 讲白了,主要是考虑机械强度问题,如果材质好,绝缘等次高,动平衡理想,长期运行100HZ是不会有问题的,当然一般说的是进口电机了,国产的还是建议控制在70HZ以内了。

    时间:2020-05-13 关键词: 变频器 三相电机 异步电机

  • 变频器在变频调速时对普通异步电机的影响

    调速电机就其设计初衷而言是专为交流调速而用的,但是变频调速的兴起最直接的原因就是普通异步电机简单的结构、低廉的成本和方便的调速。如果说变频调速必须要配用变频专用电机的话,那么就产生了一个矛盾,变频调速固有的简单、坚固、耐用性不是没有了吗?变频调速时对电机及其效能产生的影响变频调速不论采用什么样的控制方法其输出到电机端上的电压脉冲是非正弦的。所以普通异步电机在非正弦波下的运行特性分析就是变频调速时对电机产生的影响。主要有以下几个方面:电机的损耗和效率非正弦电源下运行的电机,除了基波产生的正常损耗外,还将出现许多附加损耗。主要表现在定子铜损、转子铜损和铁损的增加,从而影响电机的效率。1、定子铜损在定子绕组中出现的谐波电流使I2R及增加。当忽略集肤效应时,非正弦电流下的定子铜损与总电流有效值的平方成比例。如定子相数为m1,每相定子电阻为及R1,则总的定子铜损P1为把包括基波电流在内的总定子电流有效值Irms代入上式,可得式中的第二项代表谐波损耗。通过实验发现,由于谐波电流的存在和与之相应的漏磁通的出现,使漏磁通的磁路饱和程度增加,因而励磁电流增大,从而使电流的基波成分也加大。2、转子铜损在谐波的频率下,一般可以认为定子绕组的电阻为常数,但对于异步电机的转子,其交流电阻却因集肤效应而大大增加。特别是深槽的笼形转子尤为严重。正弦波电源下的同步电机或磁阻电机,由于定子空间谐波磁势很小。在转子表面绕组中引起的损耗可忽略不计。当同步电机在非正弦电源下运行时。时间谐波磁势感应出转子谐波电流,就像接近其基波同步转速运行的异步电机那样。反向旋转的5次谐波磁势和正向旋转的7次谐波磁势都将感应出6倍于基波频率的转子电流,在基波频率为50Hz时,转子电流频率为300Hz.同样,第11次和第13次谐波感应出12倍于基波频率,即600HZ的转子电流。在这些频率下,转子的实际交流电阻远远大于直流电阻。转子电阻实际增大多少取决于导体截面和布置导体的转子槽的几何形状。通常的长宽比为4左右的铜导体,在50Hz时交流电阻与直流电阻之比为1.56,在300Hz时比值约为2.6;600Hz时比值约为3.7.频率更高时,此比值随频率的平方根成比例增加。3、谐波铁损电机中的铁心损耗也由于电源电压中出现谐波而增大;定子电流的各次谐波在气隙间建立了时间谐波磁动势。气隙中任何一点的总磁势是基波和时间谐波磁势的合成。对于一个三相6阶梯电压波形,气隙中的磁密峰值比基波值约大10%,但是由时间谐波磁通引起的铁损的增加是很小的。对于端部漏磁通和斜槽漏磁通产生的杂散损耗,在谐波频率作用下将有所增加,这一点在非正弦供电时必须考虑:端部漏磁效应在定子和转子绕组中都存在,主要是漏磁通进入端板引起的涡流损耗。由于定子磁势和转子磁势间相位差的变化,在斜槽结构中产生斜槽漏磁通,其磁势在端部最大,在定转子铁心及齿中产生损耗。4、电机效率谐波损耗的大小

    时间:2018-10-31 关键词: 变频器 电源技术解析 变频调速 铁心损耗 异步电机

  • 基于DSP控制的三电平变频器的研究

    基于DSP控制的三电平变频器的研究

    0 引言 三电平逆变器相对于传统的两电平而言,它可以使主开关器件的电压降低一半。由于输出多了一个电平,可以使du/dt 降低一半,从而使输出电压谐波减小,有利于实现输出电压波形的正弦化,特别适合于高压大容量的电力电子变换系统。它普遍采用空间电压矢量脉宽调制的控制策略,将DSP数字控制技术应用于三电平逆变器,不仅简化了系统的硬件结构,提高了系统性能,还可以实现系统的优化控制。 1 系统结构 1.1 系统的主电路结构 图1为变频器主电路结构图,它大体上由4 部分组成:二极管组成的AC/DC整流器;IGBT 构成的DC/AC逆变器;电压和电流信号采样检测电路和由DSP 组成的控制电路。主电路采用了传统的交—直—交变频结构,整流部分采用12 脉波二极管整流电路,逆变部分采用二极管箝位逆变电路,它是由日本学者Ajura Nabae 教授于1981 年提出来的,并且得到了广泛应用。这种电路通过多个功率器件串联,按一定的开关控制产生需要的电平级数,在输出端合成相应的正弦波。 三电平变频器的整流电路标准配置为12脉波整流电路(即输入变压器为三绕组,二次采用D和Y接法,两组二次绕组对应线电压之间的相位差为π/6,从而使整流后的电压波形具有12个脉波,同时大大减少了整流器产生的谐波电流),而输入侧采用谐波滤波器可以进一步减少整流器产生的谐波电流。 由于箝位二极管把开关器件两端的电压限制在直流母线电压的一半,所以相对于两电平逆变器,三电平电路中的开关器件所承受的电压应力大大减轻,而输出功率增加了一倍。 1.2 驱动电路的设计 IGBT 驱动电路选择的合理性和设计的正确性对功能的实现极其重要。IGBT 的通态电压、开关时间、开关损耗、承受短路能力等参数均与门极驱动条件密切相关。 IGBT 的驱动电路包括电气隔离和晶体管放大电路两部分,多采用专用的混合集成驱动器,常用的有三菱公司的M579系列(如M57962L 和M57959L)和富士公司的EXB系列(如EXB840、EXB841、EXB850和EXB851),其内部具有退饱和检测和保护环节,当发生过电流时能快速响应,慢速关断IGBT,并向外部电路给出故障信号。本次设计选用三菱公司的M57962L,正驱动电压均为+15V左右,负驱动电压为-10V,如图2所示。本次设计共有12路这样的驱动。 2 变频器设计基本原理 2.1 三电平空间电压矢量PWM(SVPWM) SVPWM控制技术最初源于电动机磁链跟踪技术。这种方法是从电动机的角度出发,其目标是使交流电动机产生圆形磁场。在交流电机调速系统中,为了产生恒定的电磁转矩,必须保证定子电流产生圆形旋转的磁场,这种以产生圆形旋转磁场为目标,合理控制开关导通和关断的PWM控制就是磁链跟踪技术。磁链的轨迹是靠电压空间矢量相加得到,因此 这种控制方法也称为电压空间矢量控制。 当用三相平衡的正弦电压向交流电动机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转磁场(磁链圆)。因此如果有 一种方法使逆变电路能向交流电动机提供可变频电源、并能保证电动机形成定子磁链圆,就可以实现交流电动机的变频调速。 三电平电压型逆变电路如图3 所示。三电平逆变器的每一个桥臂上有4 个开关管、4个反向恢复二极管和2个箝位二极管。 通过控制开关管Vi1、Vi2、Vi3、Vi4(其中i=a、b、c) 的开通和关断可以在该i桥臂输出三种不同的电平,即Udc/2、0、- Udc/2。当一个桥臂上Vi1、Vi2 两管导通,Vi3、Vi4两管关断时,开关状态Si为1,桥臂输出电压为Udc/2;Vi2、Vi3两管导通,Vi1、Vi4两管关断时,开关状态Si为0,桥臂输出电压为0;Vi3、Vi4两管导通,Vi1、Vi2两管关断时,开关状态Si为-1,桥臂输出电压为- Udc/2,每相的开关状态有3种即1、0、-1。因此三相三电平逆变器有27 种开关状态,其中有效的有19种,称为基本电压空间矢量。按照空间矢量幅值大小可分把基本电压空间矢量为四类:零电压空间矢量(零矢量)v0;小电压空间矢量(小矢量)v1、v4 、v7、v10、v13、v16;中电压空间矢量(中矢量)v3、v6、v9、v12、v15、v18;大电压空间矢量(大矢量)v2、v5、v8、v11、v14、v17。其中零电压空间矢量对应三个开关状态(1 1 1)、(0 0 0)、(-1 -1 -1),每个小电压空间矢量都有两种开关状态,电压空间矢量图如图4所示。 2.2 恒U/f控制原理 在进行电机调速时,要获得良好的性能指标,须保持磁通量椎m额定不变。如果磁通太弱就没有充分利用电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁芯饱和,过大的励磁电流使绕组过热而损坏电机。 三相异步电动机的每相电动势的有效值为 要保持磁通量额定不变,变频调速中须维持E/f= 常数。但是,电机定子气隙电势难以直接测量、控制。 因此,变频器要维持恒磁通,只要使U与f成比例改变即可。该控制方式简称恒U/f控制。 3 控制策略 3.1 系统的控制结构 普通变频器一般采用速度开环变压变频控制,如图5所示。 该系统采用电压空间矢量调制技术实现变压变频控制,可以由开环给定一个频率值或者由系统中的某一参数和其反馈值经过PI 调节得到系统的输出频率,通过U/f曲线得到一个电压值,再由SVPWM波形发生器产生SVPWM触发脉冲,这样就可以通过改变功率器件IGBT 的占空比实现对输出电压的控制,通过控制逆变桥的工作周期来控制输出频率。在整个控制系统中,主要包括频率斜坡函数发生器、U/f函数发生器、电流限制调节器、电压限制调节器、转差补偿、低频阻抗压降补偿、PI 调节等控制环节。图5中的控制部分主要由数字化来实现,其控制核心由数字化信号处理器(DSP)完成。其时钟频率为40 MHz。 3.2 DSP的选型 DSP是一种特别适合于进行数字信号处理运算的微处理器,其内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速地实现各种数字信号处理算法。 为了满足三电平逆变器的控制要求和SVPWM控制算法运算量大及实时电压、电流检测、分析和计算的特点,结合本系统需要较强的数字信号处理能力和DSP应用普及程度,DSP选用TMS320LF2407A。 3.3 系统的软件设计 为了获得良好的运行效果,合理地编制控制软件是十分重要的。在软件设计时,为了调试方便,系统软件采用模块化结构,即每一模块完成一定的功能。程序由主程序、ADC中断服务子程序、功率驱动保护(PDPINT)中断服务子程序和PWM 中断服务子程序组成,其流程图如图6和7所示。 主程序的工作主要是完成初始化,并对启动、停止按钮状态及过流过压查询。 ADC 中断服务子程序的工作是采样电压、电流信号。 功率驱动保护(PDPINT)中断服务子程序的工作是封锁PWM输出,保护功率器件。 PWM 中断服务子程序的工作如下: 1)确定参考电压矢量的大小和角度,判断矢量属于哪个扇区,大的扇区比较容易判断,只要判断大小就可以确定在哪个大扇区; 2)确定参考电压矢量属于哪个小三角形区中; 3)根据所在小三角区位置确定该扇区参考电压矢量对应的空间矢量,计算各个对应空间矢量的作用时间; 4)再根据电压的比较(采样电压的大小)对控制因子调整,合理分配小矢量的作用时间,合理安排脉冲顺序; 5)根据参考电压矢量的幅值确定开关模式; 6)根据开关模式把相对应矢量作用时间写入对 应的比较寄存器中。 4 实验结果 根据前面介绍的系统硬件电路和软件控制算法,对制作的原理样机进行了实验研究。实验测试了异步电动机轻载稳态运行情况,以此来检测原理样机的可行性,对实验结果进行了波形记录,如图8、图9、图10所示。实验用电机的参数如下:额定电压Un=380 V,额定电流In= 4.87 A,额定频率f=50 Hz,额定功率Pe=2 200W。 实验过程测试了在不同频率输出时电机的电流,从实验波形可以看出,其输出电流是正弦波,由于采用了死区补偿,即使在低频时,波形的畸变也不大。这和前面分析的理论相一致。但从实验波形也可看出,有谐波产生,产生谐波的原因主要来自以下几个方面:第一,利用DSP产生的SVPWM波形,不能严格保证输出的PWM波形的面积与理想中相对应的正弦波面积完全相等;第二,SVPWM波形控制方法本身不可避免地造成逆变器输出波形有所失真;第三,功率开关器件存在固有的开通与延时时间。

    时间:2018-09-04 关键词: DSP 变频器 控制 三电平 驱动开发 异步电机

  • 异步电机与变频电机的区别

    摘要:大家都知道变频电机是异步电机的一种,也知道异步电机可以用变频器来进行控制。那么问题来了,一个普通的异步电机支持变频器来驱动,那它是不是等于一个变频电机呢?   答案肯定是不一样的。让我们来看一下异步电机与变频电机的发展史: 电机深深的走入了我们的生活,可以说它是无处不在,而我们用的最为普遍的就是异步电机。随着时代的发展,工作在工频下的异步电机已经迈向了变频时代,大大的提高了异步电机的发展空间。   我们都知道普通的异步电机只能在AC380V/50HZ的条件下运行,可以在标准的正弦波下工作。其基本特点是转子绕组不需与其他电源相连,定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高,重量轻,成本低。有人说变频电机不就是在异步电机的基础上加了个变频器么,反正都能工作。看他们的工原理这样说好像是对的,其实不然,变频电机的各项指标设计都不同于普通的异步电机。   图1 变频电机的成长充满了坎坷。从字面上我们可以有个初步的了解,即为频率可以改变的电机,普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求,变频电机,通过变频器调制输出波形来控制电机的工作状态。PWM的控制方式。他的载波频率约为几千到十几千赫,可以说它打破了电机只能在工频电路工作的这一个局限,大大的提高了工作效率。   图2 变频器对电机的影响: 1、电动机的效率和温升的问题 2、电动机绝缘强度问题 3、谐波电磁噪声与震动 4、电动机对频繁启动、制动的适应能力 5、低转速时的冷却问题 只有克服了这些问题才能够正常的工作,为了能够有更高性能的变频电机,人们就要在变频器的影响下能够让电机有更好的工作效果,就要克服很多问题,通过变频器输出控制电机的工作状态。由于其具有较宽的工作范围,可在0.1HZ ~ 130HZ范围内长期运行。同时变频器输出的PWM调宽波模拟正弦交流电,含有大量谐波,处理不当会严重的影响电机的寿命。   图3 在结构设计上,由于绕组的冲击电压很高,就要加强对地绝缘和线匝绝缘强度。电机的振动、噪声方面要考虑电动机构件及整体的刚性,以避开与各次力波产生共振现象。散热时要采用主电机散热风扇有独立的电机驱动。电磁设计上要减小定子电阻,即需要降低基波铜耗,以弥补高次谐波引起的铜耗增加,为抑制电流中的高次谐波,适当增加电动机的电感,保证整个调速范围内做到阻抗匹配。做到这些才达到了变频电机的刚性需求。 异步电动机,变频电动机各有特点,为了更合理的选择电机,要根据工作方式、实际的工作环境,等一系列的条件。由于变频电机的机械结构,电气参数的设计都不同于异步电机。而根据更苛刻的工作方式与要求,变频电机胜任的几率更大,但是成本较高。为了让能能更好的测试电机的性能参数,ZLG致远电子MPT 电机测试系统独创“自由加载引擎”技术,可以满足对电机和驱动器的瞬态测量需求,推动行业的发展。

    时间:2015-12-09 关键词: 变频电机 异步电机

  • 基于SVPWM的异步电机位置伺服控制系统研究与仿真

     引言 在交流电机变频调速中pwm控制已经得到了日益广泛的应用,其中经典的正弦脉宽调制(spwm),它主要着眼于使逆变器输出的电压尽量接近正弦波,使pwm电压波的基波成分尽量大,谐波成分尽量小,但是该方法仅仅是一种近似,抑制谐波的能力有限。而电压空间矢量脉宽调制(svpwm)是把逆变器和电机视为一体,控制电机获得幅值恒定的圆形旋转磁场。它能够明显地减少逆变器的输出电压的谐波成分及电动机的谐波耗损,降低了转矩的脉动。本文根据矢量控制和svpwm调制原理,建立了仿真模型,并对仿真中的关键问题和仿真结果进行了分析。 系统仿真模型的建立 基于svpwm的矢量控制模型 图1为位置伺服控制系统框图,该系统通过clarke变换和park变换将检测到的三相定子电流变换成同步旋转坐标系下的直流分量id、iq作为电流反馈。给定位置与位置反馈的偏差值经过p调节器,输出作为用于转速控制的转速输入,位置环的输出与反馈转速的偏差经pi调节器,输出作为用于转矩控制的电流q轴分量,和通过变换计算的电流d轴分量,与电流反馈的偏差经pi调节器分别输出q、d同步旋转坐标轴下的电压分量vq、vd、vq、vd再经过park逆变换转换成两相静止坐标系下的电压分量vα、vβ。最后采用svpwm技术产生pwm控制信号来控制逆变器。 根据svpwm矢量控制的原理,在matlab/simulink下建立系统的仿真模型,如图2所示。整个仿真模型主要由电机本体模块、逆变器模块、svpwm生成模块、矢量变换模块、转子磁链位置观测模块等几部分组成。为了使仿真模型更加接近于实际系统,仿真模型中的电机和逆变器模型采用matlab/simulink中simpowersystems模块中的模型,相当于实际系统中的硬件部分。而其他模型是利用simulink中各个基本模块搭建起来的子系统,并通过封装技术将其封装而成,在实际系统中可以利用软件实现。 位置、转速及电流pi调节器 在系统中有四个pi调节器,分别是位置p调节器,转速pi调节器,转矩电流pi调节器,励磁电流pi调节器。这四个pi调节器的输出都需要限幅,其中位置调节器输出的限幅值为电机能够输出的最大转速,转速调节器输出的限幅值为电机能够输出的最大转矩,两个电流pi控制器的限幅为电压空间矢量的最大电压。另外,这四个pi调节器参数的设置是关系到系统能否稳定的关键,也是系统仿真调试时的难点。因为四个pi调节器是相互关联的任何一个调节器参数的变化都会引起系统的不稳定。对于这四个pi控制器参数的调试经验非常重要,首先根据经验确定四个pi控制器参数的大致范围;然后在这一范围内慢慢调,一般情况下外环即位置环的p参数对系统的影响较为明显,所以一般情况下pi参数的调节顺序为先外环(位置)后内环(电流环),先比例系数后积分系数。 仿真实验中,通过反复的调试,最后得到的各个pi参数如下: 位置p调节器kp=20; 转速pi调节器kp=10,ki=5; 转矩电流pi调节器kp=200,ki=70; 励磁电流pi调节器kp=200,ki=70。 svpwm生成模块 svpwm生成模块是该仿真系统中的关键部分,该模块以电压矢量两相静止坐标系的分量vα、vβ作为输入内部给以开关周期tpwm信号,其内部通过电压矢量区间判断,根据输入量产生x、y、z,然后计算功率器件导通时间,再由区间信号及导通时间产生的svpwm脉冲信号控制逆变器的工作模式,结构如图3所示。 仿真结果及分析 仿真参数为三相异步电机额定电压400v,频率为50hz,rr=1.395ω,rs=1.405ω,l1r=0.005839h,l1s=0.005839h,lm=0.1722h,电机极对数p=2,电机额定功率pn=4kw,转动惯量j=0.0131kg·m2。仿真结果如图4所示。 结语 仿真结果表明,在带负载情况下,系统具有良好的动态跟随性,能很快达到稳定运行状态,也证明本文中设计的位置伺服矢量控制系统的可行性。

    时间:2015-04-01 关键词: 仿真 svpwm 伺服控制系统 异步电机

  • 异步电机无速度传感器矢量控制研究

    摘要:选取电压模型为基础,引入参考值补偿策略保证电机在低速运行时可准确测得转子转速。硬件方面设计了由双DSP控制板和两电平逆变器组成的电机控制系统。在TMS320LF2407A和TMS320VC33组成的双DSP控制板中,TMS320VC33的高浮点计算能力解决了编程和计算精度的问题,利用TMS320LF2407A自身的硬件特点实现快速通信、采样等功能。 关键词:异步电机;传感器;矢量控制;磁通观测 1 引言     在高性能的异步电机矢量控制系统中,转速信息的获取必不可少。电机速度信息的辨识方法分为直接法和间接法。前者通过电子式或机电式速度传感器来获取电机速度信息,通常分为M法和T法来进行测速;后者通过测量电机的定子电流、定子电压等信号,根据电机的模型间接估计辨识电机的转速信息。然而由于速度传感器的安装给系统带来了如成本增加,易受干扰,适应性差,加大电机体积和轴向尺寸等问题,因此对无速度传感器转速估算方法的研究成为高性能交流调速的主要发展方向。使用无速度传感器控制方案,无需速度检测硬件,避免了速度传感器带来的诸多问题,提高了系统可靠性,降低了系统成本,同时,减小了系统体积和重量,减少了电机与控制器的连线,使采用无速度传感器的交流电机调速系统在工程中的应用更广泛。 2 控制原理     异步电机是一种多输入、多输出、非线性、强耦合系统,其稳态转矩表达式为:     Te=KITφmI2cosφ2       (1)     式中:KIT为与电机参数有关的常数;φm为电机气隙磁通有效值;I2cosφ2为电机转子电流有功分量。     由式(1)可见,感应电机的Te与定子电流无直接关系,并且电机的三相定子电流既要产生电机中的旋转磁场,又要产生电磁转矩,定子电流的激磁分量和转矩分量又与电机的设计情况和负载有关,很难将两者区分开。考虑到电机的动态过程,情况将更加复杂,因此异步电机要想将励磁电流和转矩电流分开比较困难,而矢量控制则解决了此问题。     由异步电机的数学模型出发,经过坐标变换,得到转子磁场定向坐标系中的异步电机模型。     定、转子电压、电流方程(标量形式)为:         整理转子d轴电压方程得到转子磁场定向下的磁链模型为:         由转子磁场定向磁链模型可见:ψr和定子电流d轴分量isd之间为一阶环节,其时间常数为转子时间常数。在稳态时,ψr的大小完全取决于isd的大小,控制isd即可获得所需的ψr。由式(3)可见,当ψr恒定时,Tem由定子电流q轴分量isq决定。控制isd,isq就可以独立地控制ψr和Tem从而实现二者解耦控制,使控制系统简化。     基于上述交流异步电机的无速度传感器矢量控制框图如图1所示。     图中检测的电机电流经过3/2变换,变换后isα,isβ为α,β坐标系下的电机定子电流。同时逆变器发出的电压usα,usβ进入磁链观测模块,isα,isβ同时进入旋转坐标变换模块得到同步旋转d,q坐标系下的电机定子电流isd,isq。isd进入磁链观测模块,通过磁链观测模块的计算得到估计的电机同步转速。给定磁链ψr*和给定的电机力矩电流isq*进入滑差计算模块得到滑差转速经减法器计算出转子转速再经过低通滤波器(LPF)滤波得到估计的转子转速与给定转速ωr*经过减法器,再经过速度控制器输出指令电机转矩经过转矩电流计算模块,计算出isq*。ψr*经过磁场计算模块计算出给定的电机磁场电流isd*。isq*与检测的电机力矩电流isq进入减法器,再经电流控制器产生给定的电机力矩电压。isd*与检测的电机磁场电流isd进入减法器,再经电流控制器产生给定的电机磁场电压。给定的电机力矩电压和给定的电机磁场电压分别加上补偿电压,进入旋转变换模块,通过电压变换模块,施加到三相感应电机上。     根据上述分析,要想实现转子磁场定向控制,必须知道转子磁链;另外由转速计算公式可知,要想计算转速,也必须观测磁链,知道了磁链角度就可计算同步频率和转矩电流,用转矩电流和转子磁链幅值可计算滑差频率,同步频率减去滑差频率就可得到转速。因此,要实现无速度传感器矢量控制,首先要准确观测磁链。 3 磁链观测     静止坐标系中的电压型转子磁链模型为:         电压模型可以根据加在电机上的电压与电机电流经过积分计算估计出转子磁链。该模型框图如图2所示。     电压型转子磁链观测模型高速性能较好,但在低速时因为电机产生的反电动势较小,检测信号的信噪比较低,在此基础上计算得到的转子磁链不太准确,而且存在积分器漂移问题。     该问题解决方案为将输出结果再通过一个高通滤波器s/(s+ωc)将低频成份和直流漂移滤掉。         式中:ωc为截止频率;x为系统输入;y为系统输出;1/s为纯积分环节。     由式(8)可知,纯积分和一阶高通滤波的组合可等效为一阶惯性环节。但高通滤波器的引入带来了磁链检测的幅值和相位的误差。为了补偿磁链的幅值和相位变化,同时还要使积分稳定,在此采用了以下改进方法。     以滞后环节1/(s+ω)代替纯积分环节,并引入转子磁链参考值ψr*作为幅值和相位误差的补偿,从而得到一种改进的电压型转子磁链观测模型如图3所示。     在参数准确的情况下,实际磁链ψr=er/s,观测磁链可表示为:         式中:er为转子产生的反电动势,er=Lr(us-Rsis-Lσpis)/Lm。     可见,在参数准确情况下,如果ψr*=ψr,式(9)右边第2项为零,于是有,所以改进型电压模型可以做到无幅值和相位误差。因此,这种改进型电压转子磁链观测模型可以在极低速的情况下得出比较准确的转子磁链观测结果。另外,当TL取为转子时间常数Tr时,由电机的定子电阻参数误差带来的磁链相位误差可以在低速时降到一个很低的水平。     改进型电压模型的反电势输入端经过的不是纯积分环节,故在实际应用中没有纯积分环节的初值和漂移问题。该方法还有一个特点:当滤波时间常数ω取为与Tr相等时,观测磁链的角度在零转速附近对定子电阻的误差有鲁棒性。 4 硬件构成     双DSP数字化开发平台控制板以TMS320VC33作为系统的计算核心,TMS320LF2407A作为系统的控制核心,两个DSP处理器之间通过双口RAM 进行数据交换,并采用CPLD为程序存储器、数据存储器以及I/O口进行地址译码和读写控制。 5 试验     利用试验来验证所提出的无速度传感器矢量控制测速方法的正确性。其中试验电机参数:额定功率2.2 kW,额定线电压380V,额定电流为5 A,额定频率为50 Hz,额定转速为l 420 r·min-1,极对数为2,定子电阻2.54 Ω,定子漏感11.6279mH,转子电阻1.798 Ω,转子漏感11.627 9 mH,励磁电阻3.91 Ω,励磁电感235.071 8 mH。     图4为滤波前后估计同步转速与转速ωs波形。滤波后=31.423 9 rad·s-1,ωs=30.230 8 rad·s-1。转差为1.193 1 rad·s-1。同步转速给定为5 Hz转换为角速度31.415 9 rad·s-1。同步转速估计误差为0.292 rad·s-1,相对误差0.93%。图5示出转速5 Hz时实际转速和估计转速对比。由图可知,在转子频率5Hz时,电角度为62.8rad·s-1,估计转速误差最大为0.68rad·s-1,相对误差为1.08%。 6 结论     采用TMS320LF2407A和TMS320VC33组成的双DSP系统为硬件基础,基本思想是利用改进型电压模型,实现同积分运算等效的幅值和相位特性。电机稳态工作时,转子反电动势信号是正弦波形。而一个频率为ω的理想正弦信号在经过积分环节运算后,输出相位滞后π/2,幅值变为原来的1/ω倍。     从试验中可知,观测得到的磁链与转子反电动势信号在输出相位上与通过纯积分环节得到的相位仍有一点偏差,故还需要对补偿环节上进行进一步研究,如何使其补偿相位完全等效于积分的效果。由试验结果可见,5 Hz时的转速估算误差很低,验证了所提理论的正确性。

    时间:2013-08-22 关键词: 矢量 速度传感器 控制研究 异步电机

  • 一款异步电机能耗制动控制电路

    一款异步电机能耗制动控制电路

    在交流接触器Cli吸台,电机接通电源的同时,CJ1的一对触点将可控硅SCR 短接,故SCR截止。接触器C已由二极管趣提供直流电压而吸台,作好能耗制 动的状恋.在电源正半波,SCR的控制极经R,W.C、Dl得到触发电流而导 通,电机的b、c相绕组经SCR、CJ2触点得到半被整流电流,C也因SCR提供 毕波电流而维持吸台。正半波电流结束时,b.c相绕组叉产生感应电舟,经D4. cl的常闭触点续流。判下一个正半周时.SCR重新导通.b、c相绕组叉得别半 渡电流,经过昔下个周期,c充储电荷,SCR樽不到触发电流而不再导ila,完成 丁能耗制动.CJ,得不到电源也释放,排除丁SCR再次导通的可能性。

    时间:2013-06-12 关键词: 能耗 电路 制动控制 电机控制电路 异步电机

  • 一款单向异步电机切换连接电路

    一款单向异步电机切换连接电路

     (1)州连板(片)琏接调换扰,吣阁《㈨,嘲(c).幽f b)为4个}11线头的情 况,图中I~6(号码)为l乜机上的壤线端于;陶f c)为6十出线头的情况,其中离 心行荚单独出线。土绕组和副绕组可坩f/川tR x I挡区仆,吼值小音为主绕组, 电容外搂。连板(片)的寓线和虚线分别代表侧幔前后.     (2)t绕组引线接插头,通/J调换插沽,实现ffil顺切换,如图(d)所示,茸 中的插座通过开关接220V电源,副绕组,电蒋、离心开关串联引线接捕座、插 雕通过忤芰援电源。     (3)用』棚倒顺卅是实现倒J峨切换.粗线为原有连线,缔lkli为笔者所疰.tu 趣忽略此线。tlIIRl (e)所示。

    时间:2013-06-12 关键词: 连接电路 电机控制电路 异步电机

  • 交流异步电机软起动及优化节能控制的技术研究

    1前言 目前在工矿企业中使用着大量的交流异步电动机(包括380V/660V低压电动机和3kV/6kV中压电动机),有相当多的异步电动机及其拖动系统还处于非经济运行的状态,白白地浪费掉大量的电能。究其原因,大致是由以下几种情况造成的: (1)由于大部分电机采用直接起动方式,除了造成对电网及拖动系统的冲击和事故之外,8~10倍的起动电流也造成巨大的能量损耗; (2)在进行电动机容量选配时,往往片面追求大的安全余量,且层层加码,结果使电动机容量过大,造成“大马拉小车”的现象,导致电动机偏离最佳工况点,运行效率和功率因数降低; (3)从电动机拖动的生产机械自身的运行经济性考虑,往往要求电力拖动系统具有变压、变速调节能力,若用定速定压拖动,势必造成大量的额外电能损失。 电动机的非经济运行情况,早已引起国家有关部门的重视,并分别于1990年和1995年制定和修定了一个强制性的国家标准:(GB12497?1995)三相异步电动机经济运行。希望依此来规范三相异步电动机的经济运行,国标的发布对低压电动机的经济运行起了很大的促进作用,但对中压电动机则收效甚微。其原因是: (1)中压电动机一般容量较大,一旦发生故障,其影响也大,因此对节电措施的可靠性的要求就更高; (2)中压电动机节电措施受电力电子功率器件耐压水平的限制,节电产品的开发在技术上难度更大一些。到目前为上,国内尚无定型的中压电动机软起动和节电运行的产品面市。 2异步电动机的软起动 由于工业生产机械的不断更新和发展,对电动机的起动性能提出了越来越高的要求,归纳起来有以下几个方面: (1)要求电动机有足够大的,并且能平稳提升的 起动转矩和符合要求的机械特性曲线; (2)尽可能小的起动电流; (3)起动设备尽可能简单、经济、可靠,起动操作 方便; (4)起动过程中的功率损耗应尽可能的少。 根据以上相互矛盾的要求和电网的实际情况,通常采用的起动方式有两种:一种是在额定电压下的直接起动方式,另一种是降压起动方式。 2.1直接起动的危害 直接起动是最简单的起动方式,起动时通过闸刀或接触器将电动机直接接到电网上。直接起动的优点是起动设备简单,起动速度快,但是直接起动的危害很大: (1)电网冲击:过大的起动电流(空载起动电流可达额定电流的4~7倍,带载起动时可达8~10倍或更大),会造成电网电压下降,影响其他用电设备的正常运行,还可能使欠压保护动作,造成设备的有害跳闸。同时过大的起动电流会使电机绕组发热,从而加速绝缘老化,影响电机寿命; (2)机械冲击:过大的冲击转矩往往造成电动机转子笼条、端环断裂和定子端部绕组绝缘磨损,导致击穿烧机,转轴扭曲,联轴节、传动齿轮损伤和皮带撕裂等; (3)对生产机械造成冲击:起动过程中的压力突变往往造成泵系统管道、阀门的损伤,缩短使用寿命;影响传动精度,甚至影响正常的过程控制。 所有这些都给设备的安全可靠运行带来威胁,同时也造成过大的起动能量损耗,尤其当频繁起停时更是如此。因此对电动机直接起动有以下限制条件:(1)生产机械是否允许拖动电动机直接起动,这 是先决条件; (2)电动机的容量应不大于供电变压器容量的 10%~15%; (3)起动过程中的电压降△U应不大于额定电压 的15%。对于中、大功率的电动机一般都不允许直接起动,而要求采用一定的起动设备,方可完成正常的起动工作。 2.2老式降压起动方式的适用场合及性能比较 降压起动的目的是减小起动电流,但它同时也使起动转矩下降了。对于重载起动,带有大的峰值负载的生产机械,就不能用这种方式起动。传统的降压起动有以下几种方法: (1)星形/三角形转换器:这种方法适用于正常运行时定子绕组采用△接法的电动机。定子有六个接头引出,接到转换开关上,起动时采用星形接法,起动完毕后再切换成△接法。起动电压为220V,运行电压为380V。这种起动设备的优点是起动设备简单,起动过程中消耗能量少。缺点是有二次电流冲击,设备故障率高,需要经常维护,所以不宜使用在频繁起动的设备上。在转换过程中,由于瞬变电势和电动机剩磁产生的电势往往与电源电压有相位差,严重时会产生电压相加,引起过大的冲击电流和电磁转矩,因此大大地限制了它的使用。由于起动电压为运行电压的1/,故其起动转矩为额定转矩的1/3,只能用在空载或轻载(负载率小于1/3)起动的设备。在电动机轻载或空载运行时,也可利用该起动设备作降压运行,以提高电动机的功率因数和效率。   (2)自耦变压器降压起动:三相自耦变压器(也称补偿器)高压边接电网,低压边接电动机,一般有几个分接头,可选择不同的电压比,相对于不同起动转矩的负载。在电动机起动后再将其切除。其优点是起动电压可以选择,如0.65、0.8或0.9UN,以适应不同负载的要求。缺点是体积大,重量重,且要消耗较多有色金属,故障率高,维修费用高。 (3)磁控软起动器:磁控软起动器是利用控磁限幅调压的原理,在电动机起动过程中电压可由一个较低的值平滑地上升到全压,使电动机轴上的转矩匀速增加,起动特性变软,并可实现软停车。但其起控电压在200V左右,用户不可调整,会有较大的电流冲击,且体积较大。 (4)串联电抗器或水电阻:对于高压电机,可在定子线路中串联电抗器或水电阻实现降压起动,待起动完成后再将其切除。但电抗器成本高,水电阻损耗又大。 (5)串接频敏变阻器或水电阻:对于绕线式异步电动机,可在转子绕组串接频敏变阻器或水电阻实现起动,待起动完成后再将其切除。但频敏变阻器成本高,而水电阻损耗又大。其他还有延边三角形起动,定子串电阻起动等方法。 值得指出的是:尽管各种老式降压起动方法各有其优缺点,但它们有一个共同的优点:就是没有谐波污染。 2.3新型的电子式软起动器 随着电力电子技术和微机控制技术的发展,国内外相继开发出一系列电子式起动控制设备,用于异步电动机的起动控制,以取代传统的降压起动设备。新型的电子式软起动器的主电路一般都采用晶闸管调压电路,调压电路由六只晶闸管两两反向并联组成,串接于电动机的三相供电线路上。当起动器的微机控制系统接到起动指令后,便进行有关的计算,输出晶闸管的触发信号,通过控制晶闸管的导通角α,使起动器按所设计的模式调节输出电压,以控制电动机的起动过程。当起动过程完成后,一般起动器将旁路接触器吸合,短路掉所有的晶闸管主电路,使电动机直接投入电网运行,以避免不必要的电能损耗,软起动器的控制框图如图1所示。 所谓“软起动”,实际上就是按照预先设定的控制模式进行的降压起动过程。目前的软起动器一般有以下几种起动方式: (1)限流软起动:限流起动顾名思义就是在电动机的起动过程中限制其起动电流不超过某一设定值(Im)的软起动方式。主要用在轻载起动的负载的降压起动,其输出电压从零开始迅速增长,直到其输出电流达到预先设定的电流限值Im,然后在保持输出电流I这种起动方式的优点是起动电流小,且可按需要调整,(起动电流的限值Im必须根据电动机的起动转矩来设定,Im设置过小,将会使起动失败或烧毁电机。)对电网电压影响小。其缺点是在起动时难以知道起动压降,不能充分利用压降空间,损失起动转矩,起动时间相对较长。     图1软起动器的控制框图     图2各种软起动波形图   (a)限流起动(b)电压斜坡起动(c)转矩控制起动 (d)转矩加突跳控制起动(e)电压控制起动 (2)电压斜坡起动:输出电压由小到大斜坡线性上升,将传统的降压起动变有级为无级,主要用在重载起动。它的缺点是起动转矩小,且转矩特性呈抛物线型上升对起动不利,且起动时间长,对电机不利。改进的方法是采用双斜坡起动:输出电压先迅速升至U1,U1为电动机起动所需的最小转矩所对应的电压值,然后按设定的速率逐渐升压,直至达到额定电压。初始电压及电压上升率可根据负载特性调整。这种起动方式的特点是起动电流相对较大,但起动时间相对较短,适用于重载起动的电机。 (3)转矩控制起动:主要用在重载起动,它是按电动机的起动转矩线性上升的规律控制输出电压,它的优点是起动平滑、柔性好,对拖动系统有利,同时减少对电网的冲击,是最优的重载起动方式。它的缺点是起动时间较长。 (4)转矩加突跳控制起动:转矩加突跳控制起动与转矩控制起动一样也是用在重载起动的场合。所不同的是在起动的瞬间用突跳转矩,克服拖动系统的静转矩,然后转矩平滑上升,可缩短起动时间。但是,突跳会给电网发送尖脉冲,干扰其它负荷,使用时应特别注意。 (5)电压控制起动:电压控制起动是用在轻载起动的场合,在保证起动压降的前提下使电动机获得最大的起动转矩,尽可能地缩短起动时间,是最优的轻载软起动方式。各种软起动方式的相应起动曲线见图2。 停车方式有三种:一是自由停车,二是软停车,三是制动停车。软起动器带来的最大好处是软停车和制动停车,软停车消除了拖动系统的反惯性冲击,对于水泵就是“水锤”效应;制动停车则在一定场合代替了反接制动停车功能。 2.4软起动器与传统降压起动器的比较 软起动器与传统降压起动器的性能比较见表1。 2.5软起动器的适用场合 (1)生产设备精密,不允许起动冲击,否则会造成生产设备和产品不良后果的场合; (2)电动机功率较大,若直接起动,要求主变压器 产品主要性能数字式软起动器磁控降压起动器自耦降压起动器 起动特性软特性:用户可以调整特性较硬:不能调整硬特性:不能调整 起动电流特性曲线   起始电压0~380V任意可调200V左右:用户不能调整250V左右:用户不能调整 起动冲击电流无1次,约为电机额定电流IN的6倍2次,约为电机额定电流IN的7倍 起动电流(0.5~4)IN,用户可视负载轻重调整(2~3)IN以上,不能调整(3~5)IN以上,不能调整 电机转矩特性没有冲击转矩,力矩匀速平滑上升1次冲击转矩后,力矩匀速平滑上升力矩跳跃上升,有2次冲击转矩 负载适应能力强一般较差 能否频繁起动可以一般不能一般不能 起动方式限流软起动或电压斜坡起动任选区域恒流软起动分段式恒压起动 执行元件电力电子器件磁饱和电抗器(磁放大器)自耦变压器 控制元件和控制方式16位高性能单片计算机模糊控制继电器及普通电子元件继电电子控制继电器继电控制 整机重量/体积轻/小较重/较大重/大 外接电缆数量6根(3进、3出)6根或9根(130kW以上为:3进、6出)6根(3进、3出) 表1软起动器与传统降压起动器的比较 容量加大的场合; (3)对电网电压波动要求严格,对压降要求≤ 10%UN的供电系统; (4)对起动转矩要求不高,可进行空载或轻载起 动的设备。 严格地讲,起动转矩应当小于额定转矩50%的拖动系统,才适合使用软起动器解决起动冲击问题。对于需重载或满载起动的设备,若采用软起动器起动,不但达不到减小起动电流的目的,反而会要求增加软起动器晶闸管的容量,增加成本;若操作不当,还有可能烧毁晶闸管。此时只能采用变频软起动。因为软起动器调压不调频,转差功率始终存在,难免产生过大的起动电流;而变频器采用调频调压方式,可实现无过流软起动,且可提供1.2~2倍额定转矩的起动转矩,特别适用于重载起动的设备。但是变频器的价格要比软起动器的价格高得多了。 3异步电动机经济运行和优化节电控制技术 3.1异步电动机降压节电技术概述 对于满载或重载运行的电动机,降低其端电压将会造成严重后果,随着端电压的降低,电动机的磁通和电动势随之减小,铁耗无疑将下降。但与此同时,随电压平方变化的电动机转矩也迅速下降而小于负载转矩,电动机只能依靠增大转差率,提高电磁转矩以达到与负载转矩相平衡的状态。转差率的增大,引起转子电流增大,同时引起定子和转子电压间的相角增大,导致定子电流增大,从而使定子和转子铜耗增加值大大超过铁耗的下降值,这时电动机绕组温升将会增高,效率将会下降,甚至发生电动机烧毁事故。因而,一般规程都规定了电动机正常运行时电压变化范围不得超过额定电压的95%~110%。 然而对于轻载运行的电动机,情况就截然不同,使供电电压适当降低,在经济上是有利的。这是因为在轻载运行时,电动机的实际转差率大大小于额定值,转子电流并不大,在降压运行时,转子电流增加的数值有限。而另一方面,却由于电压的降低,使空载电流和铁损大幅减少。在这种情况下,电动机的总损耗就可降低,定子温升,运行效率和功率因数同时得到改善。由此可见,电动机的运行经济性与电动机负载率同运行电压是否合理匹配关系极大。理论分析表明电动机的力能指标(运行效率与功率因数)与其端电压之间存在如下的数量关系[2]: cosφ=(1) η=(2)   式中:SN和S为电动机额定工况和降压运行的转差率;cosφN和cosφ为电动机额定工况和降压运行的功率因数; ηN和η为电动机额定工况和降压运行的效率; KU为电动机的调压系数,KU=U/UN(UN和U为电动机额定电压和降压运行时的实际电压); KI为电动机的空载电流系数,KI=IO/IN(IN和 IO为电动机的额定电流和空载电流)。 从式(2)不难看出:并不是所有的降压行为都能达到节电的目的,只有当电压降低程度大于转差率及功率因数上升程度时,才能使运行效率提高。实际上,电动机效率随电压降低而变化的关系呈马鞍形曲线,对应于每一个输出功率(或负载系数),必然存在一个最佳调压系数KUm,当KU=KUm时,电动机的损耗最低,效率最高。KUm称为电动机的最佳电压调节系数。不同负载下最佳电压调节系数KUm可按电动机的负载系数β由下式确定[1]: KUm=(3)   式中:ΣPN为电动机额定负载时的有功损耗(kW); PO为电动机的空载损耗(kW); K为计算系数,K=(PO-Pfw)/ΣPN〔Pfw为电 动机的机械损耗(kW)〕; β为电动机的负载系数,β=(P2/PN)·100% (P2为电动机的输出功率,PN为电动机的 额定功率)。 文献[1]给出了轻载电动机采用降压节电措施后,节约电能的计算公式为: 节约的有功功率ΔP为: ΔP=(ΣPN-PO)β2(1-1/KU2)+ΣPN(1-KU2)(4) 节约的无功功率ΔQ为: ΔQ=(QN-QO)β2(1-)+QO(1-KU2)(5)   式中:QN为电动机带额定负载时的无功功率(kvar); QO为电动机的空载无功功率(kvar)。 节约的电能ΔAC为: ΔAC=Tec(ΔP+KQΔQ)(6) 式中:KQ为无功经济当量,当电动机直连电机母线 KQ=0.02~0.04,二次变压取KQ=0.05~ 0.07,三次变压取KQ=0.08~0.10; Tec为电动机年运行时间(h)。 3.2优化节电的控制依据 (1)功率因数(cosφ)控制法 最早出现的异步电机优化节电器为Nolacosφ功率因数控制器,其原理是通过检测电动机运行中的cosφ值,与预先设定的基准值比较,当实际值低于设定值时,说明电动机为轻载,通过降低电动机的端电压来提高cosφ,直到实际的cosφ测量值达到设定值为止,实现了节电;cosφ数值高表明是重载,则升高电机端电压,以保证轴上的输出功率。这是一种间接节电法:控制对象是电动机的功率因数,而目的是节电。由于交流异步电机的最佳功率因数在全工作范围内呈曲线变化;不同制造厂生产的同一规格的异步电机的功率因数呈一定的离散性;同一台电机在其寿命期不同阶段,在同一工况下的功率因数也呈现一定的离散性,这就给设计和调整带来一定的困难。故这种方法不能达到最佳节电效果,并且理论与实践都已证明,过高的功率因数值对于异步电机来说,并不节电。 (2)最小输入功率法 交流异步电机工作时,从电网输入的电功率P1,一部分转换成电机轴上的机械功率P2输出,另一部分则是自身的损耗PS,包括铁耗与铜耗两部分。其中铁耗与输入电压的平方成正比,而铜耗则与其电流的平方成正比,只有在铜耗等于铁耗时,电机的效率最高,损耗PS最小。最小输入功率法的原理就是在电机工作的任一负载点上,在保证轴上机械功率输出的前提下,通过降低电机的端电压而减小电机自身的损耗,从而达到节能的目的。虽然降压可以降低铁耗,而当电压降到一定程度之后,若继续下降,则电流又要增加,因而又增加了铜耗。通过微机自动寻优,让铁耗和铜耗都维持在最低的水平,也即电压与电流的乘积——输入的电功率达到最小值,实现最优节电目的。   (3)突加负载控制 当电动机轴上的负载急剧上升时,又要能在极短的时间内(<100ms)将电压提升到额定值,保证轴上有足够的功率输出,否则电机就会发生堵转现象。所以微处理器在进行输入功率优化控制的同时,又监视负载功率的变化率,一旦负载功率的变化率超过预先设定的阈值时,即判定为突加负载,立即提升电机端电压,保证电机对负载变化的快速响应能力。 表2按最佳调压系数进行降压后节省的电量计算值 电动机负载系数β0.10.20.30.40.50.6 最佳电压调节系数KUm0.3740.530.6470.7470.8360.916 节省的有功功率ΔP(kW)24.217.011.06.43.00.86 节省的无功功率ΔQ(kvar)386.5300.8224.8157.097.647.2 节省的综合有功功率ΔP+KqΔQ(kvar)47.435.0524.515.88.863.7 U=UN时电机综合功率损耗?PC(kW)59.3462.0466.5372.8380.9390.82 节电率(%)79%56.4%36.8%21.7%11%4% 3.3优化节电的适用对象 对于电机转速无严格要求,及不需要调速运行的场合,特别是对于经常大幅度变动的负载,或者长时间处于轻载或空载的电动机,例如轧钢机、锻压机、抽油机等负载,使用优化节电技术,可以收到明显的节电效果。其节电量视电动机的负载系数及轻载运行的时间长短而定。 3.4降压起动优化节电计算实例 为一台轻载运行的Y1600—10/1730型6000V电动机配置一套优化控制系统,着重计算其起动性能参数和节电效果。 Y1600—10/1730型电动机的原始数据:额定功率PN=1600kW,额定电压UN=6.0kV,额定电流IN=185A,额定转速nN=595r/min;最大转矩倍数=最大转矩/额定转矩=2.22,起动电流倍数=堵转电流/额定电流=5.53,起动转矩倍数=堵转转矩/额定转矩=0.824,额定效率ηN=94.49%,额定功率因数cosφN=0.879。电动机额定负载时的有功损耗ΣPN=93.3kW,电动机的空载损耗PO=29.6kW,电动机的空载电流IO=46.25A,电动机带额定负载时的无功功率QN=918kvar,电动机的空载无功功率QO=480.6kvar。 (1)轻载运行降压节电效果计算 ①不同负载系数下,电动机的最佳调压系数KUm的计算按式(3)进行,计算结果示于表2: ②当U=UN时,不同负载系数下,电动机的综合功率损耗ΣPC的计算按式(7)进行[1],计算结果示于表2。ΣPC=PO+β2(ΣPN-PO)+KQ[QO+β2(QN-QO)](7) ③按最佳电压调节系数进行调压后节省的电量计算按式(4)、式(5)和式(6)进行,计算结果示于表2。 (2)降压起动时电动机起动特性估算 由电动机的原始数据得知,电动机直接起动时,起动参数如下:起动电流IK=5.53IN,起动转矩MK=0.824MN。 ①采用降压起动时,调压系数KU的确定: KU=(8)   式中:Un为电动机电压,V; UN为电动机额定电压,UN=6.0kV Mn为生产机械要求的最小起动转矩,当采用轻载起动方式时,Mn≥0.2MN。 代入有关数据,得KU==0.493。   ②采用降压起动时,起动参数计算 起动电流In=KU·IK=2.72IN 起动电压Un=KU·UN=0.493UN=2960V 起动转矩Mn=KU2·MK=0.2MN ③降压起动的节电效果计算 直接起动时从电网吸收的无功功率QK为[1] QK=(9)   代入相关数据,得 QK=   =10631.6kvar 降压起动时从电网吸收的无功功率Qn为[1] Qn=(10)   代入相关数据,得 Qn=   =2579.7kvar 节约的无功功率△Qn为: △Qn=QK-Qn=8052.1kvar 电网传输△Qn所消耗的有功功率△Pn为: △Pn=KQ·△Qn=0.06×8052.1=483.1kW 降压起动的无功节电率λ为: λ=×100%=×100%=75.7%   4异步电动机的调压调速 异步电动机的调压调速属低效调速方式,因为在调速过程中始终存在转差损耗,因此调压调速有很大的限制,不是任何一台普通的笼型电机加上一套晶闸管调压装置,就可以实现调压调速的。 首先必须改变电动机的外特性,新的外特性必须使电动机有一个宽广的稳定的调速范围。一般要采用高转差率电机,交流力矩电机或在绕线式电机的转子绕组中串接电阻的方法,并且要加上转速闭环控制,才能进行稳定的调速。 其次是要将调速过程中由于转差功率引起的转子的温升很好地导出机外,才能实现长期稳定工作。这里可采取旋转热管结构,也可采取特殊风道冷却结构,都是行之有效的方法。 在电力电子技术高速发展的今天,变频调速装置的价格已不再昂贵的情况下,再考虑调压调速,似乎已无多大的现实意义了。 5智能马达优化控制器(IMOC系列) 在对交流异步电动机软起动和优化节电技术长期深入研究的基础上,研制成功了智能马达优化控制器(IMOC系列),适配电机功率从5.5kW~110kW。 该控制器采用了16位马达控制专用单片微处理器Intel80C196MC,具有完善的检测控制功能;主功率器件则采用具有世界高技术水平的专利产品——集成移相调控晶闸管模块,该模块突破以往晶闸管模块的概念,将复杂的移相控制电路与晶闸管管芯创造性地集成为一体,组成一个完整的电力移相调控的开环系统。用它组成的控制器,不但使体积大大缩小,而且增加了设备的可靠性和抗干扰的能力。 在技术上更是集众家之长,并大大突破国内外同类产品的功能,除了起动保护,优化节电外,还增加了风机、水泵类负载的调速功能,抽油机间歇工作节电功能,无功功率就地补偿功能。尤其是完善的保护功能:过电流、过电压、过负载、短路、接地、缺相、相间不平衡及功率模块超温和电机超温保护等功能,是电机安全经济运行的保护神。该控制器具有以下功能特点: (1)16位微电脑智能化控制,键盘设定,数码显 示,操作简单直观; (2)软起动,软停车功能,有效减小起动冲击; (3)优化马达运行方式,节电、改善功率因数; (4)风机、水泵类负载的调压调速闭环控制功能; (5)具有泵控制功能,可避免或减小液流喘振和 “水锤”效应; (6)具有相平衡和电源电压自动补偿功能; (7)具有完善的保护、报警功能; (8)起动方式、起动电压、起动电流、额定电流及 负载类型等参数均可设定; (9)具有远方控制及联网通讯功能; (10)自诊断功能。 经过在不同工业现场的长期使用,取得了可观的经济效益。 6结论 (1)电子式软起动器结构简单,较之传统的△/Y起动器,自耦变压器起动器具有无触点、无噪音、重量轻、体积小,起动电流及起动时间可控制,起动过程平滑等优点,并且维护工作量小。当电动机空载或轻载时,节能效果显著,特别适用于短时满载,长时间空载的负载。 (2)对于高转差电机,实心转子电机,力矩电机等,尤其是在带风机、水泵类负载时,有较好的调速性能,但不适用于普通的笼型电机调速。 (3)采用智能控制器,具有完善的电机保护功能,保护整定值设置方便,保护性能可靠。 (4)其最大缺点是由于采用晶闸管移相控制,故对电网及电机均存在谐波干扰。

    时间:2012-10-28 关键词: 交流 技术研究 软起动 异步电机

首页  上一页  1 2 下一页 尾页
发布文章

技术子站

更多

项目外包