当前位置:首页 > 整流滤波
  • 稳压电源电路图合集,请快快收藏!

    稳压电源电路图合集,请快快收藏!

    对于稳压电源来说,大家并不陌生,那电压稳压电路设计该怎么设计呐? 1、3~25V 电压可调稳压电路图 此稳压电源可调范围在 3.5V~25V 之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。 工作原理:经整流滤波后直流电压由 R1 提供给调整管的基极,使调整管导通,在 V1 导通时电压经过 RP、R2 使 v2 导通,接着 V3 也导通,这时 V1、V2、 V3 的发射极和集电极电压不再变化(其作用完全与稳压管一样)。调节 RP,可得到平稳的输出电压,R1、RP、R2 与 R3 比值决定本电路输出的电压值。 元器件选择:变压器 T 选用 80W~100W,输入 AC220V,输出双绕组 AC28V。FU1 选用 1A,FU2 选用 3A~5A。VD1、VD2 选用 6A02。RP 选用 1W 左右普通电位器,阻值为 250K~330K,C1 选用 3300μF/35V 电解电容,C2、C3 选用 0.1μF 独 .. 石电容,C4 选用 470μF/35V 电解电容。R1 选用 180~220Ω/0.1W~1W,R2、R4、R5 选用 10KΩ、1/8W。V1 选用 2N3055,V2 选用 3DG180 或 2SC3953,V3 选用 3CG12 或 3CG80。 2、10A,3~15V 稳压可调电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从 3V 到 15V 连续可调的稳压电源,最大电流可达 10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路 TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 其工作原理分两部分,第一部分是一路固定的 5V1.5A 稳压电源电路。第二部分是另一路由 3 至 15V 连续可调的高精度大电流稳压电路。第一路的电路非常简单,由变压器次 . 级 8V 交流电压通过硅桥 QL1 整流后的直流电压经 C1 电解电容滤波后,再由 5V 三端稳压块 LM7805 不用作任何调整就可在输出端产生固定的 5V1A 稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。 第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路 TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻 R4,稳压管 TL431,电位器 R3 组成一个连续可调的恒压源,为 BG2 基极提供基准电压,稳压管 TL431 的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变 R4 和 R3 的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次 . 级电压 15V 左右。 桥式整流用的整流管 QL 用 15-20A 硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流 NPN 型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用 50V4700uF 电解电容 C5 和 C7 分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注 50V4700uF 尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。 最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的 200W 以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

    时间:2020-10-14 关键词: 稳压电源 整流滤波 变压器

  • 三种常用的LED驱动电源详解

    三种常用的LED驱动电源详解

    三种常用的LED驱动电源详解 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源 图2:开关恒流隔离电源原理图 图3:开关恒流源电源 图4:开关恒流非隔离电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。 图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源   采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。  图7:阻容降压电源 图8:阻容降压电源原理图 几种电源成本性能比较 以3W小球泡和16W日光灯管为例,各种电源成本比较: 各类电源性能之比较: 在中高端市场,开关恒流非隔离电源仍是市场的主流电源,厂家一般会在结构设计上进行防高压隔离。而在低端市场,大部份厂家是采用阻容降压电源,也有部分厂家采用线性IC电源(要求厂家有一定的设计能力)。 采用不同的电源,产品的性能及价格是不一样的,我们应该根据不同的市场选用不同的产品。

    时间:2019-07-24 关键词: 电源技术解析 整流滤波 变压器

  • 小功率智能化中频逆变电源的研制 小型化和高性能

    小功率智能化中频逆变电源的研制 小型化和高性能

    研制一种基于TMS320LF2407A数字信号处理器和PS21964智能功率模块(IPM)的智能化SPWM中频逆变电源控制系统。对中频逆变电源的功率主电路、控制电路以及保护电路等进行了详细阐述。实现了中频逆变电源小型化和高性能的技术要求。0 概述在武器装备电气系统中,400Hz中频逆变电源是其广泛使用的电源之一。在对其综合电气系统中的各电气设备进行性能测试与故障诊断时,需要400Hz中频逆变电源为其提供真实的模拟工作环境,以完成信号的采集与处理,从而判断出系统的工作状态,对所发生的故障进行精确定位。现有的400Hz中频逆变电源因其体积较大,不能满足测试设备小型化的要求,因此,我们研制了一种小功率智能化中频逆变电源,将其放在测试设备内部,减小了测试设备的体积,提高了测试设备的可靠性。1 系统硬件设计图1为中频逆变电源硬件原理图。1.1 整流滤波电路整流滤波电路是将220V、50Hz交流电通过全桥整流与电容滤波后得到311V直流电供给逆变电路中的IPM模块,为其提供直流母线电压。整流桥选用KBL608全桥整流模块,电容滤波器选用2只450V、470μF的电解电容并联。1.2 逆变电路逆变电路选用三菱公司的PS21964智能功率模块。该模块具有以下特点:1)逆变桥采用第5代平面型IGBT和CSTBT功率芯片,损耗更低;2)采用自举电路结构,可单电源驱动;3)内置专用HVIC,可直接由DSP驱动;4)输入接口电路采用高电平驱动,增强了模块自保护能力;5)具有短路和控制电源欠压保护,6)体积小,只有38×24×3.5mm.由于电源设计输出为单相交流电,而PS21964模块内部为三相逆变桥,故在电源设计时,选用其中两相(U、V)。PS21964模块既可单电源驱动,又可多电源驱动,设计时采用多电源驱动方式。在电路中,R18为电流检测电阻,实现短路保护;R12、C5为滤波电路;由于PS21964模块的故障输出端为漏极开路型,因此增加了R13上拉电阻。1.3 中频变压器与中频滤波电路中频变压器采用R型400Hz铁芯,铜制漆包线绕制,变比为1.05:1.由于系统中的载波频率为12kHz,因此中频滤波器的截止频率选为2kHz,借助中频变压器的漏感,根据计算公式计算可得滤波电容值为20μF,故选用耐压值为600V的CBB电容。图2 中频逆变电源主电路1.4 电压反馈电路电压反馈电路是将输出电压调理后反馈给DSP的A/D转换端以实现电压平均值闭环反馈控制。由于输出电压为115V、400Hz交流电,首先利用变压器将输出电压将变为0~5V的电压信号,经全桥整流、电阻分压后反馈到DSP的ADCIN 01脚。如图3所示。1.5 DSP控制电路TMS 3 2 O L F 2 4 O 7 A D S P控制电路主要由TMS320LF2407A芯片子系统和供电电路组成。TMS320LF2407A芯片子系统主要包括时钟、复位、外部存储、JTAG仿真接口等电路,其设计时可参考产品手册推荐电路进行选择。系统设计时,采用EVA事件管理器模块的PWM1~PWM4输出4路PWM波信号。1.6 驱动与保护电路(1)封锁PWM控制信号保护。IPM的PWM控制信号经带控制端的三态收发器74LS640输出后送共态脉冲互锁电路。IPM的故障输出信号送入74LS640的使能端。当IPM没有故障发生时,74LS640选通,IPM正常工作;IPM发生故障时,74LS640截止,封锁所有IPM的控制信号,关断IPM,达到保护目的。如图4所示。(2)共态脉冲互锁电路。在使用IPM的过程中我们发现,当选取IPM时,若留出足够的余量,IPM一般情况下不容易损坏,但有时仍有损坏情况发生,分析其原因,均为发生过流,通过测量微处理器输出的PWM信号,发现同一桥臂的控制信号在主电路为高压大电流情况下很容易叠加干扰信号,致使同一桥臂的两个IGBT发生直通,导致模块损坏。为此我们设计了共态脉冲互锁电路,这样即使有干扰,甚至由于某种原因,微处理器不能正常输出,也能保证同一桥臂的两个IGBT不能同时导通,达到保护的目的。电路图如图5所示。1.7 辅助电源电路该系统的电源主要有+5V、+3.3V和+15V三种。+5V为主电源,采用AC/DC模块实现;+3.3V主要用于DSP系统,采用TPS7333芯片实现;+15V电源用于IPM模块,采用金升阳公司的B0515实现。2 系统软件设计本电源的控制软件主要包括:1)双极性SPWM控制信号程序设计;2)平均值稳定程序设计;3)输出过压保护程序设计。双极性SPWM控制信号采用对称规则采样法实现。其中标准正弦波(即调制波,同输出正弦波频率400Hz),采用离线计算方法,首先将这些数据计算出来,并存入数组,在程序运行时调用。标准三角波是利用DSP计数器的连续增/减计数模式实现的,其载波频率为12kHz.平均值稳定程序采用PI调节,反馈信号经滤波采样后,与给定信号进行比较,其偏差送至PI调节器,改变调制度M,从而使输出电压维持恒定,实现输出稳压。输出过压保护采用限幅比较法,反馈信号经滤波采样后,与限定值进行比较,若超出,则输出保护信号,中断主电路运行,实现输出过压保护。系统软件由初始化模块和定时器中断模块组成。初始化模块主要完成中断控制器、I/O控制器、事件管理器、时钟管理器、看门狗、A/D转换器等控制寄存器进行初始化和相关变量的初始化,初始化模块的流程如图6所示。初始化完成后,DSP程序进入死循环,等待中断的发生。定时器中断模块的主要工作是通过片内A/D转换器采样输出电压,作为系统实现闭环控制的反馈信号,通过给定信号与反馈信号进行比较,经PI控制调节,得到相应的控制量,经规则采样法计算得到每一个周期的脉冲宽度,以获得四路PWM信号,实现对IPM的控制。其流程图如图7所示。3 实验 将研制的115V、400Hz中频逆变电源接500W电阻性负载进行实验,其实验波形如图8所示。4 结论 本电源采用新型功率器件和数字控制技术,实现了中频逆变电源小型化和高性能的技术要求,己在某些电气系统检测设备中使用,应用证明该电源性能可靠、体积小、重量轻、成本低、可以保证精度,满足使用要求。

    时间:2018-09-06 关键词: 电源技术解析 tms320lf2407a 电压反馈 中频逆变电源 整流滤波

  • 整流滤波中超级电容器的应用

    整流滤波中超级电容器的应用

    中心议题:· 超级电容器在整流滤波中的应用解决方案:· 整流滤波对于电容器的基本要求· 超级电容器用于整流滤波· 测试结果对比本文将超级电容器用于整流滤波,并进行设计和具体实现,测试证明,超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。滤波电容器在整流滤波电路中起着重要作用,电容量越大滤波效果越好。特别是在低压整流(如5V、3.3V甚至更低的电压)输出时往往因为滤波电容器的电容量不够大而产生较大的纹波电压。通过测试表明,整流滤波电路输出1A电流时,分别采用 1000、2200、3300、4700和10000微法的滤波电容器,纹波电压的峰峰值分别为:6V、2.8V、1.9V、1.1V和0.6V。如果采用更大的滤波电容器,滤波效果将会更好。问题是大容量电容器体积大。怎样解决这个问题呢?人们立刻想到能否将超级电容器用于整流滤波,本文将通过理论分析和试验给予详尽的分析和试验结果。整流滤波对于电容器的基本要求在开关电源中,输出整流滤波对于电容器而言有四点基本要求,它们分别是:有足够的电容量、符合要求的额定电压、符合要求的ESR(等效串联电阻)和可以承受相应的纹波电流值。只有同时满足这四点基本要求,超级电容器才可以用于开关电源的输出整流滤波。超级电容器作为整流滤波电容器的可能性对于超级电容器而言,它可以轻而易举的达到法拉级电容量,故超级电容器是有足够的电容量作为整流滤波。以前超级电容器的额定电压比较低,虽然可以通过多只串联的方式解决,但是多只串联后将导致ESR的增大,从而增加了ESR的问题。而超级电容器不能用于输出端的整流滤波的主要原因是:在开关电源的输出端整流滤波时,要求滤波电容器有尽可能低的ESR,而以前的超级电容器多只串联后的ESR 很大,这使得超级电容器在用于输出整流滤波时会发热。例如:5个4.7F的超级电容器串联使用时,其ESR大约为300mΩ,这时,若在超级电容器上流过 2A输出电流时,功率为1.2W,这个功率将导致超级电容器严重发热。不过现在的超级电容器已经达到了很高的水平,例如AVX公司生产了一系列 bestcap®超级电容器,它同时具有高额定电压与低ESR的特点,如:一只90mF/12V的bestcap®超级电容器的ESR约为90mΩ,这与 300mΩ相比小很多。可见,bestcap®超级电容器的ESR远低于以前的超级电容器,从而可以同时解决额定电压与ESR的问题;余下的问题就是能否通过相应的纹波电流是否符合要求。选择适合的电容量时(例如选择每安培负载电流1000~10000μF),铝电解电容器基本上不存在不能承受纹波电流,而且其ESR比较低,所产生的效应基本上对铝电解电容器几乎没有影响。bestcap®超级电容器的ESR与铝电解电容器的差不多,而且其具有非常的好阻抗频率特性,故bestcap®超级电容器可以承受相应的纹波电流值。图1为bestcap®超级电容器的阻抗频率特性图。由此可见,bestcap®超级电容器适用于输出整流滤波。超级电容器用于整流滤波现以90mF/12V的超级电容器为例,其相关参数为额定电压12V,额定电容量90mF、ESR90mΩ、体积48×30×6.1mm,温度范围-40℃~+70℃。用超级电容器作为整流滤波电容器与一般的整流滤波电路一样,超级电容器用于整流滤波的电路和输出电流、流过滤波电容器的电流波形如图2,只不过滤波电容器换成了超级电容器。以前,由于超级电容器的额定电压很低(仅2.7V),需要数只超级电容器串联。对于9V输出的稳压电源(考虑市电电压的变化,整流输出电压约为10~12V),但现在只采用一只90mF/12V bestcap®超级电容器就可以实现9V输出的稳压电源的滤波。测试结果对比通过对采用两只插脚式16V/33000μF的铝电解电容器并联作为滤波电容器的整流滤波电路。在整流输出电压平均值为9V,负载电流2.2A时的整流输出纹波电压如图3,所使用的示波器为F105B数字示波表,选择A通道,AC耦合,时基5mS/div(每格5mS),通道设置100mV/div(每格100mV)。从图中可以看到纹波电压的峰峰值(ΔY)为412mV,充电与放电(电压波形的上升与下降)时间基本相同。通过工频变压器降压后的整流电路,由于工频变压器的漏感作用(抑制电流变化),使滤波电容器几乎工作在或者是充电、或者是放电的状态,与市电直接整流的状态不同。测试结果表明整流输出滤波电容器选择10000μF/A(每安培输出电流用1万微法)的滤波电容时,输出电压的纹波电压的峰峰值约为 510mV,与理论分析结果的600mV/A很接近。因此,对于低压整流滤波电路,为了获得低纹波电压将不得不采用非常大的滤波电容器,不仅体积大而且价格很高。现在采用一只AVX公司生产的90mF/12V bestcap®超级电容器作为整流滤波电容器,在与上面的例子相同的测试条件下,测得输出电压的纹波电压峰峰值为312mV,如图4所示。从纹波电压峰峰值可以看出一只90mF /12V bestcap®超级电容器作为滤波电容器的纹波电压峰峰值比两只16V/33000μF的铝电解电容器并联作为滤波电容器的纹波电压峰峰值少 100mV,即采用一只90mF /12V bestcap®超级电容器作为滤波电容器比采用两只16V/33000μF的铝电解电容器并联作为滤波电容器的滤波效果好。超级电容器作为整流滤波的效果并不像理想电容器那样使输出电压接近一条直线,而是有一些波动,原因是超级电容器有相对一般电容器大的ESR。一只90mF/12V bestcap®超级电容器的ESR约为90mΩ,滤波电容器上的充、放电的电流差约为输出电流平均值的2倍,因而在输出端出现约310mV的由于ESR 的电压波动,即使如此,还是可以得到很低的纹波电压。由此可见,一只90mF/12V bestcap®超级电容器的滤波效果相当于一只56000μF电解电容器。同时由上述的参数可知,超级电容器的体积比铝电解电容器的体积小很多,故在低压整流滤波的应用中超级电容器将具有很大的性能优势、价格优势和体积优势。通过上述两个实验结果的对比可知,bestcap®超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。同时bestcap®超级电容器具有额定电压高、ESR低、阻抗频率特性好的特点,在今后的研究中,可以通过实验进一步了解超级电容器新的特性和应用,扩展张超级电容器的应用领域。

    时间:2018-07-06 关键词: 开关电源 电源技术解析 超级电容器 整流滤波

  • 光电耦合器电路应用符号

    光电耦合器电路应用符号

    开关电源的电路结构它采用了STE-S6709厚膜集成电路,开关管集成在IC内部,1脚为集成电极。交流输入电流经整流滤波形成的300V直流电压,经变压器初极绕组1~4加到IC801的1脚。启动电压经R804、R806加到IC801的9脚,正反馈绕组9~7输输出经整流和稳压(Q6014)后加的电压,为IC801的9脚提供正反馈电压,从而维持开关电路的振荡。Q802(SE130N)为误差检测电路,它的1脚接以+130V输出端,2脚输出接到光电耦合器IC802的2脚,然后将误差信号反馈到IC801的7脚,从而实现稳压控制。待机/开机控制信号加到Q805的基极,通过Q804、Q803实现待机/开机控制。电源电路开关电源的故障检修如开关电源的输出电压(+130V、+30、+13.5V+8.5和+12V)中某一电压失常,应检查该路的整流滤波电路以及负电路,看是否有损坏的元件。如果全无输出,再检查交流输入电路是否有+300V的直流电压送到开关变压器初级绕组的1脚上。如果有300V,再检查启动电路、正反馈电路和集成电路IC801本身。如果直流电压不稳定,则检查误差检测和误差反馈电路。光电耦合器的检测光电耦合器IC802的作用是:进行误差信号反馈,实现稳压控制,同时将开关稳压电源电路的热底板与主机芯电路的冷底板进行分离。光电耦合器的1、2脚之间的发光二极管具有单向导向性,用万用表的R×100Ω挡测量,正向电阻值应为无穷大;当1、2脚之间的发光二极管的电阻值变小时,流过发光二极管的电流增大,3、4脚之间的电阻值变小,1、2脚之间与3、4脚之间的正常阻值应为无穷大。光电耦合器1~2、6~5、6~4脚之间均为PN结,都具有单向导电性,而5~4脚之间是晃通的。当给1、21脚通电时,5、4脚导通,其阻值变小。光电耦合器电路应用符号光电耦合器的判断示意图

    时间:2018-06-26 关键词: 电源技术解析 光电耦合器 集成电极 整流滤波

  • 基于多路单端反激式开关电源的设计方案

    基于多路单端反激式开关电源的设计方案

    0引言单片开关电源自问世以来,以其效率高,体积小,集成度高,功能稳定等特点迅速在中小功率精密稳压电源领域占据重要地位。美国PI公司的TOPSwitch系列器件即是一种新型三端离线式单片高频开关电源芯片,开关频率fs高达100 kHz,此芯片将PWM控制器、高耐压功率MOSFET、保护电路等高度集成,外围连接少许器件即可使用。本文介绍了一种基于TOP223Y输出为+5 V/3 A,+12 V/1 A的单端反激式开关电源方案设计的原理和方法。1方案设计的原理开关电源是涉及众多学科的一门应用领域,通过控制功率开关器件的开通与关闭调节脉宽调制占空比达到稳定输出的目的,能够实现AC/DC或者DC/DC转换。TOP223Y共三个端:控制极C、源极S、漏极D.因只有漏极D用作脉宽调制功率控制输出,故称单端;高频变压器在功率开关导通时只是将能量存储在初级绕组中,起到电感的作用,在功率开关关闭时才将能量传递给次级绕组,起变压作用,故称反激式。电路功能部分主要由输入/输出整流滤波、功率变换、反馈电路组成。工作原理简述为:220 V市电交流经过整流滤波得到直流电压,再经TOP223Y脉宽调制和高频变压器DC-AC变换得到高频矩形波电压,最后经输出整流滤波得到品质优良的直流电压,同时反馈回路通过对输出电压的采样、比较和放大处理,将得到的电流信号输入到TOP223Y的控制端C,控制占空比调节输出,使输出电压稳定。2方案设计的要求设计作为某智能仪器的供电电源,具体的参数要求如下:交流输入电压最小值:VACMIN=85 V;交流输入电压最大值:VACMAX=265 V;输出:U1:+5 V/3 A;U2:+12 V/1 A;输出功率:Po=27 W;偏置电压:VB=12 V;电网频率fL=50 Hz;开关频率fs=100 kHz;纹波电压:小于100 mV;电源效率:η大于80%;损耗分配因数Z为0.5;功率因数为0.5.3设计实例本设计方案是基于TOP223Y的多路单端反激式开关电源,性能优越,便于集成。电路原理如图2所示,可分为输入保护电路、输入整流滤波电路、钳位保护电路、高频变压器、输出整流滤波电路、反馈回路、控制电路7个部分。3.1输入保护电路由保险丝F1、热敏电阻RT和压敏电阻RV组成,对输入端进行过电压、过电流保护。保险丝F1用于当线路出现故障产生过电流时切断电路,保护电路元器件不被损坏,其额定电流IF1按照IF1》2IACRMS选择3 A/250 VAC保险丝,其中IACRMS为原边有效电流值。热敏电阻RT用以吸收开机浪涌电流,避免瞬间电流过大,对整流二极管和保险丝带来冲击,造成损坏,加入热敏电阻可以有效提高电源设计的安全系数,其阻值按照RRT1》0.014VACMAX/IACRMS选择10D-11(10Ω/2.4 A)。压敏电阻RV能在断开交流输入时提供放电通路,以防止大电流冲击,同时对冲击电压也有较好钳位作用。RV选取MY31-270/3,标称值为220 V.3.2输入整流滤波电路由EMI滤波电路、整流电路、稳压电路组成。EMI滤波电路针对来自电网噪声干扰。采用由L1,CX1,CX2,CY1,CY2构成典型的Π型滤波器。CX1和CX2用来滤除来自电网的差模干扰,称为X电容,通常取值100~220 nF,这里取100μF;CY1和CY2用来滤除来自电网的共模干扰,称为Y电容,通常取值为1~4.7 nF,这里取2.2 nF;同样用来消除共模干扰的共模电感L1的取值8~33 mH,这里取8 mH,采取双线并绕。输入整流电路选择不可控全波整流桥。整流桥的反向耐压值应大于1.25倍的最大直流输入电压,整流桥的额定电流应大于两倍的交流输入的有效值,计算后选择反向击穿电压为560 V,额定电流为3 A的KBP306整流桥。在当前的供电条件下,输入储能电容器CIN的值根据输出功率按照2~3μF/W来取值,考虑余量,取CIN=100μF/400 V的电解电容。假设整流桥中二极管导通时间为tc=3 ms,可由:得到输入直流电压的最小值和最大值。3.3钳位保护电路当功率开关关断时,由于漏感的影响,高频变压器的初级绕组上会产生反射电压和尖峰电压,这些电压会直接施加在TOPSwitch芯片的漏极上,不加保护极容易使功率开关MOSFET烧坏。加入由R1、C2和VD1组成经典的RCD钳位保护电路,则可以有效地吸收尖峰冲击将漏极电压钳位在200 V左右,保护芯片不受损坏。推荐钳位电阻R1取27 kΩ/2 W,VD1钳位阻断二极管快恢复二极管耐压800 V的FR106,钳位电容选取22 nF/600 V的CBB电容。3.4高频变压器3.4.1磁芯的选择磁芯是制造高频变压器的重要组成,设计时合理、正确地选择磁芯材料、参数、结构,对变压器的使用性能和可靠性,将产生至关重要的影响。高频变压器磁芯只工作在磁滞回线的第一象限。在开关管导通时只储存能量,而在截止时向负载传递能量。因为开关频率为100 kHz,属于比较高的类型,所以选择材料时选择在此频率下效率较高的铁氧体,由:估算磁芯有效截面积为0.71 cm2,根据计算出的Ae考虑到阈量,查阅磁芯手册,选取EE2825,其磁芯长度A=28 mm,有效截面积SJ=0.869 cm2,有效磁路长度L=5.77 cm,磁芯的等效电感AL=3.3μH/匝2,骨架宽度Bw=9.60 mm.3.4.2初级线圈的参数(1)最大占空比。根据式(1),代入数据:宽范围输入时,次级反射到初级的反射电压VoR取135 V,查阅TOP223Y数据手册知MOSFET导通时的漏极至源极的电压VDS=10 V,则:(2)设置KRP .KRP= IR IP,其中IR为初级纹波电流;IP为初级峰值电流;KRP用以表征开关电源的工作模式(连续、非连续)。连续模式时KRP小于1,非连续模式KRP大于1.对于KRP的选取,一般由最小值选起,即当电网入电压为100 VAC/115 VAC或者通用输入时,KRP=0.4;当电网输入电压为230 VAC时,取KRP=0.6.当选取的KRP较小时,可以选用小功率的功率开关,但高频变压器体积相对要大,反之,当选取的KRP较大时,高频变压器体积相对较小,但需要较大功率的功率开关。对于KRP的选取需要根据实际不断调整取最佳。(3)初级线圈的电流初级平均输入电流值(单位:A):可知,KRP选取合适。TOPSwitch器件的选择遵循的原则是选择功率容量足够的最小的型号。(4)变压器初级电感3.4.3初级次级绕组匝数当电网电压为230 V和通用输入220 V时:每伏特取0.6匝,即KNS=0.6.由于输出侧采用较大功率的肖特基二极管用作输出整流二极管,因此VD取0.7 V,磁芯的最大工作磁通密度在BM在2 000~3 000 GS范围内。偏置二极管VDB的压降取0.7 V,偏置电压VB取12 V.初级绕组匝数:3.5输出整流滤波电路由整流二极管、滤波电容和平波电感组成。将次级绕组的高频方波电压转变成脉动的直流电压,再通过输出滤波电路滤除高频纹波,使输出端获得稳定的直流电压。肖特基二极管正向导通损耗小、反向恢复时问短,在降低反向恢复损耗以及消除输出电压中的纹波方面有明显的性能优势,所以选用肖特基二极管作为整流二极管,参数根据最大反向峰值电压VR选择,同时二极管的额定电流应该至少为最大输出电流的3~5倍。次级绕组的反向峰值电压VSM为:式中:Iout是输出端的额定电流,单位为A;Dmin是在高输入电压和轻载下所估计的最小占空比(估计值为0.3);V(PK-PK)是最大的输出电压纹波峰峰值,单位为mV.计算得出后考虑阈值C6取100μF/10 V,C8取220μF/35 V.第二级经LC滤波使不满足纹波要求的电压再次滤波。输出滤波电容器不仅要考虑输出纹波电压是否可以满足要求,还要考虑抑制负载电流的变化,在这里可以选择C7取22μF/10 V,C9取10μF/35 V.C5取经验值0.1μF/25 V.输出滤波电感根据经验取2.2~4.7μH,采用3.3μH的穿心电感,能主动抑制开关噪声的产生。为减少共模干扰,在输出的地与高压侧的地之间接共模抑制电容C15.3.6反馈回路设计开关电源的反馈电路有四种类型:基本反馈电路、改进型基本反馈电路、配稳压管的光耦反馈电路、配TL431的光耦反馈电路。本设计采用电压调整率精度高的可调式精密并联稳压器TL431加线形光耦PC817A构成反馈回路。TL431通过电路取样电阻来检测输出电压的变化量ΔU,然后将采样电压送入TL431的输入控制端,与TL431的2.5 V参考电压进行比较,输出电压UK也发生相应变化,从而使线性光电耦合器中的发光二极管工作电流发生线性变化,光电耦合器输出电流。经过光电耦合器和TL431组成的外部误差放大器,调节TOP223Y控制端C的电流IC,调整占空比D(IC与D成反比),从而使输出电压变化,达到稳定输出电压的目的。对于电路中的反馈部分,开关电源反馈电路仅从一路输出回路引出反馈信号,其余未加反馈电路。这样,当5 V输出的负载电流发生变化时,定会影响12 V输出的稳定性。解决方法是给12 V输出也增加反馈电路。另外,电路中C10为TL431的频率补偿电容,可以提高TL431的瞬态频率响应。R5为光电耦合器的限流电阻,R5的大小决定控制环路的增益。电容器C13为软启动电容器,可以消除刚启动电源时芯片产生的电压过冲。下面主要是确定R4~R8的值:按照应用要求,对5 V电源要求较高,但也要兼顾12 V电源,权衡反馈量,将R7,R8的反馈权值均设置为0.6,0.4,各个输出的稳定性均得到保障和提高。只有5 V输出有反馈时,如R4,R7取值均为10 kΩ,此时电流IR7 =250μA,分权后,R7分得150μA、R8分得150μA.根据TL431的特性知,Vo,VREF,R7,R8,R4之间存在以下关系:式中:VREF为TL431参考端电压,为2.5 V;Vo为TL431输出电压。根据电流分配关系得(单位:kΩ):式中:VF为光耦二极管的正向压降,由PC817技术手册知,典型值为1.2 V.先取R5=390Ω,可得R6=139Ω,取标称值150Ω。3.7控制回路由电容C7和电阻R12串联组成。C9用来滤除控制端的尖峰电压并决定自动重启动时序,并和R12一起设定控制环路的主极点为反馈控制回路进行环路补偿。由数据手册知,C9选择47μF/25 V的电解电容,当C9 =47μF时,自动重启频率为1.2 Hz,即每隔0.83 s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。R12取6.2Ω。4方案的实验结果根据以上方案设计的方法和规范,设计出的一种基于TOP223Y双路+5 V/3 A,+12 V/1 A输出的反激式开关电源。在宽范围85~265 VAC的输入范围下对其性能进行了测试,如表1所示。由以上选取的实验数据得出,+5 V/3 A(反馈权重0.6,负载500Ω)输出的电压调整率为SV =±0.18%,输出的纹波电压为39 mV,输出的最大电流为3.2 A;+12 V/1 A(反馈权重0.4,负载750Ω)输出的电压调整率为SV =±0. 3%,输出的纹波电压为68 mV,输出的最大电流为1.10 A.该电源在满载状态时,功率可达27.6 W,最大占空比为0.60,电源效率为83.1%,开关电源具有良好的性能,满足应用要求。5结语本文所设计的开关电源方案,芯片的高度集成化,外围电路设计简单。电源的性能通过参数的调节仍有提升的空间。双输出双反馈异权重的设计使开关电源的更加实用灵活,不同的保护电路的设计,使电源的实用更加安全可靠,该方案所设计的电源在实际应用中表现良好。

    时间:2018-06-21 关键词: 电源技术解析 topswitch 反激式开关电源 top223y 钳位保护 整流滤波

  • 基于开关电源的整流滤波中超级电容器的理论分析

    基于开关电源的整流滤波中超级电容器的理论分析

    本文将超级电容器用于整流滤波,并进行设计和具体实现,测试证明,超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。滤波电容器在整流滤波电路中起着重要作用,电容量越大滤波效果越好。特别是在低压整流(如5V、3.3V甚至更低的电压)输出时往往因为滤波电容器的电容量不够大而产生较大的纹波电压。通过测试表明,整流滤波电路输出1A电流时,分别采用1000、2200、3300、4700和10000微法的滤波电容器,纹波电压的峰峰值分别为:6V、2.8V、1.9V、1.1V和0.6V.如果采用更大的滤波电容器,滤波效果将会更好。问题是大容量电容器体积大。怎样解决这个问题呢?人们立刻想到能否将超级电容器用于整流滤波,本文将通过理论分析和试验给予详尽的分析和试验结果。整流滤波对于电容器的基本要求在开关电源中,输出整流滤波对于电容器而言有四点基本要求,它们分别是:有足够的电容量、符合要求的额定电压、符合要求的ESR(等效串联电阻)和可以承受相应的纹波电流值。只有同时满足这四点基本要求,超级电容器才可以用于开关电源的输出整流滤波。 图1 阻抗频率特性 图2 超级电容器作为整流滤波电容器 超级电容器作为整流滤波电容器的可能性对于超级电容器而言,它可以轻而易举的达到法拉级电容量,故超级电容器是有足够的电容量作为整流滤波。以前超级电容器的额定电压比较低,虽然可以通过多只串联的方式解决,但是多只串联后将导致ESR的增大,从而增加了ESR的问题。而超级电容器不能用于输出端的整流滤波的主要原因是:在开关电源的输出端整流滤波时,要求滤波电容器有尽可能低的ESR,而以前的超级电容器多只串联后的ESR很大,这使得超级电容器在用于输出整流滤波时会发热。例如:5个4.7F的超级电容器串联使用时,其ESR大约为300mΩ,这时,若在超级电容器上流过2A输出电流时,功率为1.2W,这个功率将导致超级电容器严重发热。不过现在的超级电容器已经达到了很高的水平,例如AVX公司生产了一系列bestcap?超级电容器,它同时具有高额定电压与低ESR的特点,如:一只90mF/12V的bestcap?超级电容器的ESR约为90mΩ,这与300mΩ相比小很多。可见,bestcap?超级电容器的ESR远低于以前的超级电容器,从而可以同时解决额定电压与ESR的问题;余下的问题就是能否通过相应的纹波电流是否符合要求。选择适合的电容量时(例如选择每安培负载电流1000~10000μF),铝电解电容器基本上不存在不能承受纹波电流,而且其ESR比较低,所产生的效应基本上对铝电解电容器几乎没有影响。bestcap?超级电容器的ESR与铝电解电容器的差不多,而且其具有非常的好阻抗频率特性,故bestcap?超级电容器可以承受相应的纹波电流值。图1为bestcap?超级电容器的阻抗频率特性图。由此可见,bestcap?超级电容器适用于输出整流滤波。超级电容器用于整流滤波现以90mF/12V的超级电容器为例,其相关参数为额定电压12V,额定电容量90mF、ESR90mΩ、体积48×30×6.1mm,温度范围-40℃~+70℃。用超级电容器作为整流滤波电容器与一般的整流滤波电路一样,超级电容器用于整流滤波的电路和输出电流、流过滤波电容器的电流波形如图2,只不过滤波电容器换成了超级电容器。以前,由于超级电容器的额定电压很低(仅2.7V),需要数只超级电容器串联。对于9V输出的稳压电源(考虑市电电压的变化,整流输出电压约为10~12V),但现在只采用一只90mF/12V bestcap,超级电容器就可以实现9V输出的稳压电源的滤波。测试结果对比通过对采用两只插脚式16V/33000μF的铝电解电容器并联作为滤波电容器的整流滤波电路。在整流输出电压平均值为9V,负载电流2.2A时的整流输出纹波电压如图3,所使用的示波器为F105B数字示波表,选择A通道,AC耦合,时基5mS/div(每格5mS),通道设置100mV/div(每格100mV)。从图中可以看到纹波电压的峰峰值(ΔY)为412mV,充电与放电(电压波形的上升与下降)时间基本相同。通过工频变压器降压后的整流电路,由于工频变压器的漏感作用(抑制电流变化),使滤波电容器几乎工作在或者是充电、或者是放电的状态,与市电直接整流的状态不同。测试结果表明整流输出滤波电容器选择10000μF/A(每安培输出电流用1万微法)的滤波电容时,输出电压的纹波电压的峰峰值约为510mV,与理论分析结果的600mV/A很接近。因此,对于低压整流滤波电路,为了获得低纹波电压将不得不采用非常大的滤波电容器,不仅体积大而且价格很高。图3 两只16V/3300 铝电解电容器并联的整流输出现在采用一只AVX公司生产的90mF/12V bestcap?超级电容器作为整流滤波电容器,在与上面的例子相同的测试条件下,测得输出电压的纹波电压峰峰值为312mV,如图4所示。从纹波电压峰峰值可以看出一只90mF /12V bestcap?超级电容器作为滤波电容器的纹波电压峰峰值比两只16V/33000μF的铝电解电容器并联作为滤波电容器的纹波电压峰峰值少100mV,即采用一只90mF /12V bestcap?超级电容器作为滤波电容器比采用两只16V/33000μF的铝电解电容器并联作为滤波电容器的滤波效果好。超级电容器作为整流滤波的效果并不像理想电容器那样使输出电压接近一条直线,而是有一些波动,原因是超级电容器有相对一般电容器大的ESR.一只90mF/12V bestcap?超级电容器的ESR约为90mΩ,滤波电容器上的充、放电的电流差约为输出电流平均值的2倍,因而在输出端出现约310mV的由于ESR的电压波动,即使如此,还是可以得到很低的纹波电压。由此可见,一只90mF/12V bestcap超级电容器的滤波效果相当于一只56000μF电解电容器。同时由上述的参数可知,超级电容器的体积比铝电解电容器的体积小很多,故在低压整流滤波的应用中超级电容器将具有很大的性能优势、价格优势和体积优势。图4 一只90mF/12V bestcap超级电容器的滤波效果通过上述两个实验结果的对比可知,bestcap超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。同时bestcap?超级电容器具有额定电压高、ESR低、阻抗频率特性好的特点,在今后的研究中,可以通过实验进一步了解。

    时间:2018-06-21 关键词: 开关电源 电源技术解析 超级电容器 整流滤波

  • 开关电源原理及输入电路详解

    开关电源原理及输入电路详解

    开关电源的电路组成方框图如下: 二、 输入电路的原理及常见电路: 1、AC 输入整流滤波电路原理: ① 防雷电路:当有雷击,产生高压经电网导入电源时,由 MOV1、MOV2、MOV3:F1、F2、F3、 FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3 组成的双 π 型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对 C5 充电,由于瞬间电流大,加 RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在 RT1 电阻上,一定时间后温度升高后 RT1 阻值减小(RT1 是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③ 整流滤波电路:交流电压经 BRG1 整流后,经 C5 滤波后得到较为纯净的直流电压。若 C5 容量变小,输出的交流纹波将增大。 2、 DC 输入滤波电路原理: ① 输入滤波电路:C1、L1、C2 组成的双 π 型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、 C4 为安规电容,L2、L3 为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7 组成抗浪涌电路。在起机的瞬间,由于 C6 的存在 Q2 不导通,电流经 RT1 构成回路。当 C6 上的电压充至 Z1 的稳压值时 Q2 导通。如果 C8 漏电或后级电路短路现象,在起机的瞬间电流在 RT1 上产生的压降增大,Q1 导通使 Q2 没有栅极电压不导通,RT1 将会在很短的时间烧毁,以保护后级电路。

    时间:2018-04-02 关键词: 开关电源 输入电路 整流滤波

  • 几个实用电路阻容降压原理

    几个实用电路阻容降压原理

    将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源. 采用电容降压时应注意以下几点: 1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率. 2 限流电容必须采用无极性电容,绝对不能采用电解电容.而且电容的耐压须在400V以上.最理想的电容为铁壳油浸电容. 3 电容降压不能用于大功率条件,因为不安全. 4 电容降压不适合动态负载条件. 5 同样,电容降压不适合容性和感性负载. 6 当需要直流工作时,尽量采用半波整流.不建议采用桥式整流.而且要满足恒定负载的条件. 电路一,   这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电路二,   最简单的电容降压直流供电电路及其等效电路如图1,C1为降压电容,一般为0.33~3.3uF。假设C1=2uF,其容抗XCL=1/(2PI*fC1)=1592。由于整流管的导通电阻只有几欧姆,稳压管VS的动态电阻为10欧姆左右,限流电阻R1及负载电阻RL一般为100~200,而滤波电容一般为100uF~1000uF,其容抗非常小,可以忽略。若用R代表除C1以外所有元器件的等效电阻,可以画出图的交流等效电路。同时满足了XC1>R的条件,所以可以画出电压向量由于R甚小于XC1,R上的压降VR也远小于C1上的压降,所以VC1与电源电压V近似相等,即VC1=V。根据电工原理可知:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1。若C1以uF为单位,则Id为毫安单位,对于22V,50赫兹交流电来说,可得到Id=0.62C1。 由此可以得出以下两个结论:(1)在使用电源变压器作整流电源时,当电路中各项参数确定以后,输出电压是恒定的,而输出电流Id则随负载增减而变化;(2)使用电容降压作整流电路时,由于Id=0.62C1,可以看出,Id与C1成正比,即C1确定以后,输出电流Id是恒定的,而输出直流电压却随负载电阻RL大小不同在一定范围内变化。RL越小输出电压越低,RL越大输出电压也越高。C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF。考虑到稳压管VD5的的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安。 稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要。由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R1及VD5回路中将通过全部的93毫安电流,所以VD5的最大稳定电流应该取100毫安为宜。由于RL与VD5并联,在保证RL取用75毫安工作电流的同时,尚有18毫安电流通过VD5,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用。 限流电阻取值不能太大,否则会增加电能损耗,同时也会增加C2的耐压要求。如果是R1=100欧姆,R1上的压降为9.3V,则损耗为0.86瓦,可以取100欧姆1瓦的电阻。 滤波电容一般取100微法到1000微法,但要注意其耐亚的选择.前已述及,负载电压为9V,R1上的压降为9.3V,总降压为18.3V,考虑到留有一定的余量,因此C2耐压取25V以上为好。 电路三,   如图-1,C1 为降压电容器,D2 为半波整流二极管,D1 在市电的负半周时给C1 提供放电 回路,D3 是稳压二极管R1 为关断电源后C1 的电荷泄放电阻。在实际应用时常常采用的是图-2的所示的电路。当需要向负载提供较大的电流时,可采用图-3 所示的桥式整流电路。整流后未经稳压的直流电压一般会高于30 伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1 向负载提供的电流Io,实际上是流过C1 的充放电电流Ic。C1 容量越大,容抗Xc 越小,则流经C1 的充、放电电流越大。当负载电流Io 小于C1 的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax 小于Ic-Io 时易造成稳压管烧毁。 2.为保证C1 可*工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1 的选择必须保证在要求的时间内泄放掉C1 上的电荷。 设计举例 图-2 中,已知C1 为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1 在电路中的容抗Xc 为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1 的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1 的容量C 与负载电流Io 的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io 的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合. 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 电容降压的工作原理并不复杂.他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流.例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆.当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA.虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率.根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性.例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁.因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合.同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁.因为5W/65V的灯泡的工作电流也约为70mA.因此,电容降压实际上是利用容抗限流.而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色.

    时间:2017-10-24 关键词: 模拟电路 阻容降压电路图 整流滤波

  • 液晶显示器电源电路图

    液晶显示器电源电路图

     220V交流市电通过交流保险管F101后进入由CXl01、LFl01等组成的抗干扰电路,经抗干扰电路处理后再进入BDl01进行整流。为了防止瞬间大电流冲击,在整流后加入了THl01 NTC热敏电阻,最后经C101滤波生成约300V的直流电压。 从中可以看出,本电路不同于其他显示器开关电源的地方,一是THl01的位置不同(一般电路多设置在电源进线端),另一点就是未设置电源开关,从而决定了只要插头接人市电,整个开关电源电路就开始工作,这也恰恰是借助于FAN7601优良的“绿色”功能来实现的。 整流滤波电路产生的约300V直流电压分两路输入开关电源电路,一路经开关变压器T1的①一②绕组加到开关管Q101的漏极。 另一路通过启动电阻R117加到开关电源PWM控制器FAN7601的①脚,通过启动控制电路由⑦脚对外部电容c108充电,当C108两端电压上升到11V时,FAN7601内部振荡电路起振,从⑥脚输出驱动脉冲,通过D103、R106、R107加到Q101栅极,使开关管工作于开关状态。开关变压器各绕组有感应电压产生,通过各整流滤波系统向负载提供直流电压。其中开关变压器的③-④绕组产生感应电压经R105限流、D102滤波后向FAN7601的⑦脚提供芯片工作电压, 启动控制电路关断①脚的电流输入。 在以往的开关电源维修中,尽管采用启动电阻功率比较大但依然是易损元件之一,而且发热量也比较大,实际上就是由于通电后启动电阻一直有电流通过的原因。而在这款电源中,启动电阻却采用了一个0Ω的贴片元件,是明显区别于其他电路的,这里我们学习到新型“绿色电源芯片”内部都设有一个启动开关,一旦电源达到正常工作状况(启动过程结束),就会切断启动电阻器,这样便可省去一大部分的功率损耗。其电路本身的故障率也接近于零 该机稳压控制电路主要由U101、光电耦合器PC201、精密稳压器件U201(KIA431)及取样电阻R205、R211、R214、R210等组成。当开关变压器次级+12V或+5V输出电压升高时,经取样电阻分压加至U201的R端电位升高,L5201的K端电压则降低,使流经光电耦合器PC201内部光敏二极管的电流增大,其发光管亮度增强,光敏三极管导通程度增强,最终使流入U101的②脚电流增加,其内部振荡电路降低输出驱动脉冲占空比,使开关管Q101的导通时间缩短,输出电压降低。如果输出电压降低则TC输出驱动脉冲占空比升高,这样使输出电压保持稳定。

    时间:2015-08-21 关键词: 液晶显示器 电源显示器电源 整流滤波

  • 基于开关电源中整流滤波超级电容器的理论分析与应用

     本文将超级电容器用于整流滤波,并进行设计和具体实现,测试证明,超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。 滤波电容器在整流滤波电路中起着重要作用,电容量越大滤波效果越好。特别是在低压整流(如5V、3.3V甚至更低的电压)输出时往往因为滤波电容器的电容量不够大而产生较大的纹波电压。通过测试表明,整流滤波电路输出1A电流时,分别采用 1000、2200、3300、4700和10000微法的滤波电容器,纹波电压的峰峰值分别为:6V、2.8V、1.9V、1.1V和0.6V。如果采用更大的滤波电容器,滤波效果将会更好。问题是大容量电容器体积大。怎样解决这个问题呢?人们立刻想到能否将超级电容器用于整流滤波,本文将通过理论分析和试验给予详尽的分析和试验结果。 整流滤波对于电容器的基本要求 在开关电源中,输出整流滤波对于电容器而言有四点基本要求,它们分别是:有足够的电容量、符合要求的额定电压、符合要求的ESR(等效串联电阻)和可以承受相应的纹波电流值。只有同时满足这四点基本要求,超级电容器才可以用于开关电源的输出整流滤波。 超级电容器作为整流滤波电容器的可能性 对于超级电容器而言,它可以轻而易举的达到法拉级电容量,故超级电容器是有足够的电容量作为整流滤波。以前超级电容器的额定电压比较低,虽然可以通过多只串联的方式解决,但是多只串联后将导致ESR的增大,从而增加了ESR的问题。而超级电容器不能用于输出端的整流滤波的主要原因是:在开关电源的输出端整流滤波时,要求滤波电容器有尽可能低的ESR,而以前的超级电容器多只串联后的ESR 很大,这使得超级电容器在用于输出整流滤波时会发热。例如:5个4.7F的超级电容器串联使用时,其ESR大约为300mΩ,这时,若在超级电容器上流过 2A输出电流时,功率为1.2W,这个功率将导致超级电容器严重发热。不过现在的超级电容器已经达到了很高的水平,例如AVX公司生产了一系列 bestcap?超级电容器,它同时具有高额定电压与低ESR的特点,如:一只90mF/12V的bestcap?超级电容器的ESR约为90mΩ,这与 300mΩ相比小很多。可见,bestcap?超级电容器的ESR远低于以前的超级电容器,从而可以同时解决额定电压与ESR的问题;余下的问题就是能否通过相应的纹波电流是否符合要求。选择适合的电容量时(例如选择每安培负载电流1000~10000μF),铝电解电容器基本上不存在不能承受纹波电流,而且其ESR比较低,所产生的效应基本上对铝电解电容器几乎没有影响。bestcap?超级电容器的ESR与铝电解电容器的差不多,而且其具有非常的好阻抗频率特性,故bestcap?超级电容器可以承受相应的纹波电流值。图1为bestcap?超级电容器的阻抗频率特性图。由此可见,bestcap?超级电容器适用于输出整流滤波。超级电容器用于整流滤波 现以90mF/12V的超级电容器为例,其相关参数为额定电压12V,额定电容量90mF、ESR90mΩ、体积48×30×6.1mm,温度范围-40℃~+70℃。 用超级电容器作为整流滤波电容器 与一般的整流滤波电路一样,超级电容器用于整流滤波的电路和输出电流、流过滤波电容器的电流波形如图2,只不过滤波电容器换成了超级电容器。以前,由于超级电容器的额定电压很低(仅2.7V),需要数只超级电容器串联。对于9V输出的稳压电源(考虑市电电压的变化,整流输出电压约为10~12V),但现在只采用一只90mF/12V bestcap?超级电容器就可以实现9V输出的稳压电源的滤波。 测试结果对比 通过对采用两只插脚式16V/33000μF的铝电解电容器并联作为滤波电容器的整流滤波电路。在整流输出电压平均值为9V,负载电流2.2A时的整流输出纹波电压如图3,所使用的示波器为F105B数字示波表,选择A通道,AC耦合,时基 5mS/div(每格5mS),通道设置100mV/div(每格100mV)。从图中可以看到纹波电压的峰峰值(ΔY)为412mV,充电与放电(电压波形的上升与下降)时间基本相同。通过工频变压器降压后的整流电路,由于工频变压器的漏感作用(抑制电流变化),使滤波电容器几乎工作在或者是充电、或者是放电的状态,与市电直接整流的状态不同。 测试结果表明整流输出滤波电容器选择10000μF/A(每安培输出电流用1万微法)的滤波电容时,输出电压的纹波电压的峰峰值约为 510mV,与理论分析结果的600mV/A很接近。因此,对于低压整流滤波电路,为了获得低纹波电压将不得不采用非常大的滤波电容器,不仅体积大而且价格很高。 现在采用一只AVX公司生产的90mF/12V bestcap?超级电容器作为整流滤波电容器,在与上面的例子相同的测试条件下,测得输出电压的纹波电压峰峰值为312mV,如图4所示。从纹波电压峰峰值可以看出一只90mF /12V bestcap?超级电容器作为滤波电容器的纹波电压峰峰值比两只16V/33000μF的铝电解电容器并联作为滤波电容器的纹波电压峰峰值少 100mV,即采用一只90mF /12V bestcap?超级电容器作为滤波电容器比采用两只16V/33000μF的铝电解电容器并联作为滤波电容器的滤波效果好。 超级电容器作为整流滤波的效果并不像理想电容器那样使输出电压接近一条直线,而是有一些波动,原因是超级电容器有相对一般电容器大的ESR。一只90mF/12V bestcap?超级电容器的ESR约为90mΩ,滤波电容器上的充、放电的电流差约为输出电流平均值的2倍,因而在输出端出现约310mV的由于ESR 的电压波动,即使如此,还是可以得到很低的纹波电压。由此可见,一只90mF/12V bestcap?超级电容器的滤波效果相当于一只56000μF电解电容器。同时由上述的参数可知,超级电容器的体积比铝电解电容器的体积小很多,故在低压整流滤波的应用中超级电容器将具有很大的性能优势、价格优势和体积优势。 通过上述两个实验结果的对比可知,bestcap?超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。同时bestcap?超级电容器具有额定电压高、ESR低、阻抗频率特性好的特点,在今后的研究中,可以通过实验进一步了解超级电容器新的特性和应用,扩展张超级电容器的应用领域。

    时间:2014-02-05 关键词: 开关电源 超级电容器 整流滤波

  • 3V整流滤波电源

    3V整流滤波电源

    3V整流滤波电源

    时间:2012-11-12 关键词: 电源 综合电源 整流滤波

  • 整流滤波中超级电容器的应用

    中心议题: 超级电容器在滤波整流滤波中的应用 解决方案: 整流滤波对于电容器的基本要求 超级电容器用于整流滤波 测试结果对比 本文将超级电容器用于整流滤波,并进行设计和具体实现,测试证明,超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。 滤波电容器在整流滤波电路中起着重要作用,电容量越大滤波效果越好。特别是在低压整流(如5V、3.3V甚至更低的电压)输出时往往因为滤波电容器的电容量不够大而产生较大的纹波电压。通过测试表明,整流滤波电路输出1A电流时,分别采用 1000、2200、3300、4700和10000微法的滤波电容器,纹波电压的峰峰值分别为:6V、2.8V、1.9V、1.1V和0.6V。如果采用更大的滤波电容器,滤波效果将会更好。问题是大容量电容器体积大。怎样解决这个问题呢?人们立刻想到能否将超级电容器用于整流滤波,本文将通过理论分析和试验给予详尽的分析和试验结果。 整流滤波对于电容器的基本要求 在开关电源中,输出整流滤波对于电容器而言有四点基本要求,它们分别是:有足够的电容量、符合要求的额定电压、符合要求的ESR(等效串联电阻)和可以承受相应的纹波电流值。只有同时满足这四点基本要求,超级电容器才可以用于开关电源的输出整流滤波。        超级电容器作为整流滤波电容器的可能性 对于超级电容器而言,它可以轻而易举的达到法拉级电容量,故超级电容器是有足够的电容量作为整流滤波。以前超级电容器的额定电压比较低,虽然可以通过多只串联的方式解决,但是多只串联后将导致ESR的增大,从而增加了ESR的问题。而超级电容器不能用于输出端的整流滤波的主要原因是:在开关电源的输出端整流滤波时,要求滤波电容器有尽可能低的ESR,而以前的超级电容器多只串联后的ESR 很大,这使得超级电容器在用于输出整流滤波时会发热。例如:5个4.7F的超级电容器串联使用时,其ESR大约为300mΩ,这时,若在超级电容器上流过 2A输出电流时,功率为1.2W,这个功率将导致超级电容器严重发热。不过现在的超级电容器已经达到了很高的水平,例如AVX公司生产了一系列 bestcap®超级电容器,它同时具有高额定电压与低ESR的特点,如:一只90mF/12V的bestcap®超级电容器的ESR约为90mΩ,这与 300mΩ相比小很多。可见,bestcap®超级电容器的ESR远低于以前的超级电容器,从而可以同时解决额定电压与ESR的问题;余下的问题就是能否通过相应的纹波电流是否符合要求。选择适合的电容量时(例如选择每安培负载电流1000~10000μF),铝电解电容器基本上不存在不能承受纹波电流,而且其ESR比较低,所产生的效应基本上对铝电解电容器几乎没有影响。bestcap®超级电容器的ESR与铝电解电容器的差不多,而且其具有非常的好阻抗频率特性,故bestcap®超级电容器可以承受相应的纹波电流值。图1为bestcap®超级电容器的阻抗频率特性图。由此可见,bestcap®超级电容器适用于输出整流滤波。 超级电容器用于整流滤波 现以90mF/12V的超级电容器为例,其相关参数为额定电压12V,额定电容量90mF、ESR90mΩ、体积48×30×6.1mm,温度范围-40℃~+70℃。 用超级电容器作为整流滤波电容器 与一般的整流滤波电路一样,超级电容器用于整流滤波的电路和输出电流、流过滤波电容器的电流波形如图2,只不过滤波电容器换成了超级电容器。以前,由于超级电容器的额定电压很低(仅2.7V),需要数只超级电容器串联。对于9V输出的稳压电源(考虑市电电压的变化,整流输出电压约为10~12V),但现在只采用一只90mF/12V bestcap®超级电容器就可以实现9V输出的稳压电源的滤波。 测试结果对比 通过对采用两只插脚式16V/33000μF的铝电解电容器并联作为滤波电容器的整流滤波电路。在整流输出电压平均值为9V,负载电流2.2A时的整流输出纹波电压如图3,所使用的示波器为F105B数字示波表,选择A通道,AC耦合,时基5mS/div(每格5mS),通道设置100mV/div(每格100mV)。从图中可以看到纹波电压的峰峰值(ΔY)为412mV,充电与放电(电压波形的上升与下降)时间基本相同。通过工频变压器降压后的整流电路,由于工频变压器的漏感作用(抑制电流变化),使滤波电容器几乎工作在或者是充电、或者是放电的状态,与市电直接整流的状态不同。 测试结果表明整流输出滤波电容器选择10000μF/A(每安培输出电流用1万微法)的滤波电容时,输出电压的纹波电压的峰峰值约为 510mV,与理论分析结果的600mV/A很接近。因此,对于低压整流滤波电路,为了获得低纹波电压将不得不采用非常大的滤波电容器,不仅体积大而且价格很高。                                    现在采用一只AVX公司生产的90mF/12V bestcap®超级电容器作为整流滤波电容器,在与上面的例子相同的测试条件下,测得输出电压的纹波电压峰峰值为312mV,如图4所示。从纹波电压峰峰值可以看出一只90mF /12V bestcap®超级电容器作为滤波电容器的纹波电压峰峰值比两只16V/33000μF的铝电解电容器并联作为滤波电容器的纹波电压峰峰值少 100mV,即采用一只90mF /12V bestcap®超级电容器作为滤波电容器比采用两只16V/33000μF的铝电解电容器并联作为滤波电容器的滤波效果好。 超级电容器作为整流滤波的效果并不像理想电容器那样使输出电压接近一条直线,而是有一些波动,原因是超级电容器有相对一般电容器大的ESR。一只90mF/12V bestcap®超级电容器的ESR约为90mΩ,滤波电容器上的充、放电的电流差约为输出电流平均值的2倍,因而在输出端出现约310mV的由于ESR 的电压波动,即使如此,还是可以得到很低的纹波电压。 由此可见,一只90mF/12V bestcap®超级电容器的滤波效果相当于一只56000μF电解电容器。同时由上述的参数可知,超级电容器的体积比铝电解电容器的体积小很多,故在低压整流滤波的应用中超级电容器将具有很大的性能优势、价格优势和体积优势。                                        通过上述两个实验结果的对比可知,bestcap®超级电容器可以用于电源输出端的整流滤波,而且其滤波效果俱佳。其与电解电容器相比,具有其很大的优势。同时bestcap®超级电容器具有额定电压高、ESR低、阻抗频率特性好的特点,在今后的研究中,可以通过实验进一步了解超级电容器新的特性和应用,扩展张超级电容器的应用领域。

    时间:2011-11-21 关键词: 超级电容器 整流滤波

  • 整流滤波部分电路图

    整流滤波部分电路图

    时间:2010-11-27 关键词: 线性稳压 部分电路 整流滤波

发布文章

技术子站

更多

项目外包