当前位置:首页 > 智能车载
  • 智能车载监控系统解决方案

    智能车载监控系统解决方案 为应对和防范公共安全,全球各地的组织都在增加经费以加强安全装备或增加新的安全防范设备。考虑到这一点,新汉扩展VTC系列,推出 VTC 6200 car PC专用机,专注于智能车载监控系统的解决方案。增加PCI-104 槽作为视频捕捉卡或SUMIT PoE接口设备应用。 VTC 6200 car PC采用Intel Pineview D 处理器,支持双核技术,有着功能强大的视频处理性能,并支持-30到60 度的宽温,坚固耐用和无风扇的设计使VTC 6200 car PC可以放心长久的使用在严苛的室内或户外环境,无须象普通设备一样时常维护。

    时间:2020-09-10 关键词: 监控系统 智能车载

  • VTC系列智能车载解决方案

    VTC系列智能车载解决方案

      VTC系列是创新的车载计算机,适用多种不同的应用,包括公共汽车,卡车,警车,出租车和更多车辆应用。基于 Intel低功耗高效能的 Atom CPU, 紧凑设计的 VTC 系列完全符合绝大多数车载行业标准应用,包括通过列车应用所需的eMark和EN50155认证。专为极端恶劣环境应用设计,VTC系列能在-30°C ~ +60°C宽温和抵挡达2G的震动/振动。可选配的 IP65等级防护进一步增强系统在严苛环境的坚固性。为促进移动通讯和导航信息沟通无畅,VTC系列可集成GSM, GPRS, UMTS, HSDPA 和 GPS模块。内嵌的电源引擎点火开/关保护功能使VTC系列能适用在各种交通运输环境下不同电源模式。为提升应用灵活性,VTC系列采用宽压电源输入及连接智能电池备份作为不间断电源。对于智能车载娱乐及数字标牌应用,VTC系列拥有丰富的多媒体显示接口,如VGA, TV-out 和 LVDS。更有其他特点如PCI-104 扩展槽作为CAN bus或 COM 扩展和可选配的Mini PCI express WLAN/3.5G 模块。      特点   u 无风扇,紧凑尺寸和坚固铝制机箱设计   u 集成GSM/GPRS/UMTS/HSDPA 和 GPS 模块作为移动通讯和导航应用   u 宽压电源引擎控制,低压备份保护   u 双显示:CRT 和LVDS/TV 输出   u 弹性I/O 连接可选和PCI 104扩展   u 可选: 防振动套件 (VTK 33V), 备份电池配件套件 (VTK 33B) 和 IP65 套件 (VTK 60P)   应用   u 车辆追踪/监控   u 实时语音和数据通讯   u 计算机辅助调度   u 公共交通   u 信息娱乐系统   u 紧急医疗服务   u 车队管理   VTC6200   产品特点   u 内建Intel Atom D510 Dual Core 1.6GHz Processor   u 无线网络通讯 (3.5G, GSM/GPRS,WLAN, BT)   u 智能电源引擎管理开/关,延迟时间和低压保护功能   u PCI104, SUMIT 和 mini 卡扩展接口作为PoE和mini卡模块应用   u 8~60V 宽压直流电源输入   u 双 VGA 输出 (clone mode)   u 坚固无风扇设计,IP65和 MIL标准防护等级   u 弹性机箱设计,可同时使用PCI-104和 HDD   u 支持 2 x 高压隔离RS-232接口 (COM1, COM2)   u 隔离的 GPIO      VTC 2000   产品特点   u Intel Atom N270 处理器   u GSM/GPRS/UMTS/HSDPA/GPS/BT的可选   u 1 x CF 插槽,1 x 2.5" SATA HDD   u E13 Mark ,EN50155 认证   u 3 x USB2.0 ,1 x VGA ,1 x DVI-D ,1 x 10/100/1000 以太网   u 点火电源开/关及延迟时间控制   u 低电压保护   u 高抗震性能   

    时间:2020-09-09 关键词: vtc 智能车载

  • 大联大推基于ST STM32F103与TI CC2564智能车载双模蓝牙方案

    大联大推基于ST STM32F103与TI CC2564智能车载双模蓝牙方案

    致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于意法半导体(ST)STM32F103与德州仪器(TI)CC2564的智能车载双模蓝牙方案WLT2564S。该车载双模蓝牙方案可以服务于逆变器为12v转220v 1500w的电源转换器,用户通过蓝牙无线连接到手机或平板计算机,可以通过APP来监控智能电源转换器工作时的各种状况,如超载保护、短路保护、过压保护、欠压保护、欠压报警、过温保护、电瓶电源使用到转换器警报提示等相关使用安全控制和提示功能。 随着车载电源逆变器的普及率增高,人们出行时越来越习惯于使用逆变器连接蓄电池带动电器及各种工具工作,把家用电器连接到电源转换器的输出端,人们就能在汽车内使用各种电器。手机、笔记本电脑、数码摄像机、照相机、照明灯、电动剃须刀、游戏机、笔记本电脑、电动工具、车载冰箱及各种旅游、野营、医疗急救电器等都可以使用车载逆变器连接充电并使用。 大联大友尚推出的智能车载双模蓝牙方案WLT2564S可以帮助用户进一步实现经由移动装置,实现监控、观察电源转换器的重要信息的需求或者实时接收重要的警报提示的需求。方案采用TI CC2564 Supports Bluetooth 4.0 and Dual-Mode(BR/EDR/LE)Controller,WLT2564S双模蓝牙透传模块,同时集成了STM32F103 系列MCU、Flash(128KB-1M)、RAM(20KB-96KB)。方案中板载采用高性能陶瓷2.4GHz天线,可以外接;尺寸为 19*30mm,为邮票孔管脚;系统支持UART/SPI,UART接口最高可达4Mbps;支持I2C接口,可用于外接加密,支持PCM接口、支持 I2S接口;支持透明协议数据传输模式,可提供AT+指令集配置;支持蓝牙SPP/SPPLE/HFP/MAP/PXP/A2DP/AVRCP/ANP /HID等。 大联大友尚同时针对该智能车载双模蓝牙方案提供软件平台,平台可以灵活地帮助工程师完成方案开发,同时可以提供定制化服务。   图示1-WLT2564S模块线路图   图示2-WLT2564S方案方框图

    时间:2016-08-17 关键词: 双模蓝牙 cc2564 智能车载

  • 智能车载仪表系统结构及硬件设计

    引言 随着高性能电子显示技术的发展,汽车仪表电子化的程度越来越高。国内外已开发出了多功能全电子显示仪表、平视显示仪表、汽车导航系统、行车记录仪等高技术产品。未来,车用电子化嵌入式仪表具有以下优点:提供大量复杂的信息,使汽车的电子控制程度越来越高;满足小型、轻量化的要求,使有限的驾驶空间更人性化;高精度和高可靠性实现汽车仪表的电子化,降低了故障的发生率;设有在线故障诊断系统,一旦汽车发生故障,可以找到故障来源,方便维修;外形设计自由度高,汽车仪表盘造型美观。基于以上优点,汽车会越来越多地采用各种用途的电子化仪表。造型新颖、功能强大的嵌入式电子化仪表将是今后车用仪表的发展趋势和潮流。 1 智能车载仪表系统结构 本智能车载仪表拥有大多数传统车载仪表所拥有的功能,驾驶员可以通过车载仪表的显示界面获取当前汽车的状态信息,例如车速、油压、油温、水温、机油压力或者电瓶电量。 传统车辆仪表直接与车辆的传感器相连,仪表系统经由传感器的模拟量得到汽车当前状态,精确性不高。本文设计的智能车载仪表并不是简单地与传感器相连,而是通过CAN控制器将整车连接成一个网络结构。车辆部件配以CAN控制器,通过双绞线将车辆部件连接起来形成一个网络体系,实现部件的电子化。同时,车载仪表和汽车部件的电子化也提高了汽车的精准度和可靠性,降低故障发生率。 车载智能仪表主要分为基于S3C2440处理器的硬件系统和WinCE环境下的软件系统两大部分。硬件系统为整个控制系统提供基础,负责CAN总线通信。软件系统提供CAN总线的硬件驱动以及在WinCE下的仪表上位应用程序。 2 硬件设计 硬件系统以S3C2440为核心,RAM内存、NOR Flash和NAND Flash作为存储介质,扩展部分外围设备以负责系统信息的输入与输出,如CAN总线通信单元、LCD显示、触摸屏、通用串行口、USB设备、以太网接口等。系统硬件结构如图1所示。     在众多接口中,CAN总线通信单元是在整车通信过程中的关键部分。在汽车的各个重要部件中,配置相应的CAN控制单元,由双绞线将各个CAN总线控制单元连接起来。汽车的各个部件将该部件的当前状态信息由CAN控制单元发送出去,经双绞线发送到智能车载仪表的CAN单元当中,经过系统的CAN接口将数据发送到系统中。车载仪表系统得到数据后,经过数据处理得到汽车部件的当前状态信息。 CAN总线接口电路如图2所示。采用Microchip公司的CAN总线控制器MCP2515。MCP2515完全支持CAN 2.OA/B技术规范,速度达到1Mbps;SPI的接口标准使得它与S3C2440的连接更加简单;能发送和接收标准和扩展数据帧以及远程帧;自带2个验收屏蔽寄存器和6个验收滤波寄存器,可以过滤掉不想要的报文,减少了微处理器的开销。CAN总线收发器采用TJA1050,该器件提供了CAN控制器与物理总线之间的接口以及对CAN总线的差动发送和接收功能。     为了增强CAN总线节点的抗干扰能力,提高系统的稳定性,在CAN控制器与CAN收发器之间加入了光耦隔离器6N137,而不是使TXCAN和RX-CAN端直接与收发器相连,这样就实现了总线上各CAN节点之间的电气隔离。同时,这也解决了MCP2515与TJA1050之间电平兼容的问题,还可以抑制CAN网络中的尖峰脉冲及噪声干扰。光耦部分电路所采用的两个电源必须完全隔离,否则也就失去了意义。电源的隔离可以采用小功率的电源隔离模块或者多带5 V隔离输出的开关电源模块实现。这些部分虽然增加了接口电路的复杂性,但是却提高了节点的稳定性和安全性。 在CAN接口处,CAN通信线上的2个60Ω电阻(总计120 Ω),起到增大负载、减少回波反射作用,是一种阻抗匹配的补救措施。2个60 Ω的中间部分与地端之间连接一个电容以抗干扰。 3 软件设计 软件的整体环境为winCE编程环境。针对本车载智能仪表硬件系统定制相应的WinCE操作系统,实现对硬件的驱动。再编写应用程序,通过对应用程序的具体操作实现对系统硬件的操作,即实现系统的功能。其中非常关键的是编写CAN控制器的驱动。CAN驱动实现应用软件对CAN控制单元的操作,以及读取CAN控制单元中的数据代码。

    时间:2012-08-28 关键词: 硬件设计 仪表系统 智能车载

  • 智能车载通讯解决方案

    VTC系列是创新的车载计算机,适用多种不同的应用,包括公共汽车,卡车,警车,出租车和更多车辆应用。基于 Intel低功耗高效能的 Atom CPU, 紧凑设计的 VTC 系列完全符合绝大多数车载行业标准应用,包括通过列车应用所需的eMark和EN50155认证。专为极端恶劣环境应用设计,VTC系列能在-30°C ~ +60°C宽温和抵挡达2G的震动/振动。可选配的 IP65等级防护进一步增强系统在严苛环境的坚固性。为促进移动通讯和导航信息沟通无畅,VTC系列可集成GSM, GPRS, UMTS, HSDPA 和 GPS模块。内嵌的电源引擎点火开/关保护功能使VTC系列能适用在各种交通运输环境下不同电源模式。为提升应用灵活性,VTC系列采用宽压电源输入及连接智能电池备份作为不间断电源。对于智能车载娱乐及数字标牌应用,VTC系列拥有丰富的多媒体显示接口,如VGA, TV-out 和 LVDS。更有其他特点如PCI-104 扩展槽作为CAN bus或 COM 扩展和可选配的Mini PCI express WLAN/3.5G 模块。 特点 u 无风扇,紧凑尺寸和坚固铝制机箱设计 u 集成GSM/GPRS/UMTS/HSDPA 和 GPS 模块作为移动通讯和导航应用 u 宽压电源引擎控制,低压备份保护 u 双显示:CRT 和LVDS/TV 输出 u 弹性I/O 连接可选和PCI 104扩展 u 可选: 防振动套件 (VTK 33V), 备份电池配件套件 (VTK 33B) 和 IP65 套件 (VTK 60P) 应用 u 车辆追踪/监控 u 实时语音和数据通讯 u 计算机辅助调度 u 公共交通 u 信息娱乐系统 u 紧急医疗服务 u 车队管理 VTC6200 产品特点 u 内建Intel Atom D510 Dual Core 1.6GHz processor u 无线网络通讯 (3.5G, GSM/GPRS,WLAN, BT) u 智能电源引擎管理开/关,延迟时间和低压保护功能 u PCI104, SUMIT 和 mini 卡扩展接口作为PoE和mini卡模块应用 u 8~60V 宽压直流电源输入 u 双 VGA 输出 (clone mode) u 坚固无风扇设计,IP65和 MIL标准防护等级 u 弹性机箱设计,可同时使用PCI-104和 HDD u 支持 2 x 高压隔离RS-232接口 (COM1, COM2) u 隔离的 GPIO VTC 2000 产品特点 u Intel Atom N270 处理器 u GSM/GPRS/UMTS/HSDPA/GPS/BT的可选 u 1 x CF 插槽,1 x 2.5" SATA HDD u E13 Mark ,EN50155 认证 u 3 x USB2.0 ,1 x VGA ,1 x DVI-D ,1 x 10/100/1000 以太网 u 点火电源开/关及延迟时间控制 u 低电压保护 u 高抗震性能

    时间:2012-08-21 关键词: 方案 通讯 智能车载

  • 基于ARM9的嵌入式智能车载系统设计

    引 言 随着社会经济的发展,汽车已成为人们工作、生活中不可缺少的一种交通工具。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,开发了各种各样的电子控制系统。本文设计一种基于ARM9 S3C2410A的智能车载系统,它能够通过GPS全球定位系统和GPRS无线通信技术,实现车辆定位以及车辆与控制中心之间的数据通信,构建CAN总线控制模块用于采集车辆主要部分的工作状态,实时监控汽车的主要技术参数,并通过LCD模块显示车载信息的综合信息。 1 智能车载系统的功能 车载智能导航终端应具有如下功能: 车辆定位 它指通过GPS全球定位系统获取车辆的当前所处位置,包括经度、纬度、运动速度、标准时间以及海拔高度等信息; 网络通信 它采用GPRS无线通信技术,与监控中心保持联系,实时获取道路交通状况,为交通道路的智能管理提供基础; 故障检测 它通过CAN总线实时检测汽车的主要技术参数; 信息显示 它通过LCD液晶屏显示车辆位置、调度信息以及检测到的汽车技术参数。 智能车载系统可根据用户需要实现其他功能,例如通过GPRS自动报警增加自动报警功能,扩展音频设备和IDE接口设备以增加娱乐功能,通过USB接口连接图像采集设备,对车内外进行视频监控等功能。 2 智能车载硬件系统设计 本系统以S3C2410A为主控模块,扩展了64 MBNand Flash,用于存放启动代码和嵌入式Linux操作系统等;64 MB SDRAM用作系统运行时的内存;LCD提供了更好的人机交互界面,并通过串口与GPS模块相连,通过UART异步串口与GPRS模块相连,通过SPI接口与CAN总线相连,利用CAN总线挂接传感器,检测汽车主要技术参数,系统框图如图1所示。 2.1 主控模块 S3C2410A是韩国三星公司面向手持设备以及高信价比、低功耗和低价格而设计的一款基于ARM920T内核的16/32位RISC嵌入式微处理器。它采用5级流水线,资源丰富;带有独立的16 KB的指令Cache和16 KB的数据Cache,64 MB SDRAM,64 MB NandFLAsH,LCD控制器,RAM控制器,NAND内存控制器,3路UART,4路DMA,4路带PWM的定时器,并行I/O口,8路10位ADC,Touch Screen接口,I2C接口,I2S接口,2个USB接口控制器,2路SPI,其工作频率最高达到203 MHz。 2.2 GPS模块 GPS模块主要完成GPS定位信息的接收和处理。根据设计性能的要求和节约系统成本的考虑,选用的就是GARMIN公司的GPS25-LVC接收机,其内置了GPS25OEM板。该接收机与主控模块的接口方式采用RS 232兼容TTL的串行口方式,因此设计中将其与S3C2410A的串口1相连。GPS-25LVC与S3C2410A之间信号线仅需要连接GPS25-LVC的TXD1与S3C2410A的TXD1。另外,还要将GPS25-LVC的地线和电源线连接到主控板的地线和5 V电源上。 2.3 GPRS模块 GPRS模块主要完成车辆与车辆、车辆与控制中心的通信。在本系统中,GPRS模块选用MC35。MC35的数据输入/输出接口实际上是一个UART,它可以与S3C2410中的UART接口直接相连。 2.4 CAN总线模块 CAN总线模块可以使本系统与其他车载模块的连接,完成收集车辆的状态信息以及进一步控制。CAN总线模块主要包括CAN总线的控制器和收发器,在这里分别选用的是Microchip公司的MCP2510和飞利浦公司的PCA82C250。其中,CAN总线控制器MCP2510实现了CAN总线的协议,CAN总线收发器PCA82C250提供协议控制器和物理传输线路之间的接口。由于CAN总线控制器MCP2510具有SPI接口,因此,系统中将其与S3C2410A的SPI0相连。 2.5 故障检测模块 故障检测模块主要是对汽车的主要技术参数进行检测,并显示到LCD显示器上,如果检测到故障,会发出报警信号。本文主要检测的技术参数包括燃油消耗量、制动力、转向力、发动机温度、冷却液温度、前照灯,以及车内噪声和尾气等方面。该模块主要是通过各种传感器把各种信号转换为电信号,再利用信号处理电路把电信号进行相应的处理,使其能与CAN总线模块进行数据传输。 2.6 LCD模块 LCD模块用以实现信息的显示,提供一个良好的人机交互界面。本系统主控模块的处理器S3C2410内置了LCD控制器,支持STN-LCD和TFT-LCD。本文选用夏普公司的TFT-LCD模块LQ080V3DG01,该模块具有640×480的分辨率,18位的颜色深度,可与S3C2410A的LCD接口直接相连。 3 智能车载系统软件设计 由于Linux具有源代码公开、剪裁方便、移植方便等诸多优点,所以本系统选择嵌入式Linux作为软件运行平台。嵌入式Linux是将Linux内核移植到S3C2410A平台上。嵌入式Linux操作系统不仅可使软件的开发更加灵活,也能使整个系统的可靠性得到提高。该软件设计的具体流程如图2所示。 交叉编译环境是一个由编译器、连接器和解释器组成的综合开发环境。BootLoader是系统加电启动运行的第一段软件代码,类似于PC机的BIOS加上硬盘MBR中的引导程序。它可以初始化硬件设备,建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,为最终调用操作系统内核或用户应用程序准备好合适的环境。Linux操作系统的移植是将Linux内核经过重新的剪裁、编译后移入到S3C2410A上。下面主要阐述各模块驱动和应用程序的编写。 3.1 GPS定位功能实现 GPS模块软件设计的基本思想如下:首先接收完整的NMEA0183语句,然后提取相关的数据(时间、经纬度、速度),再将这些数据送去显示或者发送出去,并且可以保存,以便日后查看。 由于GPS模块是通过串行口1与S3C2410A进行通信的,因此本文设计了Linux系统下相应的串行口通信程序。串口程序设计具体步骤如下: (1)串行口1的初始化:设置串行口1的通信方式为8位数据位,1位停止位,无奇偶校验位。波特率为4 800 b/s。 (2)一帧一帧接收ASCII码字符信息。 (3)对每一帧ASCII码字符信息进行数据处理。 在数据处理过程中,针对需要的定位信息要求,设计了如下的串行通信思想: ①以“$GPRMC”为过滤条件,接收定位语句。 ②在“$GPRMc”之后的59个字符为有用的信息,所以用“59”作为判断定位语句完整的依据。 ③在数据接收的过程中往往会有两种情况,一种是每帧会得到一个以“$GPRMC”开头的完整语句,另一种是上一帧的后半部分在加下一帧的前一部分共同组成的完整定位语句。 3.2 GPRS通信模块实现 GPRS模块是借助GPRS无线网络实现数据的无线传输,从而在不同的车辆或车辆与控制中心之间架起沟通的桥梁,所以软件的功能主要是建立无线连接,按照GPRS通信协议传输数据。 GPRS模块的通信主要是通过串口驱动实现,在嵌入式Linux内核中已经提供了对串设备的支持,因此在配置内核编译选项时,只需要选中对串口设备的支持,就可以实现对GPRS模块的串口数据通信功能。为了实现与Internet的通信,还需要在配置内核编译选项时选中PPP和TCP/IP协议。这样一旦网络连接建立,就可以使用应用程序来实现网络数据的通信。 本系统数据链路层采用PPP协议,它是一种面向字符的协议,是为在两个对等实体间传输数据包连接而设计的,使用可扩展的链路控制协议LCP来建立、配置和测试数据链路。用网络控制协议族NCP来建立和配置不同的网络层协议,并且允许采用多种网络层协议。一个PPP会话分四个步骤:建立连接、连接质量控制、网络层协议配置和连接终止。 嵌入式Linux系统内核源自于Linux内核,并保留了对TCP/IP以及其他的网络协议的支持。在嵌入式Linux系统上编写网络应用程序与在Linux上编写网络应用程序没什么大区别,通常只需要做很小的修改就可以移植到嵌入式Linux系统上。至此,GPRS模块完整地集成到嵌入式终端中。 3.3 CAN模块实现 CAN总线驱动程序要完成的报文发送、接收等任务都是围绕CAN总线控制器展开的,因此驱动程序主要是对控制器MCP2510内部寄存器进行操作。CAN总线控制器MCP2510的初始化按照以下步骤进行: (1)软件复位,进入配置模式; (2)设置CAN总线波特率; (3)关闭中断,设置ID过滤器; (4)切换MCP2510到正常状态; (5)清空接收和发送缓冲区; (6)开启接收缓冲区,开启中断。 4 结 语 该系统不仅能够通过GPS和GPRs实现车辆定位以及车辆与控制中心之间的数据通信,还能够通过CAN总线检测汽车主要技术参数,为交通道路的智能管理以及汽车的安全驾驶提供了可靠保障。  

    时间:2012-04-19 关键词: 嵌入式 系统设计 arm9 智能车载

  • 数字多媒体存储式智能车载音响系统解决方案

    随汽车电子技术的迅速发展, 车载音频领域正在经历一个前所未有的技术变革,使用者对车载音频提出了功能多样化、操作人性化的要求, 主要包括以下三个方面:(1)具备更好的电台接收效果以及更简便的数字式调台操作;(2) 支持多种外加存储设备, 如支持大容量的U 盘和SD 卡等;(3)提供更加丰富的音效处理, 如高音、重低音、等响度、平衡度等的调节以及提供流行、摇滚、爵士、古典等音效处理。以这些需求为出发点,设计了一款数字车载音响系统。 1 I2C 协议 I2C 总线作为同步串行数据输出总线, 由一条串行数据线(SDA) 和一条串行时钟线(SCL) 组成。它是一个真正的多主机总线,如果多个主机同时进行初始化数据传输,可以通过冲突检测和仲裁防止数据被破坏。每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机/从机关系软件设定地址。主机可以作为主机发送器或主机接收器。 2 硬件电路 2.1 电路设计 根据车载音响系统的特点, 设计选用STC12C5624AD系列单片机,它是宏晶公司推出的51 增强型单片机,具有低功耗、计算速度快等特点。当关闭音响系统时, 单片机进入低功耗休眠状态, 单片机切断所有外围模块的供电;当系统需要工作时, 通过外部中断唤醒单片机工作,这样最大限度地减少功耗。音响系统电路图如图1 所示。             图1 音响系统模块电路图 2.2 外围硬件模块 该系统以STC12C5624AD 单片机为核心, 通过I2C 总线控制其他模块的工作。硬件模块框图如图2 所示。                    图2 车载音响系统硬件模块框图 2.2.1 电源模块 电源模块采用美国国家半导体公司推出的电流输出降压开关型集成稳压电路LM2576 和LM2575 , 它们内含固定频率振荡器(52 kHz) 和基准稳压器(1.23 V) , 并具有完善的保护电路(电流限制及热关断电路)。集成稳压电路引入闭环控制,只需极少的外围器件便可构成高效为稳压电路, 输出端电压稳定、纹波小。 输入端电压范围为10 V~40 V.输入电压范围宽使系统能够适应12 V/24 V 两种供电车系,同时也很好地解决了汽车工作在不同工况时, 输出电压变化的问题。 2.2.2 MP3 解码模块 MP3 解码模块选用的是AU7842 , 集成了微控制器、MP3/WMA 解码器、USB 主机控制器、SD/MMC 卡控制器、16 bit 音频解码器和一个红外线解码器,如图3 所示。                 图3 MP3/WMV 解码模块电路 AU7842 芯片是将以数字信号形式存储的音乐文件(MP3 和WMA) 解码成可以播放的模拟信号。开机后,单片机循环检测解码芯片周围电路的动作。当检测到芯片外围有存储设备接入, 单片机控制芯片直接访问(DMA)存储器里的内容,读取数据并送入MP3/WMA 解码器,解码得到的数字信号通过数模转换器(DAC) 转换成模拟信号, 经模拟音频放大和低通滤波,就可以得到听到的音乐。 2.2.3 收音机模块 收音芯片采用恩智浦半导体公司针对汽车收音机主机设计的一款包含PLL 调谐系统的低中频调谐器TEF6606 .除了基本特征外,TEF6606 还提供良好的弱信号处理功能和一个动态频宽控制。TEF6606 工作原理如图4 所示,其本振信号由PLL 调谐系统产生, 通过I2C总线对可编程分频器的分频系数进行调谐, 使压控振荡器(VCO) 输出的本振频率发生变化,从而达到数字化调台的目的[ 4].收音系统电路原理图如图4 所示。                      图4 收音系统电路原理图 TEF6606 芯片具有良好的微弱信号处理功能, 提高了汽车在高速行驶和在大山之间行驶过程中收音机的收音性能。 2.2.4 音效处理模块 音效处理模块处理来自MP3 解码芯片和收音芯片的声音。主控芯片通过I2C 总线控制音效芯片相应寄存器, 可以设置音量、音调(低音、高音)、平衡度( 左、右) 和响度( 前、后); 选择流行、摇滚、爵士、古典等音效;芯片在低音量时通过提升高频和低频声进行听觉补偿, 可以得到低失真、低噪声和低直流电平漂移的听觉效果。 2.2.5 按键系统和显示系统电路 按键系统采用的是两个EC11 编码器和4 个按钮开关, 便于汽车在行驶过程中驾驶员的操作。LCD 采用根据汽车音响的功能而定制的笔段液晶, 能够显示包括收音频率、音频播放时间、U 盘状态、SD 卡状态、RPT 单曲重复播放、RDM 随机播放、ST 立体声状态、LOUD 等响度、MUTE 静音和左右声道的电平指示等状态。 3 系统软件设计 系统软件的总体流程框架如图5 所示。在软件的辅助下, 系统可以完成断电记忆功能, 即在手动关机或自动掉电时,系统能记忆断电前系统的动作和各项设定值,并在下次开机时直接调用。收音头电路可实现以10 kHz的步长进行手动搜台和自动搜台,并且能够存储18 个常听的频段。                   图5 系统软件流程图 断电记忆子程序如下:       使用了断电记忆子程序, 无论是人为关机还是系统掉电, 系统都将会自动保存断电前使用者所设定的音效值如音量、平衡度、响度等值,以及断电前收音机的频段值或者是USB 和SD 中正在播放的曲目及播放的时间值, 通过Wirte_EEPROM 函数存入EEPROM.下一次系统开启时, 使用者不必重新设定, 系统可以直接从EEPROM 值读取断电前的各个设定值。 收音头收音子程序如下: 主控芯片通过I2C 总线控制收音头寄存器, 通过改变RD_DAT 的逻辑值来控制收音头的工作状况。通过键盘上按键操作就可以控制收音头以三种波段切换搜台。 旋转搜台按钮, 可以以10 kHz 的步长进行手动搜台。 通过控制自动搜台按钮, 收音头可以完成10 kHz 的步长进行自动搜台。 本文设计的数字车载音响系统兼容了收音机和MP3 播放功能, 在MP3 音频文件存储设备方面有较大的突破,新型大容量存储设备(USB/SD) 取代了传统卡带存储。系统操作简便, 收音机和MP3 播放性能良好。为保证系统稳定工作,实验模拟了汽车行驶状况,将系统分别置于-40℃和+60℃环境中以及四度空间振动试验台, 结果表明, 该系统能长时间运行,且各项功能稳定。该系统已经成功应用在某些品牌工程车。

    时间:2012-03-05 关键词: 方案 存储 数字多媒体 智能车载

  • 新汉智能车载解决方案蓄势待发

    针对广泛应用的车载系统,新汉推出了智能车载专用机VTC系列 (Vehicle Telematics Computer) ,移动手持工业平板MRC系列(Mobile Rugged Computer) ,车载LCD显示器VMC系列,及列车专用NROK系列。 新汉智能车载专用机区别于一般的运输专用机,拥有无风扇坚固设计和多种专业I/O接口适用多种车辆连接和满足多种应用需求,是服务型车队管理,公共交通和出租车或火车,货运卡车,应急车辆,特种车辆等多种应用的最佳选择。 VTC系列-可移动的智能车载专用机VTC系列是创新的智能车载工业计算机,基于 Intel低功耗高效能的CPU,通过列车应用所需的eMark和EN50155认证。专为极端恶劣环境应用设计,VTC系列能在-30°C ~ +60°C宽温和抵挡达2G的震动/振动。可选配的 IP65等级防护进一步增强系统在严苛环境的坚固性。 同时VTC系列可集成GSM, GPRS, UMTS, HSDPA 和 GPS模块。内嵌的电源引擎点火开/关保护功能使VTC系列能适用在各种交通运输环境下不同电源模式。 为提升应用灵活性,VTC系列采用宽压电源输入及连接智能电池备份作为不间断电源。对于智能车载娱乐及数字标牌应用,VTC系列拥有丰富的多媒体显示接口,如VGA, TV-out 和 LVDS。更有其他特点如PCI-104 扩展槽作为CAN bus或 COM 扩展和可选配的Mini PCI express WLAN/3.5G 模块。COM 扩展和可选配的Mini PCI express WLAN/3.5G 模块。 MRC系列 – 实时管理的移动手持工业平板 MRC系列是专为移动工作环境中需要实时信息管理而设计的,其集成的无线技术,使现场技术人员便利实时进行工作分配,订购部件,进行搜索及进行工作记录报告。随着功能强大的3.5G移动宽带技术,MRC系列可以有效利用现有宽带的同时扩大服务范围。 MRC系列还具备热插拔电池,IP-54 等级坚固设计及内置条码扫描仪和RFID设备接口作为配套应用。板载GPS 和阳光下易读的LCD屏,使MRC系列成为户外应用的理想选择。 车载LCD显示器 是完全兼容与VTC 智能车载工业计算机系列,结构轻巧,具备自动和手动亮度控制,日光下易读及符合IP54规范。 列车专用工业计算机– NROK系列 专为铁路应用设计,采用高运算性能CPU架构,工业等级的密封式坚固外壳和防震防尘设计,高可靠和更长使用周期。同时采用智能电源设计,M12以太网连接头,专为工业应用的多种环境而设计,此外,还配置了SIM卡安装孔, CF 槽和min-PCIe槽,并通过EN50155 火车规范认证。 新汉希望籍于以下活动,让更多的用户了解新汉全系列智能车载解决方案。 9月6-10日参加北京国家会议中心的第六届中国智能交通年会暨中国国际智能交通展览会; 9月21-23日参加武汉科技会展中心的2011中国(武汉)国际交通运输科技博览会; 9月27日举行了“行业专用机领导品牌-新汉智能车载解决方案”在线研讨会。 在刚刚结束的北京智能交通展及武汉交博会上,新汉电脑展示了一系列车载计算机,包括车载计算机VTC 6系列 2系列以及1系列,车载显示器VMC 1000和VMD 1000,移动手持终端MRC系列以及视频监控系统NViS 2140H,同时也将新产品列车专用车载计算机NROK 3000和NROK 500展示在大家面前,得到了一致好评。 同期,9月27日新汉电脑针对车载移动平台行业举行了在线研讨会。会议吸引了逾300多人踊跃参加和提问。 新汉智能车载解决方案顺应市场发展趋势,采用低功耗设计,多种扩展选择和智能电源引擎管理,是理想的车载应用平台专用机,提供真正的先进的车载运算。

    时间:2011-10-13 关键词: 方案 新汉 智能车载

  • DSP帮助实现智能车载安全系统

      2.1 开发平台   本系统以EC5-1719CLDNA 开发板为平台,EC5-1719CLDNA 支持Intel CoreDuo/Celeron M 低功耗处理器,由Intel945GM 芯片组集成图形处理核心,支持VGA、LVDS,DVI,TV-OUT 多种显示及双屏幕显示, 有 1 个PCI-104、1 个PCIE×4扩展总线、4个USB2.0接口、2个SATA接口。   开发板扩展了丰富的外围硬件设备,使用图像处理开源代码opencv 中强大的算法技术,结合信号处理技术,充分发挥了此开发板高速的CPU 性能。   2.2 系统框架   此系统功能划分为三大方面:安全、通讯、多媒体。安全包括车牌测距、激光测距、疲劳驾驶检测、全景环视系统(AVM)、酒精浓度检测和温度检测,通讯包括GPRS上网、GSM 通话、GPS 导航,多媒体,媒体播放器、包括车载娱乐系统、视频采集。   系统框图如图1。   2.3 基本功能   系统实现功能有激光测距、疲劳检测、酒精浓度检测、GPS 定位、全景环视功能。   激光测距为测量汽车与其左右两侧可能存在的汽车之间的距离,确定是否安全,不安全则发出警报提醒。疲劳检测为监视人眼闭合时间,超过一定时间认为驾驶员已疲劳,发出报警音。酒精浓度检测为测试空气中的酒精浓度,在酒精浓度超标的情况下,发出警报。GPS 定位将GPS系统嵌入本系统内,从而实现GPS 定位。   全景环视系统在车辆四周安装4 个摄像头,通过四个摄像头实时取景,将四个摄像头所采集的图像组合在一起显示在驾驶室的显示屏上,司机可以一眼了解到本车周围的全部情况,提高汽车的综合安全系数。   3 功能实现   3.1 激光测距的功能实现   原理图如图2,假设激光束与摄像头的光轴完全平行,激光束的中心落点在摄像头视域中为最亮点。当激光束照射到摄像头视域中的跟踪目标上时,摄像头就可以捕捉到这个点。   易推导得距离D:   其中:Num是从图像中心到落点的像素个数,Rop 是每个像素的弧度值,Offet 是弧度误差。   算法流程为:首先,启动摄像头,通过摄像头采集视频图像,截取图像;通过亮点检测程序寻找激光所示的亮点,如果存在,测量其距图像中心的像素个数Num ;最后,通过公式计算间距,通过与设定的安全距离的比较,确定是否安全,不安全则发出警报提醒。     3.2 疲劳驾驶检测功能实现     研究表明,人在发生困倦的时候,眨眼速度变慢,眨眼持续时间变长,本系统通过提取司机的闭眼持续时间的长短来判断是否有疲劳发生。   通过检测人脸范围,判断人脸是否存在,如果不存在,定时器清零,返回;如果检测到人脸,定时器启动,开始计数;同时,通过面部特征识别,来定位两眼;认为如果能在一定的时隙内定位到两眼,证明驾驶员并非出于疲劳驾驶状态;此时定时器清零,返回;如果在5S 内无法定位到眼睛,则认为处于疲劳驾驶,此时发出警报提醒。   算法流图见图3。     3.3 酒精浓度检测功能的实现   本系统利用酒精传感器NAP-66E 来实现酒精浓度的测量。NAP-66E 具有良好的线性度,工作温度范围广,可在各种恶劣的环境下正常工作,其输出的最大电压为10mV,因此为了获取酒精度,必须先把酒精传感器的输出模拟量通过两级放大器放大到和A/D转换器TLC2543 匹配的电压值,经过A/D 转换后,得到的数值在MCU 中进行适当的处理,最后通过串口线和PC 机进行通信,把测得的数据实时传输给PC 机,利用PC 机实现显示、报警等功能。应用酒精检测芯片,通过与单片机、A/D 芯片、运算放大器的硬件连接,构成了酒精检测模块。设计电路如图4 所示。   3.4 GPS 定位功能的实现   本系统使用GARMIN 公司的GPS 接收机OEM 板— GPS 15H,采用RS-232输出,接口协议采用NMEA0183 版本2.00或3.00(可选)的ASCII 码语句,数据更新率为每秒一次,串行传输参数为:波特律= 9600,数据位= 8 位,停止位= 1位,无奇偶校验。   在实现GPS数据的读入时系统使用串口来接收数据,软件实现原理如下:   采用先初始化,设置使用的串口,相应的波特律为9600,数据位为8 位,停止位为1 位。在用户点击接收按钮后,采用查询方式,从读入1 0 2 4 个字节寻找GPRMC( Global Position RecomendedMinimum Specific ) 之后的一些字符串,在GPRMC 中包括了程序中最关心的数据有效位,纬度和经度,数据格式如下:   $GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>,<13>   <1> 当前位置的格林尼治时间,格式为hhmmss   <2> 状态, A 为有效位置, V 为非有效接收警告,即当前天线视野上方的卫星个数少于3 颗。   <3> 纬度, 格式为 ddmm.mmmm   <4> 标明南北半球, N 为北半球、S为南半球   <5> 径度,格式为dddmm.mmmm   <6> 标明东西半球,E 为东半球、W为西半球   <7> 地面上的速度,范围为0.0 到999.9   <8> 以后的数据不使用。   为了接收数据方便,用相应的软件屏蔽掉不需要的语句,只剩下GPRMC 语句。由于GPS 模块上电后在露天的场合下大约90 秒左右得到有效数据,所以在找到GPRMC 中的G 后的第13 位为数据有效位。   当判断到‘A’时,从数据段中的第17位起读取后续9位作为纬度显示,再从第29位起读取后续10 位作为经度显示。然后将接收到的GPS 经纬度通过适当的转换自动调用库里的地图,并在地图上用红色点表示当前所在的位置。   3.5 全景环视功能实现   全景环视系统在车辆的车头前格栅、左右侧面外后视镜及尾门安装了4 个摄像头。摄像头带有广角镜头,可进行实时广角摄影。软件上采用DirectShow 开发包进行开发,用Di rectShow 开发应用程序,可以很方便地从支持WDM驱动模型的采集卡上捕获数据,并且进行相应的后期处理乃至存储到文件中。    1 引言   21 世纪以来,汽车产业扮演了一个龙头的角色,与此同时,电子设备在整车制造成本所占比例,由16%增至30%以上,2010 年汽车搭载汽车电子的比例亦将达40%,未来的汽车电子产品中,围绕安全、节能、环保、舒适和娱乐等方面的元器件及其周边产品将发展更快。在此背景下,本文设计开发了一个基于图像处理技术的智能车载安全系统。   2 系统介绍

    时间:2011-07-19 关键词: DSP 安全系统 智能车载

  • 基于WinCE的智能车载仪表设计

    摘要:设计一款基于WinCE操作系统的智能车载仪表,通过CAN总线接收汽车各个部件的ECU的信息,并将其显示在液晶显示屏中。以ARM9内核的S3C2440微处理器为核心,设计了外围硬件以及CAN总线在WinCE中的底层驱动和上位应用程序。 关键词:嵌入式应用;智能车载仪表;WinCE;CAN总线 引言     随着高性能电子显示技术的发展,汽车仪表电子化的程度越来越高。国内外已开发出了多功能全电子显示仪表、平视显示仪表、汽车导航系统、行车记录仪等高技术产品。未来,车用电子化嵌入式仪表具有以下优点:提供大量复杂的信息,使汽车的电子控制程度越来越高;满足小型、轻量化的要求,使有限的驾驶空间更人性化;高精度和高可靠性实现汽车仪表的电子化,降低了故障的发生率;设有在线故障诊断系统,一旦汽车发生故障,可以找到故障来源,方便维修;外形设计自由度高,汽车仪表盘造型美观。基于以上优点,汽车会越来越多地采用各种用途的电子化仪表。造型新颖、功能强大的嵌入式电子化仪表将是今后车用仪表的发展趋势和潮流。 1 智能车载仪表系统结构     本智能车载仪表拥有大多数传统车载仪表所拥有的功能,驾驶员可以通过车载仪表的显示界面获取当前汽车的状态信息,例如车速、油压、油温、水温、机油压力或者电瓶电量。     传统车辆仪表直接与车辆的传感器相连,仪表系统经由传感器的模拟量得到汽车当前状态,精确性不高。本文设计的智能车载仪表并不是简单地与传感器相连,而是通过CAN控制器将整车连接成一个网络结构。车辆部件配以CAN控制器,通过双绞线将车辆部件连接起来形成一个网络体系,实现部件的电子化。同时,车载仪表和汽车部件的电子化也提高了汽车的精准度和可靠性,降低故障发生率。     车载智能仪表主要分为基于S3C2440处理器的硬件系统和WinCE环境下的软件系统两大部分。硬件系统为整个控制系统提供基础,负责CAN总线通信。软件系统提供CAN总线的硬件驱动以及在WinCE下的仪表上位应用程序。 2 硬件设计     硬件系统以S3C2440为核心,RAM内存、NOR Flash和NAND Flash作为存储介质,扩展部分外围设备以负责系统信息的输入与输出,如CAN总线通信单元、LCD显示、触摸屏、通用串行口、USB设备、以太网接口等。系统硬件结构如图1所示。     在众多接口中,CAN总线通信单元是在整车通信过程中的关键部分。在汽车的各个重要部件中,配置相应的CAN控制单元,由双绞线将各个CAN总线控制单元连接起来。汽车的各个部件将该部件的当前状态信息由CAN控制单元发送出去,经双绞线发送到智能车载仪表的CAN单元当中,经过系统的CAN接口将数据发送到系统中。车载仪表系统得到数据后,经过数据处理得到汽车部件的当前状态信息。     CAN总线接口电路如图2所示。采用Microchip公司的CAN总线控制器MCP2515。MCP2515完全支持CAN 2.OA/B技术规范,速度达到1Mbps;SPI的接口标准使得它与S3C2440的连接更加简单;能发送和接收标准和扩展数据帧以及远程帧;自带2个验收屏蔽寄存器和6个验收滤波寄存器,可以过滤掉不想要的报文,减少了微处理器的开销。CAN总线收发器采用TJA1050,该器件提供了CAN控制器与物理总线之间的接口以及对CAN总线的差动发送和接收功能。     为了增强CAN总线节点的抗干扰能力,提高系统的稳定性,在CAN控制器与CAN收发器之间加入了光耦隔离器6N137,而不是使TXCAN和RX-CAN端直接与收发器相连,这样就实现了总线上各CAN节点之间的电气隔离。同时,这也解决了MCP2515与TJA1050之间电平兼容的问题,还可以抑制CAN网络中的尖峰脉冲及噪声干扰。光耦部分电路所采用的两个电源必须完全隔离,否则也就失去了意义。电源的隔离可以采用小功率的电源隔离模块或者多带5 V隔离输出的开关电源模块实现。这些部分虽然增加了接口电路的复杂性,但是却提高了节点的稳定性和安全性。     在CAN接口处,CAN通信线上的2个60Ω电阻(总计120 Ω),起到增大负载、减少回波反射作用,是一种阻抗匹配的补救措施。2个60 Ω的中间部分与地端之间连接一个电容以抗干扰。 3 软件设计     软件的整体环境为winCE编程环境。针对本车载智能仪表硬件系统定制相应的WinCE操作系统,实现对硬件的驱动。再编写应用程序,通过对应用程序的具体操作实现对系统硬件的操作,即实现系统的功能。其中非常关键的是编写CAN控制器的驱动。CAN驱动实现应用软件对CAN控制单元的操作,以及读取CAN控制单元中的数据代码。 3.1 系统开发和移植     嵌入式系统开发就是系统驱动层的设计,其中最主要就是BSP的开发和调试。所以智能车载仪表底层驱动的开发就显得尤为重要。     由于使用的是WinCE操作系统,所以使用Platform Builder定制WinCE操作系统镜像。在Platform Builder中,可以添加系统部分硬件(如液晶屏、RAM)的驱动,这些驱动已经由微软公司编写好。然后启动Bootloader,把镜像文件下载到Flash存储器中,并配置操作系统启动文件boot.ini。 3.2 CAN总线驱动开发     由于CAN是外部设备,所以需要将CAN的驱动以流接口驱动方式编写。流接口驱动函数被设计来与通常的文件系统API(如 Activate Dev-iee、ReadFile、WriteFile和IOControl等)紧密匹配,即流接口驱动在应用程序中表现为一个系统文件,应用程序通过对系统文件的特殊文件进行操作从而完成对设备的操作。编写流接口文件主要用到流接口函数,也就是流接口驱动的入口点,如XXX_Init、XXX_Read和XXX_Open等。这些流接口文件与相应的API函数对应,使应用程序由相应的函数可以访问到外部设备。     作为流接口驱动程序,CAN总线驱动程序也有一组标准函数,可完成I/O操作。这些函数提供给WinCE操作系统内核使用,它们都是流接口驱动程序的DLL文件。动态加载CAN总线驱动程序时,系统要进行注册。CAN驱动程序注册表信息:     通过以上代码完成注册之后,调用ActivateDeviceEx()函数进行加载驱动。 3.3 CAN总线驱动通信流程     CAN总线控制器驱动程序主要用于设置MCP2515的波特率、MCP2515的验收过滤器、CAN消息传送模式和CAN收发数据方式。驱动程序是连接上位应用程序和硬件的一个中间纽带。智能车载仪表系统在EVC++环境下进行CAN总线开发。     流式驱动以文件的方式打开函数CreateFile():驱动成功打开后,CreateFile()函数返回不为INVALID-HAN-DLE-VALUE的句柄,此句柄也是关闭驱动函数Close-Handle()的参数。CAN设置函数DeviceIoControl()接收由CreateFile()函数获得的句柄及控制命令码,设置输入/输出缓冲区以及缓冲区的大小。函数执行完成后返回实际输出的缓冲区大小等。CAN总线发送与接收函数WriteFile()和ReadFile(),利用驱动文件句柄、发送和接收缓冲区等参数完成数据的发送和接收,操作成功后返回实际发送和接收的字节数。     为了不让主线程一直处于等待数据到来的状态,让主线程拥有时间令牌来操作其他事情,程序采用多线程设计,创建一个接收数据线程。接收数据线程是一个无限循环,它不断查询CAN总线数据退出标志,如果退出标志有效,则该循环结束退出。驱动程序流程如图3所示。 结语     目前,基于嵌入式技术的车载仪表逐渐开始流行。本文使用基于WinCE的ARM9微处理器作为开发平台,处理速度快,功能强大;使用CAN总线技术进行信号的相互传输,CAN总线实时接收汽车部件发送来的信息,并进行处理与分析;使用WinCE操作系统,界面友好。本智能车载仪表系统可以节约成本、降低功耗,并且可维护性强,便于扩展和升级。

    时间:2011-04-15 关键词: WinCE 仪表 智能车载

  • 基于ARM9的智能车载系统设计

    引 言    随着社会经济的发展,汽车已成为人们工作、生活中不可缺少的一种交通工具。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,开发了各种各样的电子控制系统。本文设计一种基于ARM9 S3C2410A的智能车载系统,它能够通过GPS全球定位系统和GPRS无线通信技术,实现车辆定位以及车辆与控制中心之间的数据通信,构建CAN总线控制模块用于采集车辆主要部分的工作状态,实时监控汽车的主要技术参数,并通过LCD模块显示车载信息的综合信息。1 智能车载系统的功能    车载智能导航终端应具有如下功能:    车辆定位 它指通过GPS全球定位系统获取车辆的当前所处位置,包括经度、纬度、运动速度、标准时间以及海拔高度等信息;    网络通信 它采用GPRS无线通信技术,与监控中心保持联系,实时获取道路交通状况,为交通道路的智能管理提供基础;    故障检测 它通过CAN总线实时检测汽车的主要技术参数;    信息显示 它通过LCD液晶屏显示车辆位置、调度信息以及检测到的汽车技术参数。    智能车载系统可根据用户需要实现其他功能,例如通过GPRS自动报警增加自动报警功能,扩展音频设备和IDE接口设备以增加娱乐功能,通过USB接口连接图像采集设备,对车内外进行视频监控等功能。2 智能车载硬件系统设计    本系统以S3C2410A为主控模块,扩展了64 MBNand Flash,用于存放启动代码和嵌入式Linux操作系统等;64 MB SDRAM用作系统运行时的内存;LCD提供了更好的人机交互界面,并通过串口与GPS模块相连,通过UART异步串口与GPRS模块相连,通过SPI接口与CAN总线相连,利用CAN总线挂接传感器,检测汽车主要技术参数,系统框图如图1所示。2.1 主控模块    S3C2410A是韩国三星公司面向手持设备以及高信价比、低功耗和低价格而设计的一款基于ARM920T内核的16/32位RISC嵌入式微处理器。它采用5级流水线,资源丰富;带有独立的16 KB的指令Cache和16 KB的数据Cache,64 MB SDRAM,64 MB NandFLAsH,LCD控制器,RAM控制器,NAND内存控制器,3路UART,4路DMA,4路带PWM的定时器,并行I/O口,8路10位ADC,Touch Screen接口,I2C接口,I2S接口,2个USB接口控制器,2路SPI,其工作频率最高达到203 MHz。2.2 GPS模块    GPS模块主要完成GPS定位信息的接收和处理。根据设计性能的要求和节约系统成本的考虑,选用的就是GARMIN公司的GPS25-LVC接收机,其内置了GPS25OEM板。该接收机与主控模块的接口方式采用RS 232兼容TTL的串行口方式,因此设计中将其与S3C2410A的串口1相连。GPS-25LVC与S3C2410A之间信号线仅需要连接GPS25-LVC的TXD1与S3C2410A的TXD1。另外,还要将GPS25-LVC的地线和电源线连接到主控板的地线和5 V电源上。2.3 GPRS模块    GPRS模块主要完成车辆与车辆、车辆与控制中心的通信。在本系统中,GPRS模块选用MC35。MC35的数据输入/输出接口实际上是一个UART,它可以与S3C2410中的UART接口直接相连。2.4 CAN总线模块    CAN总线模块可以使本系统与其他车载模块的连接,完成收集车辆的状态信息以及进一步控制。CAN总线模块主要包括CAN总线的控制器和收发器,在这里分别选用的是Microchip公司的MCP2510和飞利浦公司的PCA82C250。其中,CAN总线控制器MCP2510实现了CAN总线的协议,CAN总线收发器PCA82C250提供协议控制器和物理传输线路之间的接口。由于CAN总线控制器MCP2510具有SPI接口,因此,系统中将其与S3C2410A的SPI0相连。2.5 故障检测模块    故障检测模块主要是对汽车的主要技术参数进行检测,并显示到LCD显示器上,如果检测到故障,会发出报警信号。本文主要检测的技术参数包括燃油消耗量、制动力、转向力、发动机温度、冷却液温度、前照灯,以及车内噪声和尾气等方面。该模块主要是通过各种传感器把各种信号转换为电信号,再利用信号处理电路把电信号进行相应的处理,使其能与CAN总线模块进行数据传输。2.6 LCD模块    LCD模块用以实现信息的显示,提供一个良好的人机交互界面。本系统主控模块的处理器S3C2410内置了LCD控制器,支持STN-LCD和TFT-LCD。本文选用夏普公司的TFT-LCD模块LQ080V3DG01,该模块具有640×480的分辨率,18位的颜色深度,可与S3C2410A的LCD接口直接相连。3 智能车载系统软件设计    由于Linux具有源代码公开、剪裁方便、移植方便等诸多优点,所以本系统选择嵌入式Linux作为软件运行平台。嵌入式Linux是将Linux内核移植到S3C2410A平台上。嵌入式Linux操作系统不仅可使软件的开发更加灵活,也能使整个系统的可靠性得到提高。该软件设计的具体流程如图2所示。    交叉编译环境是一个由编译器、连接器和解释器组成的综合开发环境。BootLoader是系统加电启动运行的第一段软件代码,类似于PC机的BIOS加上硬盘MBR中的引导程序。它可以初始化硬件设备,建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,为最终调用操作系统内核或用户应用程序准备好合适的环境。Linux操作系统的移植是将Linux内核经过重新的剪裁、编译后移入到S3C2410A上。下面主要阐述各模块驱动和应用程序的编写。3.1 GPS定位功能实现    GPS模块软件设计的基本思想如下:首先接收完整的NMEA0183语句,然后提取相关的数据(时间、经纬度、速度),再将这些数据送去显示或者发送出去,并且可以保存,以便日后查看。    由于GPS模块是通过串行口1与S3C2410A进行通信的,因此本文设计了Linux系统下相应的串行口通信程序。串口程序设计具体步骤如下:    (1)串行口1的初始化:设置串行口1的通信方式为8位数据位,1位停止位,无奇偶校验位。波特率为4 800 b/s。    (2)一帧一帧接收ASCII码字符信息。    (3)对每一帧ASCII码字符信息进行数据处理。    在数据处理过程中,针对需要的定位信息要求,设计了如下的串行通信思想:    ①以“$GPRMC”为过滤条件,接收定位语句。    ②在“$GPRMc”之后的59个字符为有用的信息,所以用“59”作为判断定位语句完整的依据。    ③在数据接收的过程中往往会有两种情况,一种是每帧会得到一个以“$GPRMC”开头的完整语句,另一种是上一帧的后半部分在加下一帧的前一部分共同组成的完整定位语句。3.2 GPRS通信模块实现    GPRS模块是借助GPRS无线网络实现数据的无线传输,从而在不同的车辆或车辆与控制中心之间架起沟通的桥梁,所以软件的功能主要是建立无线连接,按照GPRS通信协议传输数据。    GPRS模块的通信主要是通过串口驱动实现,在嵌入式Linux内核中已经提供了对串设备的支持,因此在配置内核编译选项时,只需要选中对串口设备的支持,就可以实现对GPRS模块的串口数据通信功能。为了实现与Internet的通信,还需要在配置内核编译选项时选中PPP和TCP/IP协议。这样一旦网络连接建立,就可以使用应用程序来实现网络数据的通信。    本系统数据链路层采用PPP协议,它是一种面向字符的协议,是为在两个对等实体间传输数据包连接而设计的,使用可扩展的链路控制协议LCP来建立、配置和测试数据链路。用网络控制协议族NCP来建立和配置不同的网络层协议,并且允许采用多种网络层协议。一个PPP会话分四个步骤:建立连接、连接质量控制、网络层协议配置和连接终止。    嵌入式Linux系统内核源自于Linux内核,并保留了对TCP/IP以及其他的网络协议的支持。在嵌入式Linux系统上编写网络应用程序与在Linux上编写网络应用程序没什么大区别,通常只需要做很小的修改就可以移植到嵌入式Linux系统上。至此,GPRS模块完整地集成到嵌入式终端中。3.3 CAN模块实现    CAN总线驱动程序要完成的报文发送、接收等任务都是围绕CAN总线控制器展开的,因此驱动程序主要是对控制器MCP2510内部寄存器进行操作。CAN总线控制器MCP2510的初始化按照以下步骤进行:    (1)软件复位,进入配置模式;    (2)设置CAN总线波特率;    (3)关闭中断,设置ID过滤器;    (4)切换MCP2510到正常状态;    (5)清空接收和发送缓冲区;    (6)开启接收缓冲区,开启中断。4 结 语    该系统不仅能够通过GPS和GPRs实现车辆定位以及车辆与控制中心之间的数据通信,还能够通过CAN总线检测汽车主要技术参数,为交通道路的智能管理以及汽车的安全驾驶提供了可靠保障。

    时间:2009-10-16 关键词: 系统设计 arm9 智能车载

  • 智能车载信息系统设计

    根据美国交通部的一项研究,全世界人们每周在汽车上度过的交通时间超过5亿小时。既然花在汽车上的时间如此之多,人们希望能够利用这些时间来享受娱乐,同心爱的人说说话,甚至完成一些通常需要在工作场所才能完成的任务。         在汽车中保持联系是人们最想实现的,这只要看一看手机的使用就可以知道。另外,路上遭遇严重的交通堵塞,走错了路,或者遇到像汽油用完了之类的常事,都可能影响您准时到达目的地。               如何才能让驾驶者在安全驾驶的同时保持联系,并按时到达目的地呢?巧妙的方法是通过语音命令结合互联网连接进行通信和控制。Microsoft             Telematics             Platform(微软车载信息处理平台)提供了这一功能,它是一种用于集成各种移动设备和通过互联网与无线网络传送信息的集线器。               微软车载信息处理平台提供以下功能:               ·高级的优质语音识别与合成技术               ·点播Web服务,如避免交通堵塞,访问最新头条新闻,或通过“MSN汽车”频道(目前仅适用于美国)查找距离最近价格最低的加油站               ·个性化导航:借助GPS寻找感兴趣的地点或指引方向               ·             PDA/手机集成蓝牙技术,将手机和PDA无线连接到汽车的电子系统,让驾驶者能够通过汽车的音响系统使用语音来拨打和接听电话、获得会议提醒和访问重要数据。               ·通过远程诊断检查车辆的“健康”状况,包括故障与维护报警,从而有可能提高             微软公司的汽车业务部与赛灵思共同创建了能够以低成本点提供这些优点的参考平台,从而促进了面向全世界驾驶者的更简单、更可靠且消费得起的解决方案的开发。             灵活和可伸缩的平台               传统的汽车电子设计方法一直是根据汽车制造商的需要开发很具体的、定制的和固定的解决方案。车载信息系统与信息娱乐正迫使汽车工业对被设计到一个典型的“联网汽车”中的产品和系统进行重新思考。               消费世界与汽车的融合(如车载信息系统等应用)已将“消费开发”思想强行灌输给一个传统上缓慢、保守且由成本驱动的行业。由消费行业带来的新需求要求快速变化,因为消费者总是期待着有新的大事的出现。               这种需求迫使人们寻求不仅能够满足当前应用而且能够实现未来和潜在未知特性的灵活架构和设计改变方法。这与典型的汽车电子设计通常所要求的多年的开发与验证周期存在冲突。现在,一个目前开发的平台(用于两三年后发布的新车)拥有能够应对在整个产品开发周期内和推出后发生的未知变化的足够系统资源是必需的。               对任何平台而言,灵活性和伸缩性对架构能否成功获得市场接受都至关重要,无论是基本系统还是高性能的高端车载信息系统。鉴于此,微软开发了一个真正可以定制和伸缩的汽车标准车载信息处理平台。               该平台整合了一个基于ARM9的微控制器,支持32MB闪存/32MB             DRAM以上的内存,并包含集成GPS蓝牙和一个GSM电话模块。外部车辆连接包括一个CAN网络接口以及有保护的模拟和数字I/O,用于实现LED驱动和按钮输入等功能。该平台的基本架构如图1所示。               微软利用了FPGA技术的灵活性和高集成度能力。该平台使用了一个Spartan-3 XC3S400             FPGA,用于实现多个独立的目的,如GSM电话接口、车辆接口(CAN控制器和K-线路)以及复杂的音频信号调节和路由功能(如图2所示)。               FPGA提供的高集成度也具有在一个器件内包含多种总线、接口和时钟的优点,从而使利用EMI的设计容易管理。此外,减少组件数量和电路板空间将降低生产成本,实现更高的制造质量,在任何汽车设计中这些都是重要的因素。               在了解了车辆开发的实质和目前已有的众多不同的车辆接口,微软有意设计了一个灵活的解决方案,可允许对后端车辆接口进行快速修改而不影响下层架构和系统性能。例如,在未来将有可能调节FPGA解决方案,使之能满足带有诸如MOST、IDB-1394或其它数字车辆网络等汽车总线的最终应用的需求。             语音识别系统               微软车载信息处理平台的核心是语音识别(VR)系统。任何VR系统中的音频信号路径都是模拟偏置/滤波、数字化和数字滤波,最后才将信号送到VR引擎进行语音处理。               在此路径中,存在多个多余噪声进入系统(包括电气平台上和汽车环境内,甚至在这些电子装置之前)的机会。产品开发者和汽车制造商都必须确保话筒位置和类型能正确地适用于应用和环境。               在完美的情况下,VR系统将接收到干净、连续的语音信号--但鉴于汽车环境的动态本质,设计可接受的语音识别并不是一件容易的事。诸如车速、车窗状态(开/关)、道路噪声以及天气状况(雨/风)等因素将进一步恶化本来已很难解决的VR系统问题,如语言、口音和性别等。这些附加的因素增强了在信号到达VR引擎之前采用高适应性数字滤波算法对其进行预处理的重要性。               微软选择了用硬件来实现这种信号预处理功能,并采用了赛灵思的并行DSP处理。Spartan-3             FPGA具有多达104个嵌入式18位乘法器,特别适合用于在一个低成本器件中实现紧凑DSP结构,如MAC引擎、分布式算术FIR滤波器以及全并行FIR滤波器。               微软还将处理器密集型软件滤波任务卸载到硬件中来实现。当然,这种预处理也可以用ASSP来实现,如专用DSP芯片。但这样做就会失去通过该平台其它部分的高度集成所获得的好处。               车载信息系统与VR的结合可以实现专门适用于某些类型的用户和环境(如语言:英语;口音:苏格兰;性别:女)的可适应和可升级的VR引擎和DSP滤波器。               在设计汽车产品(特别是车辆的信息娱乐部分)时留有充分备用资源以适应新的和意外的未来升级的重要性同样适用于FPGA。现在对汽车OEM厂商来说越来越清楚的是,采用灵活和可伸缩固件的架构在未来平台中是必需的。               虽然目前的微软平台中没有实现系统协处理器,但可以很容易地通过添加软处理器来实现。就像在微软的设计中把DSP处理负荷从主处理器上卸载一样,也可以使用嵌入式处理器(如Xilinx             32位MicroBlaze软处理器或8位PicoBlaze微控制器)从主系统处理器上卸载一些处理负荷。             用于汽车应用的FPGA               近年来车载电子设备出现了巨大的增长,不仅传统的车身控制和发动机管理方面,还包括驾驶员辅助系统和车载信息系统应用等新的领域。IEEE最近公布的数字显示,汽车电子年增长率为16%,并预计到2005年在一个中型汽车内电子设备的成本将占到总成本的25%。               车载信息系统显示出更像消费产品的一些特性--上市时间快,在市时间短,标准和协议不断变化。这些问题将影响工程师们进行设计和选择所需硬件以快速创建、重复和支持未来升级的方法。               现在FPGA技术可以满足这些要求。赛灵思承诺将通过其赛灵思汽车(XA)系列产品满足车载信息系统和汽车信息娱乐应用的需求,该系列产品可提供以下特性:               ·扩展温度范围,最高可达125℃               ·全生产性零件核准程序(PPAP)支持               ·行业公认的AEC-Q100器件合格检验流程               ·遵守世界汽车质量标准ISO TS 16949,并采用无铅封装以符合RoHS指令               这些器件基于我们的Spartan系列FPGA,特别适用于要求每逻辑单元(系统门)具有低成本、每I/O低成本、以及诸如在单个器件上拥有多种I/O标准和嵌入式乘法器以实现高速DSP等高级特性的数字设计。             本文小结               在微软汽车业务部和赛灵思汽车业务部等支持者的承诺下,汽车制造商正将关键技术的融合采用在一个可以帮助实现以下功能的平台内:               ·一种有价值且消费得起的车载信息系统解决方案               ·通过无线网络的可靠连接性               ·高质量语音识别               ·一种面向应用开发者的得到广泛支持的操作系统              ·低成本硬件

    时间:2009-08-10 关键词: 信息系统 智能车载

  • CDMA网络智能车载导航终端的优化设计

     结合gpsOne定位技术、CDMA通信技术和GIS技术的智能车载终端,可与控制中心配合,实现对车辆的导航、报警和监控等多种应用。gpsOne是一种混合定位技术,它综合了GPS和无线网络的优势,具有适用性广、精度高、定位时间短和成本低等特点。  本文提出智能车载导航仪的优化设计方案,剖析gpsOne的定位原理,探讨系统开发中的多项关键技术,并给出一个基于ARM和Linux平台的工程实例。  1 概述  1?1定位业务的产生背景  随着移动通信的发展,电信服务商与制造商除了语音传输外,纷纷推出各种增值数据业务与设备,以寻找新的收入来源。消费者也希望手机除了通话、收发邮件、上网外,还能有其他功能。国家基础地理信息中心的统计数据也表明:人们日常生活信息中有80%与空间位置有关,而企业所使用的信息中有59%的信息与空间位置有关。因此,作为最富潜力的增值应用平台之一,移动定位业务,即基于位置的业务LBS(Location Based Services),正受到前所未有的关注。它可以提供诸如导航、基于位置的付账、位置信息服务、网络规划和管理、财产追踪、个人定位服务、娱乐和紧急救援等多项应用。  1?2车载导航仪的发展前景  为了缓解现代城市交通的压力,近年来又出现了将最新的通信网络技术、卫星定位技术和地理信息技术相结合的ITS(Intelligent Transport Systems,智能交通系统)。ITS可以对机动车辆实施定位、报警、监控、调度、救援或防盗等多种功能,大幅度提高交通管理质量,不仅可以合理利用和充分发挥现有道路的交通潜力,有效解决交通拥挤的现象;而且能提高车辆的营运效率,降低营运成本。  ABI、IEK 2002年10月的研究报告就指出,全球GPS市场保守估计自2000年到2006年的年复合增长率(CAGR)约为24%,2006年产值约340亿美元。在目前卫星导航应用领域中,智能交通管理所占的比重最大,约占市场总量的40%。  目前及将来绝大多数GPS应用产品以陆上导航及定位系统为主,占约70%以上,且比例逐年升高。汽车导航、通信应用、车队追踪管理,到2006年将成为陆上导航产品的主导。我国现有430万辆货运车,170万辆客运车,450万辆轿车及各类船只90多万艘,如此大的汽车和船只保有量对导航终端产品和服务存在着迫切需求。  基于以上分析,研制开发车载移动定位终端,依托CDMA(Code Division Multiple Access,码分多址)网络传输平台,与控制中心配合,实现车辆的定位、导航、报警、监控、调度以及其他基于位置的各项增值服务,可广泛应用于出租汽车行业、物流企业、大型企事业单位公务车辆管理及私家车和小型公司车辆,市场潜力巨大。  2 智能导航终端的系统原理及特点  2?1gpsOne系统简介  采用适当的定位技术获得位置信息是实现对车辆的导航和调度等位置服务的必要前提。本系统的移动定位解决方案,采用了美国高通(QUALCOMM)公司研制开发的gpsOne专利技术。    总体结构到2003年2月止,已有超过1000万部gpsOne终端在日本、韩国和美国投入商用,超过了全球所有制造商的商用GPS终端销量总和,成为世界上使用最广泛的移动定位系统。传统的无线定位技术按照起主导作用的实体所处的位置基本可以分为两大类:基于网络的方案和基于移动台的方案。基于网络的方案需要移动台发出信号并且由多个固定位置的基站接收,通过测量移动台到基站的信号的特征参数,再根据特定的算法判断出被测物体(移动台)的位置。  常用到达角AOA(Angle Of Arrival)和到达时间TOA( Time Of Arrival)等技术。当信号较弱时,这种方案的定位精度会下降,还会受基站的覆盖范围、电波绕射、多径效应等影响。此外,这种方案还需对基站进行改造,增加了额外的升级费用。基于移动台的方案,最典型的是使用全球卫星定位(GPS)系统,由24颗人造卫星和配套的地面站组成。接收机(移动台)只需要接收到三颗卫星的信号,分别测量出到它们的距离,就可以计算出自己的位置。  除了接收机价格昂贵外,这种方案还有较长的“初次捕获时间”或“首次定位时间”TTFF(Time To First Fix),尤其当接收机冷启动工作时,需要十多分钟才能完成对卫星的搜寻。而且,若移动台处于室内、高大植物、建筑物或卫星信号无法覆盖的地方,由于可见的GPS卫星数量较少,定位效果很差,甚至无法完成定位。  尽管网络和GPS都不适合单独作为一套具有商用价值的定位方案,但它们之间可以取长补短。比如在基站覆盖不全的乡村和郊区,GPS接收机却可以搜索到四颗甚至更多的卫星。相反,在密集的城市地区和高大建筑物内,虽然GPS接收机检测不到足够的卫星,但移动台可见的基站却有两个或更多。高通公司借助CDMA网络开发出的gpsOne定位方案,是一种混合的无线辅助全球定位系统(Hybrid AGPS),不仅精度高,而且适用于各种地形,包括室内、密集城市地区和网络覆盖有限的乡村。它综合利用了无线蜂窝网和GPS卫星二者的优势,极大提高了定位方案的可用性、灵敏度和精度,并且甚至只需要一颗卫星和一个基站就可完成定位。  高通的某些CDMA芯片组中已经集成了gpsOne功能。这不仅降低了支持gpsOne功能的移动台的制造成本,也使整个方案部署起来快捷简便,无需对已有的网络设备做昂贵和复杂的改造,更不需要增加新的基站。此外,它遵从工业定位标准,支持漫游,并和已有的GSM网络兼容,最大限度地减少了网络改造开销。  2?2gpsOne系统定位原理分析  gpsOne的定位过程主要涉及两个活动:信号测量和位置计算。需要收集的待测信号不仅包括GPS卫星群发送的定位信息,还有来自无线网络的定位信息。gpsOne体制本身很灵活,允许在各式网络配置中采用不同的已成熟的无线电定位方法,如源小区COO(CellID Of Origin)技术或高级前向链路三角定位AFLT(Advanced Forward Link Trilateration)技术等。这也正是“无线辅助”和“混合”的含义所在。此外,系统还需要另外两个组成部分:GPS卫星广域参考网络(WARN)和基站位置信息数据库(BSA)。  AGPS的具体工作原理如下:  ① 用户(移动台本身或监控中心)发出定位请求,然后移动台将其所在基站ID信息通过无线网络传输到位于网络中位置服务器(也称作定位实体,PDE, Position Determining Entity)。  ② 位置服务器根据该移动台的大概位置,通知移动台应该监听哪些与其位置相关的GPS卫星的定位信息(包含GPS的星历和方位俯仰角等)。  ③ 移动台根据位置服务器提供的辅助信息(主要用以提升GPS信号的TTFF能力),接收可见的GPS卫星群的原始信号。  ④ 移动台解调信号,计算它到所有可见卫星的伪距(伪距为受各种GPS误差影响的距离);同时利用上述各种无线电定位技术收集多个临近基站的信号并测量出它到各个基站的距离,并将有关信息传送到位置服务器。  ⑤ 位置服务器根据传来的GPS伪距和其他定位设备(如差分GPS基准站等)的辅助信息,通过一系列纠错算法,计算出该移动台的精确位置(包括经度、纬度和海拔高度)。  ⑥ 位置服务器将位置信息发送给该移动台、第三方服务提供商SP(Service Provider)、定位网关或其他位置服务(LBS)应用平台。  以上过程中,当定位请求短消息发出后,移动台就会主动建立到PDE的TCP连接,与PDE之间通过端到端的IP会话完成遵从IS-801(工业定位标准)的定位过程,最后由PDE将经纬度信息返回给SP。信号测量和位置计算的活动,可以放在移动台上或网络侧进行,或二者兼而有之。  2?3智能嵌入式导航终端的特点  智能嵌入式导航终端的设计是在对目前同类产品的研究比较下提出的。该方案不仅吸取了众家之长,而且还根据将来的发展在车载系统的功能上提出了一些新的、更高的要求。嵌入式智能导航终端和其他现有的车载系统相比具有更多优点,其中主要的特点是:  ① 定位方案采用基于A?GPS技术的高通gpsOne方案。  ② 无线通信网络采用CDMA网络,包括目前的联通CDMA 1X网络和将来的第三代CDMA2000网络。  ③ 采用多种通信方式,在车载终端和控制中心的通信方式上,提供短消息、话音、数据通道以及视频等多种手段。  ④ 提供更丰富的增值业务,实现了除基本的定位、导航、监控和调度功能外,还可附加生活、交通、娱乐、服务、公共设施等方面基于位置的各种增值信息服务,如失窃物品追踪、餐馆和公园指南、火车时刻表、天气预报以及互动娱乐游戏等等。  ⑤ 方便的人机交互界面。车载系统配有17.8 cm(7 in)TFT彩色触摸液晶显示屏、麦克风和扬声器。  ⑥ 采用基于ARM核的MCU和嵌入式Linux操作系统。  ⑦ 支持电子地图。  ⑧ 多种报警功能。该车载系统具有防盗报警、反劫报警、遇险报警、损毁报警等多种报警功能。  ⑨ 广播方式的群呼功能。监控中心可对车辆进行群呼、组呼,既可实现交通、新闻、股票、天气等信息的广播下行,又可对某个地区的出租车的分布情况进行实时统计。  ⑩ 方便配置和扩展。嵌入式车载系统由各种具有基本功能的相对独立的模块组成,留有常见的各种控制接口。  3 嵌入式终端的优化设计与实现  车载导航终端属于一个典型的嵌入式系统。对于嵌入式系统,目前比较合理的一个定义为:以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。  (1) 嵌入式微处理器的选择  正因为嵌入式系统在系统特性、开发周期、设计要求等方面与通用计算机系统有巨大的差异,嵌入式处理器的选择受到很多独特因素的影响。本终端选用了基于ARM核的32位RISC处理器。ARM公司自1990年成立以来,在32位RISC CPU开发领域不断取得突破,其体系架构已从V3发展到V6。它一直以IP(Intelligence Property)提供者的身份向各大半导体制造商出售知识产权,而不介入芯片的生产销售。其设计的芯核具有功耗低、成本低等显著优点,因此获得众多的半导体厂家和整机厂商的大力支持,在嵌入式应用领域获得了巨大的成功。到2004年已经占有79%的嵌入式处理器市场,并且其ARM9系列内核已成为产品应用的主流。  ① 性能。处理器必须有足够的性能执行任务和支持产品生命周期。考虑到智能导航终端应用的复杂性(电子地图、彩色液晶、触摸输入、gpsOne导航、语音交互等),选择处理器需要从内存管理单元(MMU)、时钟主频、内部存储器容量、通用可编程I/O(GPIO)数量、终端控制器、LCD控制器、ADC/DAC、UART接口、DMA控制器等各项性能指标综合考虑。  ② 是否便于实现。  ③ 工具支持。支持软件创建调试系统集成代码调整和优化工具对整体项目成功与否非常关键。  ④ 操作系统支持。嵌入式系统应用需要使用有帮助的抽象来减少其复杂性。针对处理器系列产品作过优化的商用操作系统(OS)能够缩短设备开发周期和上市时间。ARM获得了许多著名的嵌入式(实时)操作系统,如VxWorks、Windows Mobile(WinCE)、Linux等的支持。  (2) 嵌入式操作系统的选择   8位单片机只需要直接编写单一的控制程序即可工作,但随着应用的复杂化,一个嵌入式控制器可能要同时控制、监视很多外设;有很多处理任务,各个任务之间有多种信息传递,原来的程序设计方法已根本无法满足系统需求,因此后PC时代的嵌入式系统都需要一个运行在嵌入式处理器之上的操作系统。在智能终端领域有四大主流操作系统,即Symbian、Windows Mobile、Palm OS和Linux;但是由于Linux的性能、可靠性、开放源代码、低成本和技术支持,越来越多的商用产品将会采用嵌入式Linux作为开发平台。图4说明了Linux在嵌入式OS中的发展趋势。  在嵌入式OS中发展趋势我们选择的方案是:下载GNU/Linux的标准源代码并进行适当裁减和修改,定制成符合导航终端需求的操作系统。据Linux Devices统计,这种所谓的“Home grown”已成为目前最流行的嵌入式Linux版本,其份额远远超出了商业嵌入式Linux的版本。这其实也是嵌入式系统多样性的必然反应。  (3) 基于ARM和嵌入式Linux平台的系统开发  将Linux移植到ARM处理器上并在此平台上进行应用开发大致涉及四个层次:引导装载程序、Linux OS移植(包括设置工具链、内核、驱动程序、文件系统等)、图形用户界面(或称GUI)和应用程序。  ① 引导装载程序通常是在任何硬件上执行的第一段代码。基于ARM设备上一些流行的并可免费使用的Linux引导装载程序有Blob、Redboot和Bootldr。  ② 设置工具链的目的是要在主机机器(X86架构的PC机)上创建一个用于编译将在目标(ARM架构的嵌入式系统)上运行内核和应用程序的构建环境。它由一套用于编译、汇编和链接内核及应用程序的组件组成。  ③ 虽然Ext2fs是Linux事实上的标准文件系统,但在嵌入式环境中使用JFFS2是更好的选择。它是专为微型嵌入式设备设计的日志型闪存芯片文件系统。  ④ 从用户的观点来看,图形用户界面(GUI)是系统的一个至关重要的方面:用户通过GUI与系统进行交互。Qt/Embedded是Trolltech新开发的用于嵌入式Linux的图形用户界面系统。结语  综合ARM处理器、嵌入式Linux和gpsOne定位技术,依托CDMA网络传输平台而设计开发成的智能车载定位服务系统具有广泛的适用性。2008年的北京奥运会将会为智能车载导航调度系统的应用带来更广阔的前景。

    时间:2009-04-08 关键词: 网络 CDMA 导航 智能车载

发布文章

技术子站

更多

项目外包