当前位置:首页 > 热电阻
  • 关于热电偶和热电阻的不同点解析,你能区分它们吗?

    在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的热电偶和热电阻,那么接下来让小编带领大家一起学习热电偶和热电阻。 热电偶和热电阻是同一种物体吗?今天小编就明确告诉你,他们不是。虽然热电偶和热电阻都用作感温元件,但它们的原理和功能是不同的。今天给大家分享一下如何区分热电偶和热电阻。 第一种区分热电偶和热电阻的方法:根据标签判断是热电偶还是热电阻。铭牌上会有热电偶或热电阻的具体产品和规格信息。我们只需要仔细观察和区分即可。热电偶还是热电阻。 第二种区分热电偶和热电阻的方法:根据结构,区分热电偶和热电阻。热电偶一般由热电极、绝缘管、保护套和接线盒组成。热阻是传感器输出的负载和电源,是串联的。 第三种区分热电偶和热电阻的方法:由接线板决定。热电偶以正负极区分,热电阻不以正负极区分。这个区分方法比较简单,大家可以试试。 第四种区分热电偶和热电阻的方法:通过补偿线判断,热电偶需要根据不同的型号选择不同的补偿线,连接补偿线增加热电偶的温度稳定性,热电阻不需要补偿线,但是热电阻也分为不同的型号。 热电偶和热电阻是两个不同的组件。我们需要仔细区分。不要犯错。我们要搞清楚我们需要的组件是干什么用的,根据我们的实际需要来选择。实际热电阻或热电偶 热电偶和热电阻的识别方法 仪器新手经常对如何区分热电偶和热电阻感到困惑。小编在本文中介绍了热电偶和热电阻的识别方法。此方法简单、快捷、实用,值得您收藏。 工业热电偶和热电阻保护管的外观几乎相同。有些测温元件外观较小,如铠装式。两者的外观基本相同。没有铭牌和型号是不知道的,您可以使用以下方法来识别。 首先是看测温元件的引线。通常热电偶只有两根引线。如果有三根引线,则为热电阻。但是对于四根引线,需要测量电阻值来确定是双热电偶还是四线热电阻。首先从四根引线中找出电阻几乎为零的两对引线,然后测量两对引线之间的电阻。如果为无穷大,则是双热电偶,电阻值几乎为零。引线是热电偶。如果两对引线的电阻在10-110之间,则为单四线热电阻,其电阻值最接近哪个分度号的热阻,则为该分度的热阻数字。 . 如果只有两根引线,可以用数字万用表测量电阻值来判断。由于热电偶的阻值很小,热阻几乎为零;如果测量时电阻值很小,可能是热电偶。 常温下,热电阻的最小阻值也会大于10。常用的热电阻有Pt10、Pt100铂热电阻、Cu50、Cu100铜热电阻四个刻度号,常温20℃时,电阻值Pt10 为 10.779,Pt100 为 107.794,Cu50 为 54。285,Cu100 为 108.571。室温大于20℃时电阻值较大,大部分电阻值可以通过比较两个电阻值来判断。如果是热电阻,也可以知道热电阻的刻度号是多少。 您还可以找到一个容易获得的热源,通过加热测温元件来判断和识别。如果可以从饮水机接上一杯热水,将测温元件的测量端放入热水中,用数字万用表的直流毫伏块测量是否有热电势。如果有热电势,热电偶根据热电势找到它。热电偶索引表,可以确定热电偶是什么索引号。当没有热电势时,测量电阻值是否有变化。如果阻值有上升趋势,就是热阻。也可以用电烙铁或电烤箱加热测温元件的测量端来判断识别。 相信通过阅读上面的内容,大家对热电偶和热电阻有了初步的了解,同时也希望大家在学习过程中,做好总结,这样才能不断提升自己的设计水平。

    时间:2021-07-20 关键词: 热电偶 热电阻 绝缘管

  • 布局铂热电阻温度传感器制造,大力推动物联网和智慧城市的发展

      以前在我们铂热电阻技术方面都是依靠进口,因为我国的自主研发封装材料,成本都低于业内水平,据统计,我国90%均为进口,所以我们必须加快研发的步伐,铂热电阻需要摆脱“进口依赖”。   近年来,“智慧城市”的概念与研究发展可谓如火如荼。数据显示,截至今年4月,我国100%的副省级城市、87%的地级以上城市——总计超过500个城市,均已明确提出或正在建设智慧城市。   物联网建设是智慧城市概念中必不可少的环节。温度等传感器作为物联网中的一环,在城市网络的布控、安全等方面则起着基础而重要的作用。   自主研发封装材料,成本低于业内水平   今天介绍的项目即为“薄膜铂热电阻温度传感器”。项目负责人吕先生在薄膜电路的工艺研发以及应用方面有着十多年的经验,他提到:该产品是传统制造业与半导体/集成电路生产工艺的结合。   铂电阻,简称为:铂热电阻,它的阻值会随着温度的变化而改变。常见的Pt100感温元件有陶瓷元件,玻璃元件,云母元件,它们是由铂丝分别绕在陶瓷骨架,玻璃骨架,云母骨架上再经过复杂的工艺加工而成。   作为新一代的温度测量和调节传感器,其通常用来与二次仪表等配套,测量各类生产过程中的温度,标准使用范围为-50℃~500℃,在仪表仪器、石油煤炭的冶金化工等诸多领域广泛应用。   在应用上,产品与对标公司贺利氏铂热电阻的性能、指标参数类同;但吕先生介绍,产品在材料和制作工艺上,突破了国内自主生产的技术障碍。此外,产品可根据特殊应用进行定制,如低温可达-196℃液氮温度,高温可以达1000℃。   产品的技术核心与竞争壁垒在于:一,它采用了自主研发的封装材料;二,在稳定性等方面具有优势;三,投资成本低于国外,具有竞争力的价格,量产后定价低于国外产品30%。   90%均为进口,铂热电阻需要摆脱“进口依赖”   目前,铂热电阻在国内的市场用量为每年5000万只以上,且用量仍不断增长。吕先生告诉 ,参考对标公司——德国贺利氏,铂热电阻温度传感器的产值即有数千万欧元。随着国内物联网、智慧城市等的建设发展,国内铂热电阻的市场空间较为广阔。   但是,面对上述市场容量,国内的铂热电阻90%以上均为进口,并无自主化、规模化的生产。其中,德国贺利氏产品占国内70%左右的市场份额,日本凌电工、瑞士IST等公司产品占剩余份额。   作为制造业大国,去年“中国的圆珠笔头仍需进口”的新闻曾让人哗然。虽然从实际表现上看,目前圆珠笔头的生产难度已在可控范围,但其研发费用高、利润空间低等门槛使不少欲涉足的企业处于“尴尬”境地。因此长期以来,市场均使用国外进口产品,以压缩成本、提升利润空间。   针对这一局面,吕先生团队在研发、生产流程上,均采用国产设备,将自动化、半自动化和手工生产相结合,从而提高产品性价比,使国产的温度芯片更具有价格优势。   从“龙头”企业切入,逐步布局市场   吕先生介绍,铂热电阻样品已于今年年初上线,并进入市场参与指标和性能测试。   作为工业产品,铂热电阻的用户面覆盖全国,但用户有较明显的区域性,主要集中在长三角、珠三角以及京津华北地区。其中,长三角用户数量和聚集度占比最高,超过60%。   团队采取B2B模式,挑选了长三角区域进行市场推广,并选择与当地的“龙头”企业——体量较大、业内号召力较强的公司进行合作,并代理产品在当地的销售。“龙头”企业的首肯,一定程度上会带动产品在用户群中的接受度与认可度。在推广中,团队先从对温度控制需求偏低的产品着手,提高用户接受度后,逐步渗透至高端产品。   团队的盈利主要来自产品销售,并根据2B端的需求提供产品解决方案。   摆脱“进口依赖”是现实与情怀,项目的落地推广则是生存之要。在后续的布局中,团队将主要采取代理商模式,逐步覆盖其他区域。   除了温度传感器,后续规划中亦可拓展至压力传感器、湿度传感器等领域,主要仍依靠技术的更新迭代。   竞品方面,吕先生表示国内相关研究所此前有进行相关产品的研发,但以军工和科研使用为主。目前,线下和线上市场暂未见到批量售卖的国产产品。   团队方面,胡先生,团队材料专家,沈阳工业大学微电子专业,任职于重庆材料研究院,从事温度元件以及材料的研究,开发的产品广泛应用于航空、航天、航海等领域。吕先生,团队技术支持,20年半导体设备和工艺的应用和研发经验。张先生,负责产品销售,西北大学MBA,曾任职于西安航天四院某研究室。   据 了解,目前团队寻求百万级的天使轮融资,主要用于产品迭代和市场推广。

    时间:2020-08-06 关键词: 物联网 铂热电阻传感器 热电阻

  • 基于三线制的高精度热电阻测量电路设计

    热电阻传感器是一种电阻值随环境温度变化而改变的温度传感器,其中用金属铂做成的热电阻因具有稳定性好、精度高、测温范围大等优点,而被广泛应用。测量温度的热电阻测温仪主要由热电阻传感器、测量显示仪表及连接导线组成。由于热电阻传感器自身的温度灵敏度较低,连接导线所具有的线路电阻对测量结果影响不容忽视,为了消除导线电阻的影响,热电阻测温仪广泛采用平衡电桥式三线制接法,这种方法使温度误差得到一定的补偿,但线路电阻的影响依然存在。提出基于恒压分压式三线制导线电阻补偿方法,电路简单,实现方便,可完全消除导线电阻的影响。相比于文献所提出的使用较多的硬件电路进行导线电阻补偿方法,该方法具有更加简洁的导线电阻补偿电路。1 常用热电阻测量方法分析对于Pt100铂热电阻,国际温标BS-90中给出其阻值随温度变化关系如式(1)所示。式中,Rt为热电阻在温度为t℃时的阻值,R0为热电阻在温度为0℃时的阻值,R0=100 Ω,A=3.968 47×10-3℃-1,B=-5.847x10-7℃-2,C=-4.22x10-12℃-3是与传感器自身相关的系数。由式(1)可知,Pt100热电阻的灵敏度约为0.38 Ω/℃,为减小连接导线的线路电阻对测量结果的影响,一般常用三线制电桥法进行测量。VR=1 V其电路原理如图1所示。Rt为测温电阻,r为连接导线电阻,R1、R2、R3为固定桥臂,R1=R2=1 000 Ω,R3=100 Ω,VR为基准参考电压,G为测量仪表。在该电路中,3根导线分别连接传感器桥臂、电阻桥臂和输出端。采用这个方法可以很容易地测出待测电阻Rt。但是,在实际使用时,温度传感器和测温电路之间往往有一定距离,连接导线的电阻率约为0.1~0.5 Ω/m,连接导线电阻r所引起的测量误差不能忽视。如图1所示的电桥,在不考虑线路电阻r时,电桥的输出为:,考虑线路电阻时,电桥输出Vc=VR(Rt+r)/(R1+Rt+r)-VR(R3+r)/(R2+R3+r),假设电桥在Rt=Rx时电桥平衡,即R2Rx=R1R3,且满足桥臂电阻R1=R2=R3=Rx=R,当Rt发生△R变化时,即Rt=R+△R,可计算出此时电桥因线路电阻r的存在造成的误差为:可以看出导线电阻r影响Rt的测量结果,并且无法通过调零电路完全消除。基于以上分析,提出了一种可完全消除导线误差的恒压分压式三线制高精度前置电路。2 恒压分压式三线制测量电路2.1 测量原理这里所使用的恒压分压式三线制法测电阻可以排除导线电阻的干扰,其等效原理图如图2所示。其中Rt为热电阻。r为导线等效电阻。VR为基准参考电压,VAD是A/D转换器的参考电压,β为电压放大倍数。由欧姆定律可得基本关系式:从式(3)可以看出:在已知RV和VR的情况下,欲求Rt只需测出V2和V1,而与导线电阻r没有关系。且测量精度只取决于RV的精度与V1,V2的测量精度。在电桥法中无法消除的导线电阻在恒压分压式三线制方法中被完全消除。由于热电阻当有电流通过时,会引起自身温度升高,所以必须考虑其本身自热误差,即必须考虑流过热电阻的电流所引起的升温误差。常用的Pt100热电阻驱动电流约为1 mA。0℃时相当于自热功率约0.1 mW,在高精度测量时,应进一步降低自热功率,减小自热误差。这里设置VR=2.5V,RV=10kΩ,则自热功率约为0.006 mW。2.2 提高测量精度措施与三线制平衡电桥法相拟,图2所示的电路输出电压V1与V2数值较小,还应加入一级电压放大后,再进行A/D转换。参考电压VR一般由精密恒压源提供稳定的电压信号,此外单片机软件在数学计算上选择适当的算法和字长时,该计算误差也可不计。但放大电路的放大倍数β和RV会因元器件个体而异,特别是在批量生产时元器件的精度难以保证统一,因此对一个具体输入电路而言,还需考虑β和RV带来的误差。为了消除β和RV带来的误差,可以通过标定法,在仪表生产时进行自动标定计算,求得实际电路的β和RV值,再将这两个参数记录在仪表的非易失存储器中,在仪表进行温度测量时,读取该参数按式(1)进行计算,从而得到精确的测量温度。如果把图2中长导线用尽可能短的导线代替(即r=O),并以精密电阻R代替热电阻Rt,VAD是A/D转换器的参考电压,β为电压放大倍数,其余部分保持不变,则有:在式(4)中,R是已知阻值的精密电阻;D是A/D转换的结果,该结果可方便地从仪表显示装置中读出;VR与VAD是基准电压,为恒定的常量;β为电路的总放大倍数;K是A/D转换的比例因子,如对于14位的A/D转换器,K=214。那么式(2)中只有2个未知数RV和β。对于一个具体输入电路,如果取2个阻值已知的精密电阻R1、R2分别接入图2所示电路进行标定(标定时,尽量使r=0),就可以得到一个二元一次方程组。这样,对于一个具体输入电路而言,可从方程组解出β和RV,其结果如下:上述标定方法可以总结为:2个阻值已知的精密标准电阻R1、R2分别接仪表的输入端,且使用连接导线的电阻尽量减小,这时记录仪表读数D1与D2,代入式(5)即可计算出所标定仪表的未知参数β和RV。在使用中,建议将VR与VAD使用同一个基准源,这样式(5)中β的计算就与参考电压的精度无关。这种方法减小了不同基准源之间的差异,特别是减小了不同基准的时漂与温漂的影响。2.3 测量电路图3是高精度Pt100温度测量系统的前置输入电路部分,其中Pt100基准电压与A/D转换器ICL7135的基准电压为同一电压基准源,Pt100的2路测量输入信号V1与V2采用同一运算放大器放大(1+R3/R4)倍后进入A/D转换器,使用微型继电器K1进行通道选择,这种方法共用运算放大器、A/D转换器、基准电压源,减小了不同器件之间的差异对测量结果的影响。ICL7135的A/D转换结果通过串行方式与单片机相连,可以大大节约单片机的IO口。该电路在标定时,使用标准电阻100Ω与300Ω进行标定,将标定结果β和RV存入单片机系统的EEPROM中。在实际测量中,单片机系统将β和RV取出,作为已知值,由式(3)计算出电阻Rt值。2.4 测量电路试验分析对比三线制平衡电桥法,该电路检测结果得到了大大提高,表1是2种不同方法的测量标准电阻值的对比。其中r为线路电阻。从表1中可以看出,由于三线制平衡电桥法理论测量结果即存在较大误差,且随线路电阻r的增加,引起的误差越大,随待测热电阻阻值增大,绝对误差也呈增大的均势。表1中,最大相对误差为被测电阻Rt=300 Ω,线路电阻r=20 Ω时,达到了2.57%。本文采用改进后的三线制法的实测结果在所测数据范围内最大绝对误差只有0.3 Ω,最大相对误差为±0.1%。电路使用的A/D转换器仅相当于14位的A/D转换精度,若使用更高精度的A/D转换器,可达到更高的测量精度。在实际的热电阻传感器测温仪表中,还需加入由被测电阻转换为对应温度的相关程序。即在测量得到Rt后,由式(1)计算即可精确求解出实际的温度值。3 结论三线制平衡电桥法在热电阻测量中应用广泛,但存在无法消除传感器引线电阻引起测量误差的问题。本文分析了测量热电阻平衡电桥法中存在的问题,提出了恒压分压式三线制测量方法,分析了测量电路产生误差的原因及影响因素,推导并建立了待测电阻的影响参数及公式,设计了完整的测量电路,包括信号放大器和A/D转换器以及与单片机的接口电路。最终对所设计电路的测试精度进行试验测定,试验表明,三线制平衡电桥法测标准电阻值在100~300Ω,线路电阻在0~20Ω时最大测量误差达到2.57%,而平衡三线制测量误差只有±0.1%。从而获得了高精度的三线制热电阻测量电路。

    时间:2018-09-17 关键词: 电源技术解析 三线制 测量电路 热电阻

  • 热电阻是中低温区最常用的一种温度检测器

    热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。 与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。  1、四线制就是从热电阻两端引出4线,电缆故障测试仪接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。  2、三线制就是从热电阻引出三线,Pt100铂电阻接线时电流回路的参考端和电压测量回路的参考端为一条线(即检测设备的I-端子和V-端子短接)。精度稍好。  3、两线制就是从热电阻引出两线,Pt100铂电阻接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。测量精度差。

    时间:2018-08-06 关键词: 温度检测器 中低温区 热电阻

  • 热电阻常见的4大类型

    热电阻是一种测温仪器,被广泛的应用于工业、化工、船舶、机床、治金、电力等多个行业当中。我们在使用热电阻的时候对于它的常用类型都了解吗?热电偶的常用类型有普通型热电阻、铠装热电阻、端面热电阻、隔爆热电阻,下面小编就来具体介绍一下热电阻常见的4大类型吧。1)普通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

    时间:2018-07-13 关键词: 4大类型 热电阻

  • 一种热电阻阻值测量的新方法

    1 引言 温度的测量在生产、生活中有着广泛的应用,热电阻传感器以其温度测量特性稳定,复现行好,测量精度高,测量范围大等优良性能受到青睐。传统的热电阻测量电路[1]有以下几种:一是二线制单臂电桥法,电桥的输出电压反映了温度的变化,但是,由于热电阻自身阻值较小,当引线较长时,引线电阻引起的误差就不能忽略。二是三线制单臂电桥法,虽然能够解决引线电阻引起的误差,但测量范围窄。三是四线制单臂电桥法,可以无需考虑热电阻的非线性造成的测量误差,并利用恒流源在热电阻上产生的压降反映温度,但是一般测温现场难以满足四线制的要求。四是热电阻阻值电流转换法,将热电阻阻值转换成相应的电流,以利于信号的传输,然而,对于精确的温度测量仍然存在引线电阻引起的误差,且性价比低。为此,提出了一种热电阻阻值测量的新方法,并以AT89C51单片机[2][3]为主机,配以较少的电阻,电容等元件组成测量系统,实践证明方法准确、有效。 2 测量原理[4] 测量电路如图1,其中Rt为待测的热电阻阻值,Rl为引线的等效电阻,Rc为标准精密电阻,Rd为电容放电电阻。测量原理如下: 第一步,P1.0、P1.1、P1.3为输入状态,P1.2为输出状态,输出的高电平V1通过Rl、Rt、Rl对电容C充电,则电容C上的电压Uc(t),按下式变化,即 经历Tt过渡时间,Uc(t)达到P1.3的输入高电平阀值电压V2,P1.3的输入状态由低电平过渡为高电平状态,且过渡时间Tt可由(1)式求得,即 ?将P1.3置为低电平状态,电容C通过Rd放电。 第二步,P1.0、P1.2、P1.3为输入状态,P1.1为输出状态,输出的高电平V1通过Rc、Rl、Rl对电容C充电,经历Tc过渡时间,Uc(t)达到P1.3的输入高电平阀值电压V2,P1,3的输入状态由低电平过渡为高电平状态,且过渡时间Tc可由(3)式求得,即 将P1.3置为低电平状态,电容C通过Rd放电。 ? 第三步,P1.1、P1.2、P1.3为输入状态,P1.0为输出状态,输出的高电平V1通过Rl、Rl对电容C充电,经历T1过渡时间,Uc(t)达到P1.3的输入高电平阀值电压V2,P1.3的输入状态由低电平过渡为高电平状态,且过渡时间T1可由(4)式求得,即 将P1.3置为低电平状态,电容C通过Rd放电。 将(2)式除以(4)式得 因为Rc为已知,只要测量出Tt、Tc、Tl便可由(7)式计算出被测热电阻Rt的阻值,单片机程序在通过计算或查表的方法,将热电阻的阻值转换成相应的温度值,当Rc选精密电阻,并且单片机时间测量精度高时,使用该测量方法可达到较高的测量精度。 3 测量原理的改进 上述原理分析中,单片机输出的高电平V1和输入高电平的阀值电压V2,在三个步骤中的变化将影响测量精度,为此测量电路进行如图2的改进。 其中CD4502为CMOS模拟开关,它的导通电阻、切换速度与其供电电压有关,但对同一芯片,具有同一性,可设模拟开关的导通电阻为Ron,这样使每一步对电容充电的电压,相一致为Vcc用放大器OP-07实现比较器,比较器的正输入端反映电容的充电电压,负输入端接标准稳压电源LM385-2.5,使输入高电平的阀值电压稳定在Vd,通过以上措施克服了原有测量电路的不足,具体测量原理如下: 第一步,P1.4置为“l”状态,并使P1.2、P1.3均为“1”状态,则CD4502的Y-Y3接通,对电容放电,放电完成后,比较器的“+”输入端电压将低于“-”输入端电压,比较器发生翻转,P1.5为低电平,将P1.2、P1.3均为“0”状态,则CD4502的X-X0接通,电压Vcc通过电阻Ron、Rl、Rl对电容充电,经历Tl过渡时间,Uc(t)达到比较器的翻转电压,且过渡时间T?l可由(8)式求得,即 (8) 将P1.2、P1.3均为“1”状态,CD4502的Y-Y3接通,对电容放电。 第二步,P1.2、P1.3分别设为“0”、“1”状态,则CD4502的X-X1接通,电压Vcc,通过电阻Ron、Rc、Rl、Rl对电容充电,经历Tc过渡时间,Uc(t)达到比较器的翻转电压,且过渡时间T?c可由(9)式求得,即 将P1.2、P1.3均为“l”状态,CD4502的Y-Y3接通,对电容放电。 第三步,P1.2、P1.3分别设为“1”、“0”状态,则CD4502的X-X2接通,电压Vcc通过电阻Ron、Rl、Rt、Rl、对电容充电,经历Tt过渡时间,Uc(t)达到比较器的翻转电压,且过渡时间T?t可由(10)式求得,即 将P1.2、P1.3均为“1”状态,CD4502的Y-Y3接通,对电容放电。 由式(8)、(9)、(10)可得到如式(7)的热电阻阻值表达式,此表达式可以转化成下式: 由式(11)可以看出,由于系统参数己固定,Tt、Tc、Tl如有误差,误差应具有相同的方向,即同时具有正向误差,或负向误差,通过Tt-Tl,Tc-Tl可消除系统误差,这一特点有利于提高测量精度。 4 参数的选择 由式(2)可知,Tt的大小取决于电阻Rt、电容C,在单片机的计数器不溢出的基础上,Tt的数值越大,测量精度越高,一般情况下,Rc应近似取被测电阻最大值的一半,电容C按下式选择: 其中Tt:计数器溢出时间,与单片机的时钟频率及定时器的位数有关;? Rmax:被测电阻的最大值;? 如果采用Pt100做温度传感器,温度测量范围为-200~850℃,对应的阻值为18.49~390.26Ω、考虑到其他电阻的影响,取Rmax为1K(Rt+Rc+2Rl),则Rc为500Ω、Vcc为5V、VD为2.5V。 单片机AT89C51的时钟频率为16MHz、定时器的分辨率为16位,则T计数范围为65535对应的计数时间为1us*65535us,由式(12)知:C<94.5uf、取90uf、则其灵敏度K(个数/Ω)为: 5 系统实现 采用AT89C51为核心,X25045存储相关定值,另外X25045具有WATCHDOG功能,可防止程序的“飞车”,提高了系统的抗干扰能力,通过标准的RS232串行接口实现与远方的数据通讯,键盘显示部分实现人机接口,开出部分实现报警和相应的控制,组成系统框图如下: 6 结论 利用电容冲放电原理实现的热电阻测量电路,设计合理,结构简单,符合现场测温的实际情况,经现场实践表明,运行准确,可靠。 参考文献: [1]郝芸.传感器原理与应用[M].电子工业出版社,2002,第一版 [2]何立民.单片机应用设计[M].北京航空航天大学出版社,1996,第一版 [3]李华.MCS-51系列单片机实用接口技术[M].北京航空航天大学出版社,1993,第一版 [4]何立民.单片机应用技术选编(8)[M].北京航空航天大学出版社,2000,第一版

    时间:2018-06-19 关键词: 阻值测量 热电阻

  • 热电阻测量原理及主要种类

    中文名称:热电阻  英文名称: thermal resistor  定义: 电阻值随温度变化的温度检测元件。  热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。  工作原理  热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。  热电阻主要种类  (1)精通型热电阻:工业常用热电阻感温元件(电阻体)的结构及特点。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响一般采用三线制或四线制。  (2)铠装热电阻:铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φ1mm。 与普通型热电阻相比,它有下列优点:   ①体积小,内部无空气隙,热惯性上,测量滞后小;   ②机械性能好、耐振,抗冲击;   ③能弯曲,便于安装   ④使用寿命长。  (3)端面热电阻:端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。  (4)隔爆型热电阻:隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。

    时间:2018-05-31 关键词: 测量原理 主要种类 热电阻

  • 热电阻与热电偶的测量原理及区别

      热电偶是工业上最常用的温度检测元件之一。其优点是:    ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。    ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。    ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。    1.热电偶测温基本原理    将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。    2.热电偶的种类及结构形成    (1)热电偶的种类    常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶    我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。    (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:    ①组成热电偶的两个热电极的焊接必须牢固;    ②两个热电极彼此之间应很好地绝缘,以防短路;    ③补偿导线与热电偶自由端的连接要方便可靠;    ④保护套管应能保证热电极与有害介质充分隔离。    3.热电偶冷端的温度补偿    由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。    在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。    温度测量仪表的分类    温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。    热电阻的应用原理    热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。    1.热电阻测温原理及材料    热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。    2.热电阻的结构    (1)精通型热电阻    从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,    (2)铠装热电阻    铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体它的外径一般为φ2~φ8mm,最小可达φmm。    与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。    (3)端面热电阻    端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。    (4)隔爆型热电阻    隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。    3.热电阻测温系统的组成    热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。必须注意以下两点:①热电阻和显示仪表的分度号必须一致    ②为了消除连接导线电阻变化的影响,必须采用三线制接法    (2)铠装热电阻    铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2~φ8mm,最小可达φmm。    与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。    (3)端面热电阻    端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。    (4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。

    时间:2018-05-31 关键词: 测量原理 热电偶 热电阻

  • 远程高精度温度数据采集系统设计

     0 引言 常用的温度传感器有热电阻、集成温度传感器和数字式温度传感器等多种。热电阻因其测量精度高,且性能稳定,在高精度温度测量中占有重要的地位。 通常在传感器信号经信号调理,采用12bit、16bitAD器件对传感器的调理信号进行采样,然后通过查表得到温度值,但是因为系统噪声、AD转换的量化噪声等的存在,导致测量结果产生误差。本文利用24bitAD器件ADS1255作为受转换的核心器件,利用其过采样技术,去除引起系统通道纹波误差的模拟滤波结构,大幅度降低系统的测量误差,系统以铂热电阻PT100为温度传感器,测量范围为-50~250℃,测量的分辨率为±0.01℃,高次方程寻根计算时间是毫秒量级。从硬件电路和软件算法设计上保证了测量精度和可靠性。 1 系统工作原理 系统总体构成如图1所示,远程端温度数据采集硬件原理框图如图2所示。PT1000产生的微弱电压信号经过调理之后送给24bitA/D转换器ADS1255,32位处理器PIC32MX795读取电压值后经过迭代计算出温度值。时钟、液晶用以显示温度、日期等信息。利用精简TCP/IP协议栈实现网络通信,系统通过模拟开关切换可升级为同时采集8路温度信号,最终将采集的温度数据经过Internet发送至远程服务器进行分析和处理。 2 系统硬件设计 2.1 精密恒流源 利用OP97或者OP400运放构成精密恒流源电路,基准电压由AD公司的ADR434器件提供,该器件温度稳定性能高。由图3知,由电阻器R决定恒流电流I=10μA。该电流源的性能受到取样电阻R1的温度稳定性的影响,故应认真选择。 2.2 信号调理电路 信号调理电路如图4所示。通过外接电阻Rg设置放大电路的增益(G=1+50k/R)。系统的温度测量范围是0~200℃,因此对应电阻值范围为1000~1940.981Ω,对应输出电压为10mV~19.41mV,经过前置放大100倍。最后送入A/D转换器的电压幅度为1.0~1.941V。 在该系统的信号调理架构中,省掉了滤波器结构,原因在于采用了ADS1255器件,将数字滤波引进温度数据采集中来,降低系统模拟前端的设计复杂性,完全消除由于模拟滤波器带来的通带内纹波等噪声的影响。从实际实验的效果来看,采用ADS1255这种过采样再数字滤波的系统结构可以大幅度降低噪声,提高测量精度。 2.3 ADS1255转换电路与TCP/IP通信模块电路 A/D转换器采用1通道、24位转换器ADS1255,微控器选用32位处理器PIC32MX795,连接关系如图5所示。图6所示为DP83848的网络接口。 3 下位机系统软件设计 热电阻的阻值和温度的关系在-200~850℃范围内,满足式(1)(2)。 温度和电阻值之间为非线性关系,传统的测量方法是将整个温度测量区间分成若干个近似线性区间,在每一个温度区间内,电阻值和温度的关系近似线性,然后通过数值算法进行拟合。但是对于PIC32处理器,利用该处理器的强大的计算能力直接进行高次方程的数值求解应该是首选的方案。 3. 1 利用牛顿迭代法求温度根 当0℃测量温度温度t,即是求方程(3)中f(t)=0的根,其中0℃ 3.2 温度与测量电压关系式 由精密I=10μA恒流源电路和调理电路可知,A/D转换器件的输入电压为: U=I×Rt×G (8) 增益G=100,待求解温度t和系统测量的电压值U在如下关系: 3.3 温度数据采集与远程发送流程 PIC32利用牛顿迭代法实现温度根的求取,然后通过网络实现远程数据发送,工作流程如图7所示。 4 实验结果与对比分析 在温区0~100℃用不同方法进行温度测量,其中实际温度由标准铂电阻温度计标定。测量结果如表1所示。 直接利用PIC32的计算性能求解铂电阻物理特性方程的数值根,可以得到较高的精度,并在整个温度区间有较好的一致性。 5 结论 本文与标准铂电阻温度计的对比实验数据表明,利用24bitA/D过采样转换器ADS1255、微控器PIC32MX795及远程PC机构成的数据采集系统,系统结构稳定可靠;利用PIC32的强大计算性能,直接寻找物理特性方程的根,测量精度优于0.01℃,且一致性很高。

    时间:2015-06-03 关键词: 过采样 32位单片机 tcp/ip 温度数据采集 热电阻

  • 诸类热电偶热电阻的性能比较

    1  S 型热电偶 铂铑10-铂热电偶 温度范围 0~1600℃ 旧分度号 LB-3 优点 1.耐热性、安定性、再现性良好及较优越的精确度。 3.耐氧化、耐腐浊性良好 3.可以做为标准使用。 缺点 1.热电动势值小。 2.在还元性气体环境较脆弱。(特别是氢、金属蒸气) 3.补偿导线误差大。 4.价格高昂。 2 R 型热电偶 铂铑13-铂热电偶 温度范围 0~1600℃ 优点 1.耐热性、安定性、再现性良好及较优越的精确度。 2.耐氧化、耐腐浊性良好 3.可以做为标准使用。 缺点 1.热电动势值小。 2.在还元性气体环境较脆弱。(特别是氢、金属蒸气) 3.补偿导线误差大。 4.价格高昂。 3 B 型热电偶 铂铑30-铂铑6 热电偶 温度范围 600~1800℃ 旧分度号 LL-2 自由端在0~50℃内可以不用补偿导线 优点 1.适用1000℃以上至1800℃。 2.在常温环境下热电动势非常小,不需补偿导线 3.耐氧化、耐腐浊性良好。 4.耐热性与机械强度较R型优良。 缺点 1.在中低温域之热电动势极小,600℃以下测定温度不准确。 2.热电动势值小。 3.热电动势之直线性不佳。 4.价格高昂。 4 K 型热电偶 镍铬-镍硅热电偶 镍铬-镍铝热电偶 温度范围 -200~1300℃ 优点 1.热电动势之直线性良好 2.1000℃以下耐氧化性良好。 3.在金属热电偶中安定性属良好。 缺点 1.不适用于还元性气体环境,特别是一氧化碳、二氧化硫、硫化氢等气体。 2.热电动势与贵金属热电偶相比较经时变化较大。 3.受短范围排序之影响会产生误差。 5 N 型热电偶 镍铬硅--镍硅热电偶 温度范围 -270~1300℃ 优点 1.热电动势之直线性良好。 2.1200℃以下耐氧化性良好。 3.为K型之改良型,受Green Rot之影响较小,耐热温度较K型高。 缺点 1.不适用于还元性气体环境 2.热电动势与贵金属热电偶相比较经时变化较大。 6 E 型热电偶 镍铬硅--康铜热电偶 温度范围 -270~1000℃ 优点 1.现有热电偶中感度最佳者 2.与J热电偶相比耐热性良好。 3.两脚不具磁性。 4.适于氧化性气体环境。 5.价格低廉 缺点 1.不适用于还元性气体环境 2.稍具履历现象。 7 J 型热电偶 铁--康铜热电偶 温度范围 -210~1200℃ 优点 1.可使用于还元性气体环境 2.热电动势较K热电偶大20%。 3.价格较便宜,适用于中温区域。 缺点 1.(+)脚易生锈。 2.再现性不佳 8 T 型热电偶 铜--康铜热电偶 温度范围 -270~400℃ 优点 1.热电动势之直线性良好。 2.低温之特性良好 3.再现性良好、高精度。 4.可使用于还元性气体环境。 缺点 1.使用温度限度低。 2.(+)脚之铜易氧化。 3. 热传导误差大。 9 PT100 型热电阻 铂电阻 温度范围 -200~850℃ 金属铂材料的优点是化学稳定性好、能耐高温,容易制得纯铂,又因其电阻率p(Ωmm2/m)大,可用较少材料制成电阻,此外其测温范围大。它的缺点是:在还原介质中,特别是在高温下很容易被从氧化物中还原出来的蒸汽所沾污,使铂丝变脆,并改变电阻与温度之间的关系。 10 CU50 型热电阻 铜电阻 温度范围 -50~150℃ 铜热电阻的价格便宜,线件度好,工业上在-50--+150℃范围内使用较多。铜热电阻怕潮湿,易被腐蚀,熔点亦低。

    时间:2012-09-11 关键词: 性能比较 热电偶 热电阻

  • 如何选择热电阻与热电偶温度传感器

    热电阻和热电偶是温度传感器最常用的感温元件。热电偶温度传感器工作原理是两种不同金属接触面两端在不同温度时产生不同微弱电压,经放大电路来测量温度,主要用于测量高温。热电阻温度传感器的工作原理是电阻值随着温度变化,主要用于测量微小的温度变化。当我们想要测量温度的时候,应当如何选择这两种温度传感器呢? 首先看测温范围。热电阻和热电偶各有适宜的测温范围,根据实际测温点的温度及温度梯度分布情况酌情选择传感器。高温测量通常选择热点偶,中低温则选择热电阻。 其次结合现场环境状况,尤其是要考虑现场电磁兼容性能,各种杂波、谐波、差模和共模干扰信号的情况。当使用热电偶温度传感器时因温差热电势属于较微弱的电信号,易受干扰从而引入测量误差,而热电阻温度传感器因为是电流信号不易受干扰,而且又因为有三线制、四线制等可以进一步减少测量的系统误差,所以热电阻在满足测量范围的前提下还具有抗干扰性能强的优势,还没有热电偶的冷端补偿问题的麻烦。另外,现场一般在测温点都是将热电阻温度传感器接到变送器上再输出给二次仪表,不怕线路长造成信号衰减,而且不必使用造价较高的补偿导线,而热电偶温度传感器则需要使用补偿导线,这些情况下均适宜使用热电阻。当然热电阻的阻值随温度而非线性变化会引入系统误差,而且热电阻的热惯性略显大些,不能够较好的跟踪温度快速和大幅度的变化。为避免系统误差过大,接入的二次仪表出的分辨率不宜过大。 再次由于热电阻温度传感器的校准简单,其所校准点只有零点和100度时对应的电阻值,校准设备简单,校准时间很短。而热电偶温度传感器的校准由于升温和退温的缓慢性,使热偶的校准不仅时间漫长,设备复杂,且对环境的要求也很严格。因此在测介质温度符合热电阻的使用条件下,应当首先使用热电阻温度传感器。

    时间:2012-08-02 关键词: 如何选择 热电偶温度传感器 热电阻

  • 热电阻工作原理、分类及其应用

    温度传感器是温度测量仪表的核心部分,品种繁多。按照传感器材料及电子元件特性分为热电阻温度传感器和热电偶温度传感器两类。不同的温度传感器,其使用方法和工作原理也不尽相同,下面我以热电阻温度传感器为例,介绍热电阻工作原理、分类及其应用。 温度传感器热电阻应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 热电阻成分结构 金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。金属热电阻常用的感温材料种类较多,最常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、UE 热电阻钨、银等。薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。其中骨架用陶瓷,引线采用铂钯合金。 热电阻的作原料 热电阻阻材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻主要特点   ·压热电阻簧式感温元件,抗振性能好;   ·测温精度高;   ·机械强度高,耐高温耐压性能好;   ·进口薄膜电阻元件,性能可靠稳定。 热电阻工作原理 热电阻的测温原理是基于导体或半导体的电阻值随着温度的变化而变化的特性。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。 热电阻种类 普通型热电阻 从热电热电阻阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 铠装热电阻 铠装热电阻热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 端面热电阻 端面热电阻热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的防爆热电阻热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即   Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。 半导体热敏电阻的阻值和温度关系为   Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上热电阻温度测量原理),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。 热电阻的实际应用 目前热电阻应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 虽然热电阻温度传感器在工业中应用比较广泛,但是由于他的测温范围使他的应用受到了一定的限制,热电阻工作原理是基于导体或半导体的电阻值随着温度的变化而变化。  

    时间:2012-02-08 关键词: 工作原理 分类 热电阻

  • 基于CAN总线的分布式热电阻智能节点的设计

    1  引言 现场总线技术是当今自动化领域发展的热点,德国bosch公司的can是为解决汽车内部的复杂硬信号接线提出的,而其应用范围正逐渐向过程控制、机器人、数控机床、医疗器械及传感器等领域发展。can总线以其独特的设计、低成本、高可靠性、实时性、抗干扰能力强等特点得到了广泛的应用。本文选用can总线设计了分布式热电阻智能节点,利用can总线连接各个网络节点,可以直接与主控卡或上位机通信,组建成工业网络分布式测控系统。 2  热电阻智能节点硬件设计 2.1智能节点整体结构 本热电阻智能节点设有4路输入通道,支持3线制方式,支持热电阻类型有cu50、cu100和pt100,采用freescale mc9s12d64单片机作为微控制器,其内部有一个can通信模块(mscan),符合can2.0a/b标准,所以不需要扩展can通讯控制器。can接口收发器采用pca82c250作为can通信模块和物理传输线路之间的接口。节点通过24位a/d转换器ads1216对组态通道进行采样,由于热电阻的阻值与温度成正比关系,需将已知电流流过该电阻以得到与温度成正比的输出电压。本文使用ads1216的两个8位电流输出idac1和idac2作为恒流源,通过模拟开关max355选通相应的组态通道,然后ads1216对得到的电压信号进行采样并输出至微控制器,经校正后进行标度变换转化成相应的电阻值,查热电阻分度表即可得到所测温度。本节点也可通过rs485接口并严格按照modbus协议进行通信,rs-485收发器采用sn65lbc184。 本热电阻智能节点硬件结构框图如图1所示。   图1 热电阻智能节点硬件结构框图 2.2信号输入端电路与采样电路 信号输入端电路与采样电路原理图如图2和图3所示。 图2 热电阻信号输入端电路 图3  a/样电路 max355差动4通道模拟开关接4路热电阻信号转换电路,图中只画出第一路转换电路,接线方式为三线制,使能端en接高电平,使max355一直有效。a0、a1引脚接至mc9s12d64单片机的pp0和pp1端,用于选通某一路热电阻信号进行转换与测量。当max355选通某一通道后,该通道将与公共端接通,假设选通通道1,200ua恒定电流由no1a和no1b输出流经热电阻产生毫伏级电压信号,此信号在vin1和vin2处被ads1216采样。 ads1216组成4路全差分通道。单片机通过porta与ads1216通信,用于控制ads1216选通某一路模拟量输入通道并进行采样,每一个控制信号均通过光耦合器和两个施密特触发器进行数字隔离,这样做可有效抑制各种噪声干扰,提高传输通道上的信噪比。ads1216采样每一路通道之前均进行偏置与增益自校准。当/drdy变为低电平,标志着数据寄存器中数据已准备好,单片机便从24位数据输出寄存器(dor)读取转换结果。 2.3 can和rs-485通信电路 can和rs-485通信电路原理图如图4所示。 mc9s12d64单片机的can输入与输出引脚(rxcan0和txcan0)分别接至收发器pca82c250的txd和rxd引脚。pt2用来控制数据接收与发送,当pt2为低电平时,接收数据;当pt2为高电平时,发送数据。输入rs通过一电阻接地,使pca82c250工作在斜率控制模式下。sn65lbc184为具有瞬变电压抑制的rs485差分收发器,因此本智能节点可以接入采用canbus或rs485的测控系统,并方便的与各种组态软件进行通信。   图4  can和rs-485通信电路 3  热电阻智能节点软件设计 3.1概述 单片机程序用mc9s12汇编语言编写。在主程序首先完成各寄存器和存储单元的初始化,再通过调用读取地址子程序,得到i/o板卡的地址和can通信波特率,再完成mscan模块和ads1216初始化。随后调用e2prom中组态信息,对每一路组态通道进行信号转换,数字滤波及温度查表计算等,其主程序流程图如图5所示。     图5 热电阻智能节点主程序流程图 由于现场的各种干扰很容易使信号失真,从而使a/d转换结果产生比较大的误差。因此在对信号进行有效的硬件滤波后还需进行软件滤波,本节点采用了数字中值滤波、算术平均、加权滤波等方式。 3.2 节点与上位机的can通信 智能节点与主控卡或上位机的通信主要基于can通信协议来完成,它的优点是能够实时处理数据、在恶劣环境下正常工作、成本低且拥有比较高的带宽。由于上位机内部无can网络适配器,因此需外接rs-232/can转接卡,实现上位机与智能节点的通信。通过节点上的跳线设置节点地址,当上位机发出命令时,节点进入can接收中断,对数据解包放入接收缓冲区并调用数据处理函数。当上位机发出组态命令时,单片机会将收到的组态通道信息和信号类型写入e2prom保存,并回送一帧数据通知上位机组态信息已成功接收。当接收到上传rtd值命令时,单片机会将内存中的4路rtd温度值以多帧形式发送给上位机。 3.3 rtd阻值变换算法 软件设计中关键算法在于rtd电压阻值的转化,刻度点间的线性化及标度变换。以pt100热电阻的温度刻度表为例, pt100tab:fcb 04h,00h,07h,39h,08h,0e8h,0ah,94h,0ch,3ch,   fcb 0dh,0e1h, 0fh,83h,11h,23h,12h,0c0h,14h,5bh,   fcb 15h,0f3h,17h,89h,19h,1eh,1ah,0b1h,1ch,41h,   ……   fcb 91h,84h,92h,0afh,93h,0d8h,95h,01h,96h,28h,   fcb 97h,4eh,98h,72h,9ah,0cah  分度表由-210℃开始每间隔10℃作为一个刻度点,每一个刻度点的电阻值扩大100倍后转换为十六进制数即构成上表。考虑到表格的一致性,cu100和cu50热电阻的分度表也从-210℃开始计算。 当得到校正后的ad转换数值后,需要将采样到的电压信号转换为电阻值以便于查表。阻值计算公式如下:   r即为实际热电阻阻值,在这里将其扩大100倍以便于查表。 3.4 分段线性化查表 得到的对应阻值后,则从第0个刻度点开始比较,如果该采样值大于第0个刻度点,则再与下一个刻度点比较,同时记录小于该采样值的刻度点的个数n,如果采样值小于某一温度刻度点,则温度位于该刻度点b与前一个刻度点a之间,温度线性化在a、b两刻度点之间进行,线性化得到的温度加上a点对应的温度(n×10)即为采样温度。 以pt100热电阻为例,某一通道得到校正后的采样值为$9343,则前8个刻度点均小于$9343,第9个刻度点值大于$9343,记录小于该采样值的刻度点的个数n=101,此时a点(第101个刻度点$92af)对应温度为10×101=1010℃,b点(第9个刻度点$93d8)温度为1020℃,线性化在a、b两点间进行,具体公式为: [($934-$92af)/($93d8-$92af)]×10=5℃ 所以$9343对应的温度为: a点(第101个刻度点)对应温度1010℃+线性化温度5℃-210℃=805℃ 其中,各表均以-210℃作为起始,故计算温度时应减去210℃。 4  结束语 本智能测控节点主要完成对现场热电阻信号进行采集和处理。在实验室条件下,利用电阻计代替现场的热电阻信号,经过反复测试,温度测量值均正确,并且误差在±1%以内。另外在监控程序的控制下,节点能够有效配合上位机完成系统的组态、信号校正和上传等功能,具有可靠、实时、灵活等特点。 作者简介 闫志红(1986-)女 在读硕士,现就读于山东大学控制科学与工程学院,研究方向为自动化装置的集成化与智能化。 参考文献 [1]李正军.计算机测控系统设计与应用[m].北京:机械工业出版社,2004. [2]李正军.现场总线及其应用技术[m].北京:机械工业出版社,2005. [3]孙同景.freescale十六位单片机原理及嵌入式开发技术[m].北京:机械工业出版社,2008. [4]邵贝贝著.单片机嵌入式应用的在线开发方法[m].北京:清华大学出版社,2004.

    时间:2011-09-15 关键词: 分布式 can 总线 热电阻

  • 放大指示原理图(配热电阻)电路

    时间:2011-07-10 关键词: 电路 原理图 放大 测试测量电路 热电阻

  • 热电阻丝风速测量电路

    时间:2011-05-10 关键词: 电路 温度/湿度/压力 风速测量 热电阻

  • 基于铂热电阻的高精度测温装置

    0 引言   在工业生产和日常生活中,温度是需要测量和控制的重要参数之一,物体的许多物理现象和化学性质都与温度有关,许多生产过程都是在一定的温度范围内进行的,需要测量和控制温度,因此温度测量的场合极其广泛。热电阻是工程上应用广泛的温度传感器,使用最多的铂热电阻温度传感器零摄氏度标称中阻值为100Ω和10Ω,电阻变化系数为0.003851。铂热电阻温度传感器精度高、稳定性好,应用温度范围广,是中低温区最常用的一种温度传感器,不仅广泛用于工业测温,而且被制成各种标准温度计供计量和校准使用。   该装置结合单片机和传感器技术,采用AD517及ADSlllO芯片和EL-700铂热电阻设计了一种具有无线发射与接收模块的高精度测温装置。该装置既可以单机工作,利用单片机来实现信号检测、处理及显示。又可以利用无线收发模块实现系统与计算机的无线通信,利用计算机实   现数据的分析、处理及打印。该测温系统设计简单,具有较高测温分辨率及友好的人机界面,试验数据表明,系统具有较高的测量精度。   1 硬件设计   1.1 热电阻的测温电路   热电阻的测温电路如图1所示,该电路由毫安级恒流源产生电路、差分运算电路和AD517芯片组成。该电路采用两个完全相同的毫安级恒流源分别给热电阻RT和标准参考电阻Rf供电。在恒流源电路中,VD1和VD2为带温度补偿的稳压二极管,四个PNP型的三极管T1、T2、T3和T4组成了两个PNP型复合管,其目的是为了提高放大器的增益,减小误差,以便提高恒流源的稳定度。恒流源与RT和Rf(Rf取为Rf=100Ω)与地组成的电路产生的电压作为差分运算电路的输入信号,根据电路的组成,可以得到差分运算电路的输出电压是与热电阻的阻值成正比的,通过选择合适的元器件参数把该装置的测温范围设置为0~120℃。该测温电路的AD517芯片为高精度、低温漂的单片集成运算放大器,ADSlllO是业界最小封装的6位△一∑型及输入电压范围为0~2.048V的模数转换芯片。测温电路中AD517的作用是将差分运算电路的输出电压调整到一个   合适的范围,以方便后面的ADSlll0进行模数转换。图中R9:和R10为比例放大电阻,RP为集成运放AD517的调零电阻,典型值为20kΩ。经过放大电路调整后的输出电压典型值为Uo,即可作为ADSlll0输入电压,经过A/D转换成数字信号之后送入单片机中进行处理。        1.2 总体设计   此基于EL-700铂热电阻传感器的高精度测温装置既可以单机工作,又可以通过无线收发模块实现与计算机之间的无线数据传输,把采集到的温度信号送到计算机中进行分析、处理及打印,从而实现数据的远距离传输与处理。测温装置主要由温度信号的检测与采集电路、LED显示、按键控制、电源、报警及复位、无线发射与接收等功能模块组成,每一个电路模块完成一定的功能,测温装置的硬件总体组成框图如图2所示。        电源模块为整个装置提供电源,在单机工作模式下,利用EL-700铂热电阻温度传感器来检测被测物体的温度信息,传感器的输出信号由测温电路模块进行处理及放大之后经模数转换器ADSlll0转换为数字信号送入单片机中,由软件编程来实现温度的显示及控制功能;LED数码管显示模块用来显示相应的温度数值及温标信息;通过按键控制模块及相应的程序可以实现装置的工作模式选择、摄氏温度与华氏温度显示选择等功能。   2 系统的软件设计   软件是整个系统的灵魂,它是系统算法和功能实现的关键,整个测温系统是在程序控制下进行工作的,本系统的软件设计中我们选择以单片机C51语言为主,以汇编语言为辅,采用模块化的设计思想,将该部分设计划分为相应的程序模块,增强了程序的可移植性。整个软件系统主要有单片机主程序、键盘控制子程序、开机自检子程序、温度检测及显示子程序、中断子程序等。单片机主程序流程图如图3所示。[!--empirenews.page--]        系统上电后单片机首先进行系统初始化,之后程序执行相应的自检子程序,检测测温系统是否有故障。系统默认进入的单机工作模式,在单机工作模式下,可以根据功能按键选择不同的功能,通过系统调用相应的功能按键处理子程序来完成应的功能,并在LED数码管上显示相应的温度信息,具有非常好的人性化特点;在无线工作模式下,此时系统作为一个下位机,可以和远程计算机进行无线通信,实现数据的远距离传输,利用计算机强大的信息处理功能,把下位机传送过来的数据进行分析和处理。   3 试验结果及分析   试验数据通过对普通热水器加热中的水温进行测量取得,测量中采用实验用高精密数字测温仪的示值温度作为被测物体温度检测点的温度真实值,本测温装置测得的温度信息经过电路的转换及单片机的处理后,测得的温度信息在LED数码管上的显示值如表l所示。从表中的数据可以看出,本系统LED显示值和真实值很接近;试验过程中,由于测量环境及其它因素的影响,使得系统的测量值在真实值上下波动,但温度的实际相对误差始终保持在1%以内,从而证明了本测温装置完全能够满足实际的测量要求。        4 结论   文中以单片机为测温装置的控制及数据处理核心,设计了基于铂热电阻的高精度测温装置,具有两种工作模式;采用两个完全相同的毫安级恒流源分别给热电阻和参考电阻供电,利用高精度的模数转换芯片ADS1110完成温度信息的采集及A/D转换,从提高了装置的测量精度;通过单片机的软件编程完成线性化算法及进行数据处理运算,并结合功能按键来实现系统的不同功能。试验数据的结果表明,此测温装置具有较高的测量精度,具有非常广泛的实际用途。

    时间:2010-10-06 关键词: 装置 高精度 电源技术解析 基于 测温 热电阻

  • 热电阻温度变送器电路

    时间:2010-09-19 关键词: 电路 温度变送器 测试测量电路 热电阻

  • 热电阻测温接口电路

    时间:2010-09-19 关键词: 接口电路 测温 测试测量电路 热电阻

发布文章

技术子站