当前位置:首页 > 电源芯片
  • 关于电源芯片的选择方法,你知道吗?

    什么是电源芯片?它有什么作用?在选择电源芯片的时候,应该考虑那些地方?输入电压线性调整率:输入电压线性变化时对输出电压的相对影响 输出电压负载调整率:负载电流变化时输出电压相对变化情况 输出电压精度:器件输出电压的误差范围 负载瞬态响应:负载电流从一个小值到最大流快速变化时,输出电压的波动。 电源芯片选择DC/DC还是LDO? 这个取决于你的应用场合。比如用在升压场合,当然只能用DC/DC,因为LDO是压降型,不能升压。另外看下各自的主要特点: DC/DC:效率高,噪声大; LDO:噪声低,静态电流小; 所以如果是用在压降比较大的情况下,选择DC/DC,因为其效率高,而LDO会因为压降大而自身损耗很大部分效率; 如果压降比较小,选择LDO,因为其噪声低,电源干净,而且外围电路简单,成本低。 LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。 LDO线性降压芯片:原理相当于一个电阻分压来实现降压,能量损耗大,降下的电压转化成了热量,降压的压差和负载电流越大,芯片发热越明显。这类芯片的封装比较大,便于散热。 LDO线性降压芯片如:2596,L78系列等。 DC/DC降压芯片:在降压过程中能量损耗比较小,芯片发热不明显。芯片封装比较小,能实现PWM数字控制。 DC/DC降压芯片如:TPS5430/31,TPS75003,MAX1599/61,TPS61040/41 关于LDO电源 以前经常看见,说什么芯片是LDO的,以为是某一公司的名号。现在才知道,LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。生产LDO芯片的公司很多,常见的有ALPHA, Linear(LT), Micrel, National semiconductor,TI等。 什么是 LDO(低压降)稳压器? LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。 更新的发展使用 CMOS 功率晶体管,它能够提供最低的压降电压。使用 CMOS,通过稳压器的唯一电压压降是电源设备负载电流的 ON 电阻造成的。如果负载较小,这种方式产生的压降只有几十毫伏。 LDO VS DCDC DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器,包括LDO。但是一般的说法是把直流变(到)直流由开关方式实现的器件叫DCDC。 LDO是低压降的意思,这有一段说明:低压降(LDO)线性稳压器的成本低,噪音低,静态电流小,这些是它的突出优点。它需要的外接元件也很少,通常只需要一两个旁路电容。新的LDO线性稳压器可达到以下指标:输出噪声30μV,PSRR为60dB,静态电流6μA,电压降只有100mV。LDO线性稳压器的性能之所以能够达到这个水平,主要原因在于其中的调整管是用P沟道MOSFET,而普通的线性稳压器是使用PNP晶体管。P沟道MOSFET是电压驱动的,不需要电流,所以大大降低了器件本身消耗的电流;另一方面,采用PNP晶体管的电路中,为了防止PNP晶体管进入饱和状态而降低输出能力, 输入和输出之间的电压降不可以太低;而P沟道MOSFET上的电压降大致等于输出电流与导通电阻的乘积。由於MOSFET的导通电阻很小,因而它上面的电压降非常低。 如果输入电压和输出电压很接近,最好是选用LDO稳压器,可达到很高的效率。所以,在把锂离子电池电压转换为3V输出电压的应用中大多选用LDO稳压器。虽说电池的能量最後有百分之十是没有使用,LDO稳压器仍然能够保证电池的工作时间较长,同时噪音较低。 如果输入电压和输出电压不是很接近,就要考虑用开关型的DCDC了,应为从上面的原理可以知道,LDO的输入电流基本上是等于输出电流的,如果压降太大,耗在LDO上能量太大,效率不高。 DC-DC转换器包括升压、降压、升/降压和反相等电路。DC-DC转换器的优点是效率高、可以输出大电流、静态电流小。随著集成度的提高,许多新型DC-DC转换器仅需要几只外接电感器和滤波电容器。但是,这类电源控制器的输出脉动和开关噪音较大、成本相对较高。 近几年来,随著半导体技术的发展,表面贴装的电感器、电容器、以及高集成度的电源控制芯片的成本不断降低,体积越来越小。由於出现了导通电阻很小的MOSFET可以输出很大功率,因而不需要外部的大功率FET。例如对于3V的输入电压,利用芯片上的NFET可以得到5V/2A的输出。其次,对于中小功率的应用,可以使用成本低小型封装。另外,如果开关频率提高到1MHz,还能够降低成本、可以使用尺寸较小的电感器和电容器。有些新器件还增加许多新功能,如软启动、限流、PFM或者PWM方式选择等。 总的来说,升压是一定要选DCDC的,降压,是选择DCDC还是LDO,要在成本,效率,噪声和性能上比较。 LDO体积小,干扰较小,当输入与输出电压差较大的化,转换效率低。 DC-DC好处就是转换效率高,可以大电流,但输出干扰较大,体积也相对较大。 LDO一般是指线性的稳压器--Low Drop Out, 而DC/DC则是线性式和开关式稳压器的总称。 如果你的输出电流不是很大(如3A以内), 而且输入输出压差也不大(如3.3V转2.5V等)就可以使用LDO的稳压器(优点是输出电压的ripple很小)。 否则最好用开关式的稳压器, 如果是升压, 也只能用开关式稳压器(如果ripple控制不好,容易影响系统工作)。 LDO的选择 当所设计的电路对分路电源有以下要求: 1、高的噪音和纹波抑制; 2、占用PCB板面积小,如手机等手持电子产品; 3、电路电源不允许使用电感器,如手机; 4、电源需要具有瞬时校准和输出状态自检功能; 5、要求稳压器低压降,自身功耗低; 6、要求线路成本低和方案简单; 此时,选用LDO是最恰当的选择,同时满足产品设计的各种要求。以上就是电源芯片的选择方法,希望能给大家帮助,需要大家在设计的时候,根据项目的不同来选择。

    时间:2020-11-03 关键词: ldo DC-DC 电源芯片

  • 关于开关电源芯片PN8368的一些特点分析

    你知道开关电源芯片吗?关于开关电源芯片的一些产品,你知道几个?开关电源芯片PN8368是一款应用于5-12W以内AC/DC超低待机功耗准谐振原边反馈交直流转换器,内部集成超低待机功耗准谐振原边控制器及650V高雪崩能力智能功率MOSFET,恒压控制模式采用多模式控制方式,合理的兼容了芯片的高性能、高精度和高效率。 在全电压交流输入范围内,采用独有的自适应补偿专利技术,输出过功率保护电具有很高的一致性,同时在通过内置的线损补偿电路保证了较高的输出电压精度。 电源芯片PN8368功能特点 1、内置650V高雪崩能力智能功率MOSFET 2、内置高压启动电路,小于30mW空载损耗(230VAC) 3、采用准谐振与多模式技术提高效率,满足6级能效标准 4、全电压输入范围±5%的CC/CV精度 5、原边反馈可省光耦和TL431 6、恒压、恒流、输出线补偿外部可调 7、无需额外补偿电容 8、无音频噪声 9、智能保护功能。以上激素开关电源芯片PN8368的一些功能特点分析,希望能给设计中的设计人员在选择的时候提供一定的参考意见。

    时间:2020-11-02 关键词: 开关电源 pn8368 电源芯片

  • LDO和DC-DC有什么不同?

    关注+星标公众号,不错过精彩内容 转自:记得诚电子设计 DC-DC和LDO都是电源芯片,两者差异很大,用法也不同,这篇博客讲述LDO和DC-DC的一些差异,帮助更好的认识LDO和DC-DC并进行选型。 1. LDO是什么 LDO是low dropout regulator的简称,即低压差线性稳压器,这是相对于传统的线性稳压器来说的,传统的稳压器,输入比输出要高出很多,否则无法工作,LDO可能输入比输出高1~2V即可。 LDO低压差,主要是内部使用PMOS管,普通的线性稳压器使用的是PNP三极管,PMOS是电压驱动,无需电流,大大减少LDO本身消耗的电流;普通的稳压器为了防止PNP三极管进入饱和状态而降低输出能力,所以输入输出压降不能太低,而PMOS管的导通内阻很小,导通压降等于导通内阻乘以输出电流,所以导通压降很低。 2. LDO典型电路 现在的LDO集成度高,一般只需要2个电容(一般是2个1uF)和一个LDO芯片即可,电路简单。 3. DC-DC是什么 DC-DC是一种在直流电路中将一个电压值的电能变为另一个电压值的电能的装置,严格意义上LDO也是一种DC-DC,在电源芯片选型中,LDO和DC-DC则是两种完全不同的芯片。 DC-DC包括三种类型:BUCK(降压)、BOOST(升压)、BUCK/BOOST(升降压)。 4. DC-DC典型电路 一个典型的DC-DC BUCK电路,包括输入输出电容,FREQ频率设置,EN使能管脚,FB反馈电阻,SW上加续流二极管和电感,BST电容,COMP频率补偿等。 5. LDO和DC-DC区别 从上面的一些描述中,可以大致得出LDO和DC-DC的区别,请拿小本本记好: LDO外围器件少,电路简单,成本低;DC-DC外围器件多,电路复杂,成本高; LDO负载响应快,输出纹波小;DC-DC负载响应比LDO慢,输出纹波大; LDO效率低,输入输出压差不能太大;DC-DC效率高,输入电压范围宽泛; LDO只能降压;DC-DC支持降压和升压; LDO和DC-DC的静态电流都小,根据具体的芯片来看; LDO输出电流有限,最高可能就几A,且达到最高输出和输入输出电压都有关系;DC-DC输出电流高,功率大; LDO噪声小;DC-DC开关噪声大,为了提高开关DC-DC的精度,很多应用会在DC-DC后端接LDO; LDO分为可调和固定型;DC-DC一般都是可调型,通过FB反馈电阻调节; 关于DC-DC后面接LDO:LDO有一个参数电源纹波抑制比PSRR,这个参数越大越好,代表抑制输入纹波的能力越强,一般SPEC给出的是1KHz下的值,如:68dB@F=1KHz,LDO的最大的优点之一是它们能够衰减开关模式电源产生的电压纹波,所以一般在100K到1MHz之间的PSRR非常重要,这也是为什么我们经常看见DC-DC后面搭配一个LDO使用,敏感的模拟电源AVDD上,如ADC,Camera等,选择高PSRR的LDO; 6. 小结一下 了解了LDO和DC-DC的区别之后,能很好的进行选择,比如:输入输出压差大,选择DC-DC;降压型且输入输出压差小,选择LDO;需要很大的输出电流选择DC-DC,升压只能选择DC-DC等。 推荐阅读: C++中字符编码的转换 什么是Cortex-M内核的MPU ELF相比Hex、Bin文件格式有哪些与众不同? 关注 微信公众号『strongerHuang』,后台回复“1024”查看更多内容,回复“加群”按规则加入技术交流群。 长按前往图中包含的公众号关注 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-10-22 关键词: 电路图 电源芯片

  • PCB电源设计中的注意事项

    目前随着科技产品更新的飞速发展,电源产品的 PCB 设计面临着更大的挑战,主要包括电源转换效率、热分析、电源平面完整性和 EMI(电磁干扰)等。 随着行业应用日趋广泛多元,电源产品也不断向高频、高效、高密度化、低压、大电流化和多元化方向发展。同时,电源产品的封装结构、外形尺寸也日趋标准化,以适应全球一体化市场的要求。 首先是电源转换效率。转换效率是指电源的输出功率与实际消耗的输入功率之比,在实际应用中,电能不能完全转化,中间会有一定的能量消耗,所以,无论哪种电路,在电源转换中必然存在效率问题。对于线性电源,需要考虑 LDO 的散热问题;对于开关电源,要考虑开关管的损耗问题。 其次,有能量损耗就必然会产生热量,这就涉及到散热的问题。除此之外,随着负载变重,促使电源芯片的功耗加大,所以,在电源设计中热分布是个不得不考虑的问题。 再者是电源平面完整性设计。保持电源的完整性,就是保持电源的稳定供电。在实际系统中,总是存在不同频率的噪声。比如 PWM 的固有频率或 PFM 可变频率控制信号,快速的 di/dt 会产生电流波动的信号,所以一个低阻抗的电源平面设计是必要的。 最后是 EMI(电磁干扰)问题。开关电源在不断的开和关就会产生开关噪声,如果在设计过程中没有考虑回路电感问题,过大的回流路径会产生 EMI 问题。 业界一直寻求能提高电源 PCB 设计成功率的方法。经验表明,在设计过程中,如果能提前预知可能的风险并规避,成功率将会大幅度提高。由此,选择一款合适的设计仿真工具就显得尤为重要。

    时间:2020-10-19 关键词: 电源 pwm pcb设计 电源芯片

  • 你需要了解一下恒流 LED 的电源是如何工作的?

    在私下经常有小伙伴说产品有时会有不稳压的问题,几乎把所有零件换了都没法修好,结果发现是 PCB 布线时出了问题,硬件工程师将功率地线和信号地线走线时离得太近,由于功率地线有大电流通过,会被引入信号端,影响到芯片的输出端,从而影响到产品的稳压性能,想要了解一下恒流 LED 的电源是如何工作的; 经过同意,晒出线路图如下所示: 据留言,这个是 14W 的恒流 LED 驱动电路,当输出电压小于 20V 时开始进入恒流状态,电流稳定在 0.73~0.74 之间,达到恒流目的;我们可以从上图中看到,输入电压 Ui=195~265V 的宽电压,根据留言,我们可以得到输出电压 Uo=20V;输出电流 Io=0.7A。 然后我上网查找了电源芯片的具体参数及推荐线路,得知电源效率 n=86%;空载功耗 Po<250mV。 线路工作原理:线路主要通过检测 R7 上电流形成的压降来实现恒流特性。图中将 LM431 的基准端与阴极 K 互相短接,那么阴极就相当于输出固定的 2.5V 基准电压,这个电压经过 R5、R6 和 R8 进行分压后,获得一个大约 0.07V 左右的参考电压,这个电压加至运算放大器的反向输入端;当通过 R7 的电流 Io 达到 0.7A 时,我们可以根据欧姆定律得到 R7 上的电压 Ur7=0.07V;当电流大于 0.7A 后时,产品进入恒流区,此时 Ur7>0.07V;那么放大器 LM321 的同向输入端大于反向输入端,输出电压升高,VD4 因被正向偏置而导通,通过 VD4 驱动 VT 的基极;将芯片的 EN/UV 端电压拉低。当 EN/UV 脚电流大于 115uA 后,芯片内部的 MOS 就会被禁止工作,那么电流反馈环路就可以实现恒流控制。 值得注意的是 VD1 在选用时要使用快恢复二极管,而不使用超快恢复二极管,是利用快恢复二极管的恢复时间较快恢复二极管而言会长一点的特性来提高电源的效率。

    时间:2020-10-19 关键词: 二极管 电源 恒流led 电源芯片

  • 为什么要重视电源噪声问题?电源噪声产生的因素有哪些?

    在电源管理设计中,是否应该重视电源噪声问题,电源噪声产生的原因是什么? 1.为什么要重视电源噪声问题 芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数量越来越大。芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。 对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。 除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。比如电源噪声会影响晶振、PLL、DLL 的抖动特性,AD 转换电路的转换精度等。解释这些问题需要非常长的篇幅,本文不做进一步介绍,我会在后续文章中详细讲解。 由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。 2. 电源系统噪声余量分析 绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。例如:对于 3.3V 电压,为满足芯片正常工作,供电电压在 3.13V 到 3.47V 之间,或 3.3V±165mV。对于 1.2V 电压,为满足芯片正常工作,供电电压在 1.14V 到 1.26V 之间,或 1.2V±60mV。这些限制可以在芯片 datasheet 中的 recommended operating conditions 部分查到。这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。老式的稳压芯片的输出电压精度通常是±2.5%,因此电源噪声的峰值幅度不应超过±2.5%。当然随着芯片工艺的提高,现代的稳压芯片直流精度更高,可能会达到±1%以下,TI 公司的开关电源芯片 TPS54310 精度可达±1%,线性稳压源 AMS1117 可达±0.2%。但是要记住,达到这样的精度是有条件的,包括负载情况,工作温度等限制。因此可靠的设计还是以±2.5%这个值更把握些。如果你能确保所用的芯片安装到电路板上后能达到更高的稳压精度,那么你可以为你的这款设计单独进行噪声余量计算。本文着重电源部分设计的原理说明,电源噪声余量将使用±2.5%这个值。 电源噪声余量计算非常简单,方法如下: 比如芯片正常工作电压范围为 3.13V 到 3.47V 之间,稳压芯片标称输出 3.3V。安装到电路板上后,稳压芯片输出 3.36V。那么容许电压变化范围为 3.47-3.36=0.11V=110mV。稳压芯片输出精度±1%,即±3.363*1%=±33.6 mV。电源噪声余量为 110-33.6=76.4 mV。 计算很简单,但是要注意四个问题: 第一,稳压芯片输出电压能精确的定在 3.3V 么?外围器件如电阻电容电感的参数也不是精确的,这对稳压芯片的输出电压有影响,所以这里用了 3.36V 这个值。在安装到电路板上之前,你不可能预测到准确的输出电压值。 第二,工作环境是否符合稳压芯片手册上的推荐环境?器件老化后参数还会和芯片手册上的一致么? 第三,负载情况怎样?这对稳压芯片的输出电压也有影响。 第四,电源噪声最终会影响到信号质量。而信号上的噪声来源不仅仅是电源噪声,反射串扰等信号完整性问题也会在信号上叠加噪声,不能把所有噪声余量都分配给电源系统。所以,在设计电源噪声余量的时候要留有余地。 另一个重要问题是:不同电压等级,对电源噪声余量要求不一样,按±2.5%计算的话,1.2V 电压等级的噪声余量只有 30mV。这是一个很苛刻的限制,设计的时候要谨慎些。模拟电路对电源的要求更高。电源噪声影响时钟系统,可能会引起时序匹配问题。因此必须重视电源噪声问题。 3. 电源系统的噪声来源有三个方面: 第一,稳压电源芯片本身的输出并不是恒定的,会有一定的波纹。这是由稳压芯片自身决定的,一旦选好了稳压电源芯片,对这部分噪声我们只能接受,无法控制。 第二,稳压电源无法实时响应负载对于电流需求的快速变化。稳压电源芯片通过感知其输出电压的变化,调整其输出电流,从而把输出电压调整回额定输出值。多数常用的稳压源调整电压的时间在毫秒到微秒量级。因此,对于负载电流变化频率在直流到几百 KHz 之间时,稳压源可以很好的做出调整,保持输出电压的稳定。当负载瞬态电流变化频率超出这一范围时,稳压源的电压输出会出现跌落,从而产生电源噪声。现在,微处理器的内核及外设的时钟频率已经超过了 600 兆赫兹,内部晶体管电平转换时间下降到 800 皮秒以下。这要求电源分配系统必须在直流到 1GHz 范围内都能快速响应负载电流的变化,但现有稳压电源芯片不可能满足这一苛刻要求。我们只能用其他方法补偿稳压源这一不足,这涉及到后面要讲的电源去耦。 第三,负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降。PCB 板上任何电气路径不可避免的会存在阻抗,不论是完整的电源平面还是电源引线。对于多层板,通常提供一个完整的电源平面和地平面,稳压电源输出首先接入电源平面,供电电流流经电源平面,到达负载电源引脚。地路径和电源路径类似,只不过电流路径变成了地平面。完整平面的阻抗很低,但确实存在。如果不使用平面而使用引线,那么路径上的阻抗会更高。另外,引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产生压降,因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声。

    时间:2020-09-28 关键词: 稳压电源 电源噪声 电源芯片

  • 将TNY279 电源芯片作为开关电源的控制芯片,效果如何?

    本文设计了一种基于TNY279 的大功率LED驱动电源电路,分析了其工作原理和设计方法,反馈环节采用恒压恒流双环的设计,保证输出电压和输出电流的恒定,同时在开环故障下能够自动关闭,保护负载,有效的减少了对LED 光源的损害,提高LED 的使用寿命。同时转换效率也在83%以上,并满足国际标准中对谐波含量的要求。经验证电路能够输出预期的效果。 LED光源作为一种新型绿色光源,由于其具有耗电量低、寿命长、反应速度快、高效节能等优点,已被越来越广泛的应用。在同样亮度下,LED 光源耗电量仅为普通白炽灯的十分之一,而寿命却可以延长100 倍。但其寿命很大程度上决定于驱动电源,因此一种可靠的、转换效率高的、寿命长的LED 驱动电源对于LED 光源至关重要。 下文一种LED 光源驱动电路,介绍了设计原理和方法,采用电压和电流双环反馈,能够输出恒定的电压和电流,并且具有开环保护负载的功能,能有效提高LED 光源的使用寿命。 1 芯片介绍 本设计采用TNY279 电源芯片作为开关电源的控制芯片,TNY279 电源芯片在一个器件上集成了一个700V 高压MOSFET 开关和一个电源控制器,与普通的PWM 控制器不同,它使用简单的开/关控制方式来稳定输出电压。控制器包括一个振荡器、使能电路、限流状态调节器、5.8V 稳压器、欠电压即过电压电路、限流选择电路、过热保护、电流限流保护、前沿消隐电路。该芯片具有自动重启、自动调整开关周期导通时间及频率抖动等功能。 2 电路的工作原理分析 电源的核心部分采用反激式变换器,结构简单,易于实现。整体设计电路图如图1。 2.1 输入整流滤波电路 考虑到成本、体积等因素,改善谐波采用无源功率因数校正电路,主要是通过改善输入整流滤波电容的导通角方式来实现。具体方法是在交流进线端和整流桥之间串联电感,如图1 所示C1、C2、L1、L2 组成一个π 型电磁干扰滤波器,并使用填谷电路填平电路,减小总谐波失真。填谷电路由D1、D2、、D3、C3、C4、R3 组成,限制50Hz 交流电流的3 次谐波和5 次谐波。 经整流及滤波的直流输入电压被加到T1 的初级绕组上。U1(TNY279)中集成的MOSFET 驱动变压器初级的另一侧。二极管D4、C5、R6 组成钳位电路,将漏极的漏感关断电压尖峰控制在安全值范围以内。齐纳二极管箝位及并联RC 的结合使用不但优化了EMI,而且更有效率。 2.2 高频变压器设计 TNY279 完全可以自供电的,但是使用偏置绕组,可以实现输出过压保护,在反馈出现开环故障时能够保护负载,有效地减少对LED 光源的产生的损害,在本设计中采用偏置绕组,如图1,同时可由更低的偏置电压向芯片供电,抑制了内部高压电流源供电,在空载时功耗可降低到40MW 以下。Y 电容可降低电磁干扰。 2.3 反馈电路设计 次级采用恒流恒压双环控制。NCS1002 是一款恒流恒压次级端控制器。如图2 所示,它的内部集成了一个2.5V 的基准和两个高精度的运放。 图2 NCS1002 芯片内部结构 电压基准和运放1 是电压控制环路的核心。运放2 则是一个独立运放,用于电流控制。在本设计中,电压控制环路用于保证输出电压的稳定,电流反馈控制环路检测LED 平均电流,即电路中R17 上的电流,将其转换成电压和2.5V基准比较,并将误差反馈到TNY279 中来调整导通。 具体的工作原理是:NCS1002 调节输出的电压值,当输出电压超过设定电压值时,电流流向光耦LED,从而下拉光耦中晶体管的电流。当电流超过TNY279 的使能引脚的阈值电流时,将抑制下一个周期,当下降的电压小于反馈阈值时,会使能一个开关周期,通过调节使能周期的数量,对输出电压进行调节,同样,当通过检测到R16上的电流即输出电流大于设定的值时,电流通过另一个二极管下拉光耦LED 中晶体管的电流,达到抑制TNY279 的下一个周期的目的,当输出电流小于设定电流时会使能一个开关周期,通过这样的反馈调节机制,能使得输出的电压和电流都处于稳定的状态。 当反馈电路出现故障时,即在开环故障时,偏置电压超过D9 与旁路/多功能引脚电压时,电流流向BP/M 引脚。当此电流超过ISD(关断电流)时TNY279 的内部锁存关断电路将被激活,从而保护负载。由于使用了偏置绕组将电流送入BP/M引脚,抑制了内部高电压电流源,这样的连接方式将265VAC 输入时的空载功耗降低到40MW有效的降低功耗。 3 电路的参数 3.1 输入输出参数 输入电压(AC): 85~265 V 频率:50Hz 输出电压: 12V 输出电流:1.67A 输出功率:20W 3.2 变压器参数计算 在最低电网电压为85V 时,最小的直流输入电压V MIN ,可通过下式计算: 式中,ACMIN ,PK V 是最小输入电压的峰值,W IN 是电容的放电能量,其中: 放电能量IN W 等于需要的峰值输出功率OPK P 和放电时间/ 2tLT的乘积: 式中, c t 为整流二极管的导通时间,假设为3 ms,L T 为20 ms,η 为转换效率。计算得IN V 大约为88 V。 在设计变压器时,考虑到开关电源在整个范围内其磁通是不连续的。在最小输入电压时的最大占空比为 DMAX = 0.5。 初级感应电动势R V 是通过初级线圈的次级电压的感应值,可以由下式计算: VDS可以忽略,则VR=88V。 初级电流的最大峰值PKMAX I 和最大输出功率POMAX 成正比: 可计算得IPKMAX =1.16A。 初级电感L1的计算。初级电感可以由回扫变压器的能量方程确定: 开关频率大约132 kHz,所以计算得L1 = 891μH。 在不连续模式下,磁芯最大磁通密度通常受磁芯损耗的限制,为了使磁芯损耗保持在可接受的范围内,对于本设计采用EF25 的磁芯,选择BMAX= 0.4 特斯拉来计算初级线圈的匝数N1。 式中, MIN A 是磁芯的最小横截面积。对于EF25,AMIN = 52.5 mm2,N1 = 85。 同样根据设计要求计算得: 次级N2 = 8,采用两个并联绕组;偏置绕组N3 = 9,采用两个并联绕组。 3.3 变压器的绕制 初级绕组以引脚2 作为起始引脚,绕85 圈(x1 线),在2 层中从左向右。 在第1 层结束时,继续从右向左绕下一层。在最后一层上,使绕组均匀分布在整个骨架上。 以引脚1 作为结束引脚,添加1 层胶带以进行绝缘。 偏置绕组以引脚4 作为起始引脚,绕9 圈(x 2线)。沿与初级绕组相同的旋转方向进行绕制。使绕组均匀分布在整个骨架上。 以引脚3 作为结束引脚,添加3 层胶带以进行绝缘。 次级绕组以引脚7 作为起始引脚,绕8 圈(x 2线)。 使绕组均匀分布在整个骨架上。沿与初级绕组相同的旋转方向进行绕制。以引脚6 作为结束引脚,添加2 层胶带以进行绝缘。

    时间:2020-09-14 关键词: 电源芯片

  • 富士通半导体在便携设备的电源管理方面设计方案

      上海,2012年7月23日 – 富士通半导体(上海)有限公司今日宣布推出面向便携设备的DC-DC转换器MB39C326,可通过自动切换降压/升压工作模式来扩大工作电压范围。MB39C326通过内置开关FET和采用2.15mm&TImes;1.94mm的小型封装构成贴装面积小、物料清单成本低的电源系统,且可通过DAC信号动态控制输出电压,支持APT、ET功能。目前,MB39C326已进入量产阶段。   随着便携式设备产品市场的急速扩张,不断对产品在性能、功能等方面提出新的要求。如何以卓越的性能实现丰富的功能以吸引更多的消费者,同时降低设备功耗、尺寸和成本,延长电池使用寿命等诸多难题,成为许多便携式设备供应商积极思考的问题。   根据市场需求,富士通半导体此次面向便携设备推出的MB39C326是一款效率高、噪声低的同步降压/升压DC/DC转换器,针对使用单节锂离子电池的移动设备所设计开发。该产品支持APT、ET功能,在3G/4G应用中,可大幅提高PA工作效率,帮助PA节电40%以上。与传统转换器2~3MHz的开关频率相比,该产品的开关频率为6MHz,能够使用更小的电感器,从而将电源管理电路的电路板总空间缩小一半。此外,该产品通过独特的降压/升压电路,可根据输入电压自动切换降压/升压操作。当锂离子电池电压改变时,MB39C326可为便携设备提供稳定的电压,并能有效利用锂离子电池的剩电量延长驱动时间。   该款新品可主要应用于主要便携设备包括移动电话、智能手机、电子书终端、PDA等,也可用于使用单节锂离子电池的产品,也可用于RF功率放大器(PA)及RF-PC卡。   MB39C326采用WL-CSP小型封装(2.15mm&TImes;1.94mm&TImes;0.625mm),20引脚,最大效率达到93%。其输入电压范围为2.5V~5.5V,输出电压范围为0.4V~5.0V(在反馈电阻上增加1个电阻,通过DAC信号输入可实现输出电压的任意改变)。最大输出电流可达到1200mA(降压时)。   产品特点   1. 通过PFM/PWM自动切换模式实现高效率   DC/DC电路采用PFM/PWM自动切换(省电)模式,可在轻负载时提高效率。将XPS端子设为高电平,可选择PWM固定模式。   2. 丰富的保护功能   过电流保护(OCP)、过温保护(OTP)、欠压锁定(UVLO)、软启动等功能。   3. 输出电压设定功能   • 通过FB分离电阻设定输出电压(输出为固定值)   • 通过VSELSW端子设定输出电压(输出为2值可选)   • 通过VSEL端子的信号输入输出设定电压可在2个值之间切换   • 通过信号输入设定输出电压(输出值可任意设定)   • 通过DAC信号设定输出电压,可实现输出电压的任意改变   为了更好的响应市场需求,实现系统的小型化,富士通半导体未来还计划进一步开发高开关频率的DC/DC转换器。除此以外,为提高RF-PA部分的电力效率,也计划推出包含转发器和PA在内的集成RF系统。

    时间:2020-09-08 关键词: 电源管理芯片 mb39c326 电源芯片

  • TI推出首款宽泛输入电压高功率LED驱动 支援多重调光控制模式

      德州仪器 (TI) 宣佈推出一款可为高功率应用实现动态余量控制 (dynamic headroom control) 的六通道LED驱动器,可準确高效地驱动多达六串LED 。该 LM3463 是业界首款支援多重调光控制模式的宽泛输入电压 LED 驱动器,可大幅提高系统效率,降低LED 照明设计复杂度,如路灯、天井灯 (high bay lighTIng) 及天花板照明 (ceiling lighTIng) 等应用。   LM3463 是一款 12V 至 95V 宽泛输入电压六通道 LED 电流控制器,可为每一灯串驱动多达 28 个 LED,由外部微控制器透过调光输入接脚控制调光。配合外部 N 通道 MOSFET 及感测电阻,能够準确地为个别 LED 灯串调节电流。动态余量控制可自动地将 LED 电源调节至电流传导所需的最低标準,因而可提高系统效率。帮助减少元件数量,提高系统效率,同时降低系统复杂度与成本。   LM3463 属于 TI LED 驱动器系列,该系列包括四通道 LM3464 与八通道 TLC5960。   LM3463 LED 驱动器主要特性与优势:   • 三种调光模式可简化通用控制系统运作,包含 PWM 输入讯号、类比至 PWM 输入控制或 4 位元组资料代码需求;   • 全域类比亮度控制可独立于调光控制模式运作,还可用于过热保护 (thermal foldback) ,避免 LED 灯串过热;   • 多颗 LM3463 LED 驱动器能够以主从配置 (master-slave configuration) 串联,满足超过 6 串 LED 灯串运作的应用需求;   • 保护特性包括输入欠压锁定 (under-voltage lock-out)、LED 断路 (open circuit) /短路、MOSFET 过热保护及过热关断等。故障输出讯号通知系统控制器 LED 串断路问题。   採用7mm×7mm、48接脚LLP封装的LM3463现已开始量产,可透过 TI 及其授权通路订购,每千颗单位建议售价为4.19 美元。

    时间:2020-09-07 关键词: LED驱动 ti公司 多重调光 电源芯片

  • Toshiba推车用低导通电阻功率MOSFET

      东芝公司(Toshiba CorporaTIon)推出了一种低导通电阻功率MOSFET,该产品也成为其专为汽车应用打造的TO-220SIS封装系列中的最新成员。新产品“TK80A04K3L”还实现了低漏电电流和175℃的保证工作温度。该产品不但非常适用于汽车应用,还适用于电机驱动器和开关稳压器。      主要特性   1. 低导通电阻 (VGS=10V) ,RDS(ON)=1.9mΩ(标准值)   2. 低漏电电流IDSS=10μA(最大值) (VDS=额定电压)   3. 通道温度=175℃保证工作温度   4. 引线插入类型TO-220SIS封装   封装图示

    时间:2020-09-06 关键词: 东芝 MOSFET 汽车芯片 电源芯片

  • 线性驱动电源芯片改变未来

      物联网行业发展前景分析   物联网一方面可以提高经济效益,大大节约成本;另一方面可以为全球经济的复苏提供技术动力。目前,美国、欧盟、中国等都在投入巨资深入研究探索物联网。我国也正在高度关注、重视物联网的研究,工业和信息化部会同有关部门,在新一代信息技术方面正在开展研究,以形成支持新一代信息技术发展的政策措施。   在“物联网”普及以后,用于动物、植物和机器、物品的传感器与电子标签及配套的接口装置的数量将大大超过手机的数量。物联网的推广将会成为推进经济发展的又一个驱动器,为产业开拓了又一个潜力无穷的发展机会。按照目前对物联网的需求,在近年内就需要按亿计的传感器和电子标签,这将大大推进信息技术元件的生产,同时增加大量的就业机会。   2011年以来,除去上海、苏州两地,海南、广东、武汉等省市也相继开展了物联网应用领域的研究与实践,我国物联网产业已进入了“百花齐放”的“应用启动”阶段。   从各省市实践可以看出,目前参与推进我国物联网产业化的主体呈现多元化趋势,既有地方政府、通信管理局,也有地方运营商、学术研究机构,而不同主体的组合也形成了不同的物联网中心或机构。以苏州、上海中心为例,其背后的支撑主体不尽相同,苏州的物联网应用中心主要由当地政府和中国移动牵头合作成立,而上海物联网中心则依托于上海嘉定区和中科院上海微系统与信息技术研究所。   物联网分为底层传感网、中层通信网、上层智能处理网络等不同层次,中科院等研究机构和政府合作的中心可能更偏重于底层传感网的研究,而运营商和政府的合作则更关注于物联网的中、上层领域。”   不同主体推动,不仅不会矛盾,反而形成互补,上海的物联网中心主要围绕传感网,而苏州的应用中心则以运营商的运营平台为核心,前者的研究成果后期仍要借助于运营商的网络和系统,其实是一种互补的关系。   前瞻产业研究院发布的《中国物联网行业“十三五”市场前瞻与发展规划分析报告》指出,在我国目前物联网需要的自动控制、信息传感、射频识别等上游技术和产业都已成熟或基本成熟,而下游的应用也已广泛存在。而且我国物联网产业也呈现电信运营商、高校、科研机构、传感器企业、系统集成、应用软件开发等环节迅速聚合联动之势,我国物联网产业链条已经初步形成,物联网时代即将来临。   未来十年,物联网技术将围绕物品识别、传感和传动、网络通信、数据存储和处理、智能物体等技术产生庞大产业群,同时将被广泛应用到零售、物流、医药、食品、智能建筑、交通、公共安全、城市管理、政府工作等不同行业和经济领域。   物联网行业发展方向分析   前瞻产业研究院发布的《中国物联网行业“十三五”市场前瞻与发展规划分析报告》指出,未来,物联网将朝着规模化、协同化和智能化方向发展,同时以物联网应用带动物联网产业将是全球各国的主要发展方向。   规模化发展:随着世界各国对物联网技术、标准和应用的不断推进,物联网在各行业领域中的规模将逐步扩大,尤其是一些政府推动的国家性项目,如美国智能电网、日本i-Japan、韩国物联网先导应用工程等,将吸引大批有实力的企业进入物联网领域,大大推进物联网应用进程,为扩大物联网产业规模产生巨大作用。   协同化发展:随着产业和标准的不断完善,物联网将朝协同化方向发展,形成不同物体间、不同企业间、不同行业乃至不同地区或国家间的物联网信息的互联互通互操作,应用模式从闭环走向开环,最终形成可服务于不同行业和领域的全球化物联网应用体系。   协同化发展:随着产业和标准的不断完善,物联网将朝协同化方向发展,形成不同物体间、不同企业间、不同行业乃至不同地区或国家间的物联网信息的互联互通互操作,应用模式从闭环走向开环,最终形成可服务于不同行业和领域的全球化物联网应用体系。   智能化发展:物联网将从目前简单的物体识别和信息采集,走向真正意义上的物联网,实时感知、网络交互和应用平台可控可用,实现信息在真实世界和虚拟空间之间的智能化流动。

    时间:2020-08-26 关键词: 线性驱动 led灯丝灯 电源芯片

  • iPhone 12不标配充电器:这24家快充电源芯片企业要赚翻

    距离苹果新机发布的时间越来越近,iPhone12不再标配充电器的消息也不胫而走。 消息一出,便在快充行业中引起不小的轰动,如果iPhone12新机取消标配充电器,势必将产生一个巨大的市场缺口,给整个快充行业上下游产业链带来极大利好。 爆料信息显示,在iPhone12取消标配充电器之后,手机包装盒的厚度将缩减为现有的一半,变得更加轻薄。 包装盒的内衬也将仅仅保留数据线位置,不再预留充电器的空间。 可以预见,在iPhone12取消标配充电器之后,市面上第三方USB PD快充充电器,尤其是入门级别的18W PD充电器,将进入销售的旺季,而作为18W PD快充的灵魂,内置MOS的快充电源芯片也将随之迎来出货的高光时刻。 通过拆解市面上热门的60余款18W PD快充充电器了解到,各大快充厂商往往更倾向于选择内置MOS的高集成电源方案,以此减少产品PCBA上元器件数量,降低系统成本、缩短产品开发周期、加速产品上市,抢占市场。 为了帮助广大工程师和快充厂商进行方案选型,我们统计汇总了一份适用于18W PD快充的高性价比电源方案列表,并整理了相关的方案的应用案例。 据充不完全统计,目前已有PI、东科、芯茂微、芯朋、美思迪赛、茂睿芯、硅动力等24家芯片品牌推出了116款内置MOS的电源芯片,包括内置MOS的初级芯片53款,以及内置MOS的次级芯片63款。下面就为大家分享各款芯片的应用案例。 AOS万国半导体 初级芯片: 1、AOS万国半导体AOZ7635 AOS万国半导体AOZ7635集成控制器和初级开关管,内置开关管导阻0.9Ω,耐压700V,内置逐周期电流限制,内建多重保护功能,采用增强散热的17-pin 6 x 6 QFN封装。 次级芯片: 1、AOS万国半导体AOZ7635 AOS万国半导体AOZ7648集成同步整流控制器和同步整流管,及反馈控制等多种保护功能。内置9mΩ低导阻 NMOS管用于同步整流,采用增强散热的38-pin 6×6 QFN封装。这款次级反馈IC并未采用常见的光耦反馈,而是采用了更加可靠的磁耦合传输技术,与Y电容平行的小板就是一个平板变压器。 APD SEMI矽力科技 初级芯片: 1、APD SEMI矽力科技AP205B 矽力科技AP205B是一款内置MOS外围简单高效的AC-DC芯片,有恒功率和恒压两种模式选择,2.4ohm,1.8ohm,0.9ohm三种内置mos供选择,很好的EMC特性,高压和低压的OCP一致性非常好,50mW以内的超低待机功耗,轻松通过欧洲六级能效,完美的保护功能。 次级芯片: 1、APD SEMI矽力科技AP405B 矽力科技AP405B是一款内置MOS外围简单高效的SR同步整流芯片,支持三种模式工作CCM/DCM/QR,无需辅助绕组,芯片高压自供电技术,使得AP405B完美支持输出电压低到3v,内置mos的驱动电压始终维持在9v,确保高效率工作, 外围最简单,可以正端接法或负端接法,外围仅需一个0.22uF电容,完美的保护功能,目前已经被飞利浦等很多品牌客户认可和量产。 CHIPHOPE芯茂微电子 次级芯片: 1、CHIPHOPE芯茂微电子LP20R100S Chip-hop芯茂微的高性能副边同步整流驱动芯片LP20R100S,这款芯片适用于AC-DC的同步整流应用,适用于正激系统和反激系统,此外支持DCM,BCM,QR,和CCM多种工作模式,耐压100V,芯片内集成VCC供电。 Chipown芯朋微电子 初级芯片: 1、Chipown芯朋PN8160 PWM主控芯片采用的是芯朋微电子的PN8160,内部集成了电流模式控制器和功率MOSFET,专用于高性能、外围元器件精简的交直流转换开关电源。需要超低待机功耗的高性价比反激式开关电源系统提供了一个先进的实现平台,非常适合六级能效、CoC Tier 2应用,PCB背面露铜帮助散热。 2、Chipown芯朋PN8161 芯朋PN8161内部集成了准谐振工作的电流模式控制器和功率MOSFET,专用于高性能、外围元器件精简的交直流转换开关电源。该芯片提供了极为全面和性能优异的智能化保护功能,包括输出过压保护、逐周期过流保护、过载保护、软启动功能。 芯朋PN8161通过QR-PWM、QR-PFM、Burst-mode的三种模式混合调制技术和特殊器件低功耗结构技术实现了超低的待机功耗、全电压范围下的最佳效率。频率调制技术和SoftDriver技术充分保证良好的EMI表现。 次级芯片: 1、Chipown芯朋PN8307H 芯朋PN8307H内置同步整流控制器及高雪崩能力功率MOSFET,用于在高性能AC/DC反激系统中替代次级整流肖特基二极管,电压降极低的功率MOSFET可以提高电流输出能力,提升转换效率,使得系统效率可以满足6级能效的标准,并留有足够的裕量。 芯朋PN8307H内置12mΩ60V耐压同步整流管,适用3.6V-20V常用适配器输出,适用于QC3.0适配器及其他固定电压输出的适配器。该芯片还集成了极为全面的辅助功能,包含输出欠压保护、防误开启、最小导通时间等功能。 CXW诚芯微 初级芯片: 1、CXW诚芯微CX7509 诚芯微CX7509芯片内置 650V 高压功率 MOSFET,应用于功率在 18W 以内的方案。 在启动和工作时只需要很小的电流,可以在启动电路中使用一个很大的电阻,以此来减小待机时的功耗。并且芯片内置包括逐周期限流保护(OCP)、过载保护(OLP)、过压保护(VDD OVP)、VDD 过压箝位,欠压保护(UVLO)、过温保护(OTP)等在内的多种保护功能,通过内部的图腾柱驱动结构可以更好的改善系统的EMI 特性和开关的软启动控制。 次级芯片: 1、CXW诚芯微CX7538 诚芯微CX7538是一颗高性能的开关电源次级侧同步整流控制电路。在低压大电流开关电源应用中,轻松满足6级能效,是理想的超低导通压降整流器件的解决方案。芯片可支持高达 150kHz 的开关频率应用,并且支持 CCM/QR/DCM等开关电源工作模式应用,其极低导通压降产生的损耗远小于肖特基二极管的导通损耗,极大提高了系统的转换效率,大幅降低了整流器件的温度。 诚芯微CX7538内置耐压高达85V的NMOSFET同步整流开关,且具有极低的内阻,典型 RdsON 低至 10mΩ,可提供系统高达 3A 的应用输出;还内置了高压直接检测技术,耐压高达 200V;以及高达 30V 的供电电压,使得控制器可直接使用高至 24V 的输出电压整流应用中,极大扩展了使用范围。高集成度的电路设计使得芯片外围电路极其简单,在 QC 与 PD 5V/9V/12V 应用中,只需搭配 1 颗电容,即可构建一个完整的同步整流应用系统。 DONGKE东科半导体 次级芯片: 1、DONGKE东科DK5V85R15C 东科DK5V85R15C是一款简单高效率的同步整流芯片,只有A,K两个引脚,分别对应肖特基二极管PN管脚。芯片内部集成了85V功率NMOS管,可以大幅降低二极管导通损耗,提高整机效率,取代或替换目前市场上等规的肖特基整流二级管。 2、DONGKE东科DK5V100R15M 东科高性能两个引脚同步整流芯片DK5V100R15M。这是一款简单高效率的同步整流芯片,只有A,K两个引脚,分别对应肖特基二极管PN管脚。芯片内部集成了100V功率NMOS管,可以大幅降低二极管导通损耗,提高整机效率,取代或替换目前市场上等规的肖特基整流二级管。芯片采用SM-10封装。 3、DONGKE东科DK5V100R20C 东科DK5V100R20C是一款简单高效率的同步整流芯片,只有A,K两个引脚,分别对应肖特基二极管PN管脚。芯片内部集成了100V功率NMOS管,可以大幅降低二极管导通损耗,提高整机效率,取代或替换目前市场上等规的肖特基整流二级管。此外该芯片采用SM-7封装(兼容TO-277封装)。 4、DONGKE东科DK5V100R25C 东科DK5V100R25C是一款简单高效率的同步整流芯片,只有 A、K 两个引脚,分别对应肖特基二极管PN引脚。芯片内部集成了100V功率 NMOS 管,可以大幅降低二极管导通损耗,提高整机效率,取代或替换目前市场上同等规格的肖特基整流二极管。 Depuw德普微电子 初级控制器: 1、Depuw德普微DP2367 Depuw德普微高度集成、离线式电流模式控制功率开关DP2367,内置650V耐压MOS管。 JOULWATT杰华特 次级芯片: 1、JOULWATT杰华特JW7719A 杰华特JW7719A同步整流芯片,内置MOS,耐压100V,10mΩ导阻。 Lii力生美 初级芯片: 1、Lii力生美LN9T39HV 力生美LN9T39HV是一款高供电电压范围、高性能、高集成度电流模式PWM控制器功率开关,可以方便地在诸如PD/QC等宽输出电压变化范围的开关电源应用中构建满足CoC V5及DoE 6级能效的低待机功耗、低成本、高性能的解决方案。 次级芯片: 1、Lii力生美LN5S18 力生美LN5S18是高性能 SR 同步整流功率开关系列产品,产品内置超低 RdsON MOSFET,内置 TrueWareTM 技术,兼容 CCM/DCM/QR 等各种反激电源工作模式,内置 MOSFET 耐压更高达 80V,可在宽达 5~15V 的应用中实现理想二极管整流效果,是 USB Type-C PD 及 QC 快充等应用的极佳选择。 2、Lii力生美LN5S21A 力生美LN5S21A内置同步整流MOS和控制器,内置MOS耐压105V,导阻10mΩ,可以提高整机转换效率。 3、Lii力生美LN5S21B 力生美LN5S21B内置同步整流MOS和控制器,内置MOS耐压105V,导阻8mΩ,可以提高整机转换效率。 MERAKI-IC茂睿芯 次级芯片: 1、MERAKI-IC茂睿芯MK9173 茂睿芯的MK9173系列是一款高性能的同步整流功率开关,集成N沟道功率MOS,适用于隔离型的同步整流应用。尤其适用于充电器中需求高效率的场合,并兼容CCM、DCM和QR模式。此外MK9173X采用自主知识产权的自供电电路,可灵活的放置在输出正端或输出负端。放置在正端时,亦无需格外的辅助绕组。 MK9173的10ns关断延时以及高达4A的下拉电流帮助系统可靠工作于CCM 模式。其自主知识产权的开通及关断机制,可以最大化外驱MOSFET的导通时间以获得尽可能高的效率。并且自主检测DCM振铃,防止误开通。 2、MERAKI-IC茂睿芯MK1716 次级同步整流芯片采用茂睿芯MK1716,这款芯片集成了次级同步整流控制器和16mΩ/100V规格同步整流MOS。茂睿芯MK171X系列是一款高性能的同步整流功率开关,集成N沟道功率MOS,适用于隔离型的同步整流应用。尤其适用于充电器中需求高效率的场合,并兼容CCM、DCM 和QR模式。 MK171X采用自主知识产权的自供电电路,可灵活的放置在输出正端或输出负端。放置在正端时,亦无需格外的辅助绕组。支持10ns关断延时以及高达4A的下拉电流帮助系统可靠工作于CCM 模式。支持开通及关断机制,可以最大化外驱MOSFET的导通时间以获得尽可能高的效率,并且自主检测DCM振铃,防止误开通。 MicrOne微盟电子 1、MicrOne微盟电子ME8115 微盟ME8115,内置MOS。 On‐Bright昂宝 次级芯片: 1、On‐Bright昂宝OB2004Ax 次级同步整流芯片采用昂宝OB2004Ax,其内置NMOS,支持3-12V输出,集成度高。 Power Integrations 初次级一体芯片: 1、PI SC1263K6 PI SC1263K6,苹果的定制型号。 2、PI SC1224K PI SC1224K内置反激式控制器、初级开关管,以及次级测检测和同步整流控制器。 3、PI SC1548C PI SC1548C内置反激式控制器、初级开关管,以及次级测检测和同步整流控制器,内置带HIPOT隔离保护的集成反馈链路,集成度非常高。 4、PI SC1702C PI PWM主控芯片SC1702C,内部集成控制器,开关管和同步整流控制器。 5、PI SC1933C PI SC1933C属于PI InnoGaN 系列,这个是PI推出的首款GaN电源产品,标志着GaN元件在USB PD快充电源上得到全面应用,其高频率低损耗的优势,能够提高充电器的功率密度,减小体积和重量,更加便于携带。 6、PI SC1936C PI SC1936C是PI最新发布的内置氮化镓功率器件的PowiGaN主控芯片,宽电压范围下,适配器壳体中最大75W连续功率。 7、PI INN2215K PI INN2215K是离线CV/CC反激开关集成电路,集成了650V MOSFET,Sync-Rect反馈和用于USB-PD和QC 3.0的恒功率分布图,大大简化了低压大电流电源特别是小尺寸和高效率电源的开发和制造,可用于最大20W的充电器应用。 8、PI INN3265C PI的电源主控芯片INN3265C内置了控制器,开关管以及次级同步整流控制器,集成度高,可用于最大22W的充电器应用。 9、PI INN3266C 充电器主控芯片来自PI的初级主控芯片,型号INN3266C,其内置了控制器,开关管,次级同步整流控制器,集成度高,可用于最大27W的充电器应用。 10、PI INN3268C PI INN3268C片内置了PWM主控、高压MOSFET以及次级同步整流控制器以及反馈电路等,无需光耦,外围简洁,可用于最大50W的充电器应用。 Reactor-Micro亚成微 初级芯片: 1、Reactor-Micro亚成微RM6715S 初级PWM主控芯片采用亚成微RM6715S,这是一种自供电双绕组离线式开关电源管理芯片,内置高压 MOSFET及电流模式 PWM+PFM 控制器, 满足六级能效标准。同时,RM6715S内置高压启动电阻,专利技术为VCC供电,无需外部辅助绕组,节约设计成本。 RM6715S芯片内置多种工作模式,在轻载情况下,芯片进入Burst mode模式,消除变压器的音频噪音,提高转换效率;在待机模式下,电路进入打嗝模式,有效降低电路的待机功耗。内部集成斜坡补偿模块,有利于CCM模式下系统闭环反馈回路的稳定性,减小了输出纹波电压。此外,芯片内部还集成多种异常状态保护功能,在电路发生异常时,芯片进入保护状态并自动重启检测, 异常解除,恢复正常输出。 次级芯片: 1、Reactor-Micro亚成微RM3403SH 亚成微RM3403SH内部集成同步整流MOS管,集成度同样很高,并支持DCM、CRCM、CCM和准谐振等多种工作模式。 Silan士兰微电子 初级芯片: 1、Silan士兰SDH8666Q 士兰SDH8666Q是士兰微电子新一代SSR反激控制芯片,采用了自有专利EHSOP5贴片封装,内置高压大功率MOSFET,导阻0.55Ω,可广泛适用于36W适配器或48W开放环境,包括通用适配器、快充、显示器和平板电视等,此前充电头网已经对该款芯片进行相关报道。 Si-Power硅动力 初级芯片: 1、Si-Power硅动力SP6638HF Si-Power硅动力的高性能、低功耗开关电源控制芯片SP6638HF,内置初级开关MOS,用于功率在18W以内的方案。SP6638HF是国内首款内置MOS支持恒功率模式的18W快充芯片,采用行业领先的3D封装技术。配套同步整流芯片SP6518F:内置80V/10mΩ低压MOS,带自供电工作模式,完美支持PPS。 2、Si-Power硅动力SP6648HF PWM主控芯片采用无锡硅动力SP6648HF,这是一颗电流模式PWM控制芯片,其内置650V高压功率MOSFET,应用于功率在18W以内的方案。SP6648HF在PWM模式下工作于固定开关频率,这个频率是由内部精确设定。在空载或者轻载时,工作频率由IC内部调整。芯片可以工作在绿色模式,以此来减小轻载时的损耗,提高整机的工作效率。 次级芯片: 1、Si-Power硅动力SP6518F Si-Power硅动力同步整流芯片SP6518F。这是一颗高性能的开关电源次级侧同步整流控制电路。在低压大电流开关电源应用中,轻松满足6级能效,是理想的超低导通压降整流器件的解决方案。 芯片可支持高达150kHz的开关频率应用,并且支持CCM/QR/DCM等开关电源工作模式应用,其极低导通压降产生的损耗远小于肖特基二极管的导通损耗,极大提高了系统的转换效率,大幅降低了整流器件的温度。 总结 苹果目前已有10款支持USB PD快充的手机,其中8款尚未标配18W快充套装,现有市场对18W快充的需求本就比较旺盛。随着iPhone12不再附赠充电器,第三方18W快充的销量将迎来新一轮增长。 目前18W USB PD快充方案已经十分成熟,并且还可以兼容多种其他快充协议,完全具备了取代传统充电器的能力。而在原来越多的中低端机型中,18W PD快充技术也逐渐成为手机的标配,市场潜力巨大。 对18W PD快充电源芯片而言,高集成设计已经成为市场的发展趋势,而具备高集成度AC-DC电源芯片供应能力的芯片厂商优势也逐渐凸显。 从了解到的数据来看,目前在18W PD快充这个品类,内置MOS方案和分离器件方案各占据了一半的市场份额。这对内置MOS芯片的厂商来说是一个好消息,仍有巨大的市场有待开发,其中也蕴藏了无限商机。

    时间:2020-07-31 关键词: iPhone 12 快充 电源芯片

  • 苹果自主电源芯片没啥进展 2019年和2020年用还是由戴乐格提供

    此前有消息称,苹果正在研发自主设计的电源管理芯片,并且最快用于2018年的iPhone新机型。但根据电源管理芯片开发商戴乐格半导体CEO Jalal Bagherli在接受采访时说法,2019年和2020年最大客户苹果公司预计将会在其大部分设备中继续使用戴乐格的芯片。 戴乐格CEO Jalal Bagherli透露,“在年初,苹果委托我们为2019年和2020年许多设备设计芯片。”不过,没有进一步的细节提供。 由于投资者担心苹果正在为iPhone智能手机自主开发节电芯片,戴乐格半导体公司股价在过去一年已经跌去一半。分析师预估,戴乐格半导体公司一半营收来自向苹果供给电源管理集成电路(PMIC)。 戴乐格在去年12月承认,苹果可能会开发自主电源芯片。戴乐格当时表示,2018年的现有供货协议并不存在风险,并且正在就“2019年款产品”的设计与苹果展开深入谈判,可能在本月签署商业合同。

    时间:2020-07-23 关键词: iPhone 戴乐格半导体 电源芯片

  • 机器人控制电路设计

    机器人控制电路设计 本次所设计的机器人是由新华龙C8051F310控制,两条人形机械腿由十二个舵机组成由三块电路板控制。且三块电路板由三名组员分别设计完成。其中一块主控板控制两块从板,通过485总线进行通信,从而实现机械腿的协调动作。 一. 电源电路    电源芯片采用AZ1084和LM1117。其中AZ1084输入电压为7.2v,输出电压为5v,LM1117输入电压为5v,输出电压为3.3v。F310单片机的工作电压是3.3v,因此需要经过两次降压达到3.3v。为了稳定工作电压,采用IB0505LS来稳定单片机的工作电压。 二.单片机电路  单片机及用来调试的接口电路如下: 本单片机的晶振为32.768MHZ,但是在后期的测试发现外部晶振输出不稳定,因此采用的是内部晶振。我们所设计的机器人总共有12个舵机,而这款F310最多只能输出5路PWM,因此需要3块板子。 三.RS485总线  本设计采用485总线进行通信通过主板发出指令来控制从板从而控制各个舵机的工作: 四.舵机控制电路  每块从板上共有六组舵机驱动,用P117光耦进行隔离电路图如下: 五.PCB制作:  PCB制作如下: 一下分别为PCB设计图以及对应的3D图  搬运机器人电机控制电路图 着人工成本的不断升高,用机器人代替人力去做一些重复性的高强度的劳动是现代机器人研究的一个重要方向。搬运机器人在导航寻迹中,需要后轮驱动电机和前轮舵机的协调工作。搬运机器人电机驱动有其特殊的应用要求,对电机的动态性能要求较高,能在任意时刻到达控制需要的指定位置并且使舵机停止在任意角度;电机驱动的转矩变化范围大,既有空载平整路面行使的高速度、低转矩工作环境,也有满负载爬坡的运行工况,同时还要求保持较高的运行效率。 功率驱动的设计 电机的供电电源是由24V的蓄电池提供,额定功率为240W,由4个75N75组成桥式电路来实现。75N75是MOSFET功率管,其最高耐压75V,最高耐流75A,电机驱动电路如图2所示。 Q1、Q4和Q2、Q3分别组成两个桥路,分别控制电机的正转和反转。高端驱动的MOS管导通时源极电压和漏极电压相同且都等于供电电乐VCC,所以要实现MOS管正常的驱动,栅极电压要比VCC大,这就需要专门的升压芯片IR2103.控制器产生的PWM信号输入HIN引脚,控制器I/O口输出的 EN1、EN2作为使能信号。输出端HO就可得到比VCC要高的电压,且高出的电压值正好是充在电容两端的电压。二极管提高导通速度,使得75N75的导通电阻更小,降低了开关管的损失。同时IR2103的两个输出口HO、LO具有互锁功能,防止由于软件或硬件错误造成的电机上下桥臂直通造成短路。 过流保护的设计 在电机控制系统中安装过流保护有两方面的意义:一是防止在电机正常运行时,电机出现超载或堵转而使得电枢绕组电流过大损害电机甚至引发火灾;另一方面是由于电机肩动时启动电流很大,往往不能直接启动,既需要等励磁绕组逐渐建立磁场后再正常运行,又希望电机以尽量快的速度肩动起来。有了过流保护对电流进行斩波,可以使电机安全快速地启动。过流保护原理图如图3所示。 电机的相电流通过康铜丝转换成电压信号Vtext,经过运算放大器放大后的模拟量AD1送至控制器A/D转换模块,同时将经过电压比较器比较后的数字量EVA送至控制器的外部中断口。针对搬运机器人的前轮转向舵机和后轮驱动电机的控制要求,采用以Cortex-M3为内核的STM32F107作为主控制器,采用嵌入实时操作系统μC/OS-II,将程序分成启动任务、电机转速控制任务、舵机控制任务等相对独立的多个任务,并设定了各任务的优先级。该系统能较好地实现搬运机器人的运动控制。

    时间:2020-06-03 关键词: 机器人 控制电路 电源芯片

  • 嵌入式硬件设计之电源芯片的EN脚如何设置

    嵌入式硬件设计将成为21世纪微电子的核心技术的系统级芯片(SoC)设计中的三大关键技术与相互融合的一些研究领域做了详细的阐述,并对SoC设计面临的挑战以及发展趋势进行了展望。 某电机控制板带有动力回收的功能,在没有助力电池时,电机的转动也可以继续为控制板供电。而电机的不均匀转动会产生快速波动的电压,从而导致电源芯片输出极不稳定的电压,使得后级设备在极短的时间内频繁的上下电,导致板子上的蓝牙模块频繁丢失固件甚至烧坏,降低了产品性能。后来通过调整电源芯片EN引脚的相关配置,完美解决了该问题。想知道对EN做了什么“手脚”吗?小小的EN还蕴含着什么样的大智慧呢? 一、概述 EN即Enable,即“使能”的意思,不同的芯片的叫法也有所不同,如EA、RUN等。而它们的功能基本是一样的,即只有该引脚激活时,芯片或模块才能正常的输出。针对这一功能,我们可以添加一些简单的外围电路来实现稳定芯片或者输出上电排序的功能。一些较高级的电源芯片的EN引脚通常还带有滞回的特性。 二、应用技巧 1.巧用分压电阻,实现电源芯片的稳定输出 对于电源芯片,我们通常使用分压电阻将EN信号接到电源的输入引脚上,来防止EN端的电压超过它的耐压值。而在满足耐压值得条件下,还要将EN脚的电压设定在“合适”的范围。 例如文章一开始提到的,某电机控制板的24V电源在给电机供电的同时也通过DC/DC:MP2451输出12V给其他电路供电。在没有助力电池时,电机发电为控制板供电,而电机的转动并非是匀速的,产生了波动较大的电压,如下图1所示,黄色线为电机反向发电电压,绿色则为MP2451输出的电压。     图1电机发电曲线和DCDC的输出曲线 由上图1可以看出,电机的发电电压(DC/DC的输入电压)VIN大概在6.2V时候就使能了DC/DC输出,此时输入电压小于设定的12V输出电压,使得DC/DC内部的MOS管由于输出反馈的作用一直在快速的导通和关闭,形成了一个噪声包络随着输入波动的、不稳定的输出电压。当电机的发电电压大于12V时,DC/DC才输出了平稳的12V电压。 这是因为电路中的分压电阻网络设置不当,在输入电压很低的时候就达到了EN的阈值电压,导致过早使能电源芯片输出。这就是设计过程中只考虑了将电源芯片的EN引脚电压设置在耐压值以下,而未考虑将EN脚的分压网络设定在“合适”的范围的例子。 那么EN脚的分压网络设定在什么位置比较合适呢?     图2EN使能输出曲线 l如曲线①所示,输入电压较低时就达到了VEN的使能阈值,使能芯片输出,此时输出受到输入波动的影响且上电缓慢,影响了后级电路的工作稳定性; l如曲线②所示,输入电压VIN上升到70%~80%的时候,VEN才到达使能阈值,此时芯片输出摒除了输入电源的不稳定阶段,上电迅速,输出平稳,减小了输入电压波动的影响; l同时预留了20%~30%的余量避免了输入电源波动导致输出关闭的问题; l由此可知将电源芯片的EN阈值电压通过分压网络设定在70%~80%×VIN是较为合理的,EN阈值可以通过芯片手册查得。如下图3所示,根据已知的EN阈值和输入电压即可求得合适的分压电阻比例。     图3根据已知的EN阈值分配网络电阻 图4是调整EN引脚的分压电阻阻值后的输出波形,输出的电压波动得到了明显的改善。再继续调整分压电阻阻值,就可以得到更加平稳的输出波形,此方法简单有效的解决了前面提到的输出不稳定的问题。     图4调整分压电阻后的电压波形 由此可见,小小的EN引脚,设置不当也会引起不小的麻烦,因此在满足EN耐压值的件下,根据实际情况将EN的输入电压稳定在“合适”的范围之内,也是非常重要的。这个小小的使用技巧,您学会了吗? 2.巧用EN功能,实现上电时序 电路设计中,芯片或模块往往需要多种工作电源,同时对这些电源的上电顺序也提出了相应的要求。若没有满足这些上电时序的要求可能导致总线冲突、器件闩锁等故障。例如某系统上的工作电源有VCC_Core、VCC_DDR、VCC_DIO三种电源,通过分立的电源芯片控制。此时可以通过调整电源芯片EN引脚的RC回路来控制上电时序,即图中的R1和C1。     图5 RC延时电路 RC时间常数大的也必定产生动作延迟,即后开始工作,改变不同的参数得到不同的延时时间,从而控制分立电源芯片的上电时序。此法还可以满足用一个EN信号控制多个电源芯片的使用需求。 需要注意的是RC中的电阻也不能过大,要满足EN引脚所需的电流需求。如下图所示为某电源芯片手册中EN输入电流条件。     图6 EN脚输入电流举例 三、总结 通过对EN的控制,可以实现相应的功能,包括合理设置EN的静态工作点,既可以避免在电源电压不稳定阶段开启芯片电源供电,又能避免在正常工作时,电源电压波动引起系统意外掉电。通过对EN的逻辑时序控制,可以实现多路电源上电时序的控制。 此外,在EN端加上适当的控制电路,可以放大EN的滞回电压。这一点对于电池供电的系统,在电池接近耗尽的时候,可以避免电路循环重复上下电。 由此可见,这看似简简单单的EN引脚,使用时也是需要多加注意的。通过本文的介绍,您是不是也觉得这小小EN,蕴含大大的智慧呢?

    时间:2019-07-24 关键词: 嵌入式 嵌入式开发 电机控制板 电源芯片

  • 西安交大提出有源整流器芯片新结构和延迟控制方法

    在无线能量传输领域,处于能量接收端的电源芯片通常包括整流器、DC-DC变换器和LDO三级结构。提升各级结构的效率有利于提升无线能量传输电源系统的整体效率。有源整流器相比于传统的二极管整流器在低压下具有更高的效率,但是,其转换效率,尤其是其轻负载效率一直受制于结构中的连续时间比较器的较大功耗。此外,常规有源整流器采用延迟补偿结构,造成有源整流器的多重脉冲等问题,影响了整流器工作的稳定性和可靠性。 西安交通大学微电子学院耿莉教授团队提出了一种新型的基于自适应延迟控制器的有源整流器结构,去除了原有结构中功耗大的连续时间比较器,提出了自适应延迟控制方法,降低了有源整流器的功耗,同时,提高了时间调节精度。 据团队专家介绍,这种新结构采用了电流控制延迟和锁存逻辑的方式来产生功率MOS管的控制信号,从结构上避免了传统有源整流器存在的多重脉冲现象,提高了整流器的稳定性和可靠性。自适应的延迟控制通过负反馈环·,使得整流器具有较高的抵抗工艺、电压、温度波动的能力,提升了电·的³棒性。 据进一步了解,该有源整流器采用0.18μm CMOS工艺进行了流片验证,具有低于230μW的静态功耗。整流器的输出功率为10.63mW时,达到94.1%的峰值效率。其相关研究成果近日在集成电·领域的顶级期刊《固态电·学报》(IEEE Journal of Solid-State Circuits,JSSC)在线发表。耿莉教授指导的博士生薛仲明为该论文的第一作者,耿莉教授、范世全副教授为该论文的通讯作者,西安交通大学为该论文的第一且Ψ一作者单λ。 据西安交大科研处有关老师介绍耿莉教授近年来在低功耗电源管理芯片设计上的潜心研究,也取得了一些研究成果,并在IEEE JSSC、IEEE TPE、IEEE TCAS-I等国际著名期刊上相继发表高水平论文。 这些研究成果为低功耗电源管理芯片的设计提供了新方法和新思·。该工作所提出的新型的有源整流器结构具有功耗低、精度高、工艺³棒性好等优点,能够广泛地应用于消费电子、生物医疗、物联网中的无线传能系统中。 据悉,本项研究得到了国家自然科学基金和陕西省重点研发计划的支持。

    时间:2019-03-07 关键词: 变换器 西安交大 行业资讯 电源芯片

  • 中国电源芯片研发获得重大突破:一芯双功率、支持全协议

    来自珠海的电源芯片公司智融科技宣布,旗下的SW3518快充芯片成功量产。 这颗芯片具有如下特色: 1、协议齐全:其中USB-C口支持USB PD、PPS、Apple 2.4A、QC2.0/3.0、FCP、SCP、AFC、PE、VOOC;另一个USB-A口则支持以上除USB PD以外的协议; 2、一芯双功率:同为USB-C口,当24V输入时满载可以输出60W(20V 3A)功率,当12V输入时36W(12V 3A),可见图中笔记本、移动电源实拍图;如此小巧的PCBA实现大功率输出不多见; 3、应用领域丰富:智融SW3518典型应用案例有车充、适配器、多口充、插线板、墙充等;内置丰富协议适合发烧友DIY改造。 值得一提的是,智融是OPPO授权的首批两家快充协议芯片原厂之一,在研发实力上得到上游肯定。目前这颗快充芯片已经批量出货,近期将会看到应用产品上市。

    时间:2018-11-28 关键词: 芯片 行业资讯 sw3518 电源芯片

  • 供应商的末日,苹果削减30%iPhone电源芯片订单

    据德国戴乐格半导体公司(Dialog Semiconductor)称,苹果公司计划为其三款新iPhone机型中的一款增加电源管理芯片(PMICs)供应商至两家,改变过去由戴乐格半导体单独供货的情况。 在本周四发表的一篇声明中,戴乐格半导体表示,苹果公司此举意味着戴乐格在今年接到来自苹果的订单量将比预期的减少30%。 该消息爆出后,戴乐格半导体的股价应声下跌了3.9%。由于有消息称苹果将为iPhone研发自家的电源管理芯片,戴乐格半导体的市值在过去一年间缩水了超过一半。 有分析师认为,戴乐格每年的总收入的一半以上都来源于向苹果公司供应电源管理芯片所得。 在电源管理芯片订单量减少后,戴乐格半导体在2018年的收入预计将下降5%。不过,该公司表示,还是有望在2018年实现收入的年度同比正增长。 戴乐格半导体首席执行官贾拉勒·巴赫里(Jalal Bagherli)在一次股东电话会议中表示,苹果订单量的减少对2019年的业绩也会产生与2018年相似的影响。他说,苹果并没有说明为什么要增加电源管理芯片的供应商数量。 巴赫里说:“你想想,如果苹果公司的三款新iPhone机型都采用我们的电源管理芯片,这意味着新iPhone不会出现与性能相关的问题。可能苹果选择多家供应商而不是单独一家是为了降低风险。” 巴赫里称,苹果公司并没有告诉他新增的第二家电源管理芯片供应商是哪个企业。 戴乐格半导体在声明中称,该公司期待为苹果公司未来新产品供应除电源管理芯片之外的其他元器件。

    时间:2018-06-01 关键词: 苹果 iPhone 订单 电源芯片

  • 巧用分压电阻,实现电源芯片的稳定输出

    某电机控制板带有动力回收的功能,在没有助力电池时,电机的转动也可以继续为控制板供电。而电机的不均匀转动会产生快速波动的电压,从而导致电源芯片输出极不稳定的电压,使得后级设备在极短的时间内频繁的上下电,导致板子上的蓝牙模块频繁丢失固件甚至烧坏,降低了产品性能。后来通过调整电源芯片EN引脚的相关配置,完美解决了该问题。想知道对EN做了什么“手脚”吗?小小的EN还蕴含着什么样的大智慧呢? 一、概述 EN即Enable,即“使能”的意思,不同的芯片的叫法也有所不同,如EA、RUN等。而它们的功能基本是一样的,即只有该引脚激活时,芯片或模块才能正常的输出。针对这一功能,我们可以添加一些简单的外围电路来实现稳定芯片或者输出上电排序的功能。一些较高级的电源芯片的EN引脚通常还带有滞回的特性。 二、应用技巧 1.巧用分压电阻,实现电源芯片的稳定输出 对于电源芯片,我们通常使用分压电阻将EN信号接到电源的输入引脚上,来防止EN端的电压超过它的耐压值。而在满足耐压值得条件下,还要将EN脚的电压设定在“合适”的范围。 例如文章一开始提到的,某电机控制板的24V电源在给电机供电的同时也通过DC/DC:MP2451输出12V给其他电路供电。在没有助力电池时,电机发电为控制板供电,而电机的转动并非是匀速的,产生了波动较大的电压,如下图1所示,黄色线为电机反向发电电压,绿色则为MP2451输出的电压。 图1电机发电曲线和DCDC的输出曲线 由上图1可以看出,电机的发电电压(DC/DC的输入电压)VIN大概在6.2V时候就使能了DC/DC输出,此时输入电压小于设定的12V输出电压,使得DC/DC内部的MOS管由于输出反馈的作用一直在快速的导通和关闭,形成了一个噪声包络随着输入波动的、不稳定的输出电压。当电机的发电电压大于12V时,DC/DC才输出了平稳的12V电压。 这是因为电路中的分压电阻网络设置不当,在输入电压很低的时候就达到了EN的阈值电压,导致过早使能电源芯片输出。这就是设计过程中只考虑了将电源芯片的EN引脚电压设置在耐压值以下,而未考虑将EN脚的分压网络设定在“合适”的范围的例子。 那么EN脚的分压网络设定在什么位置比较合适呢? 图2EN使能输出曲线 l如曲线①所示,输入电压较低时就达到了VEN的使能阈值,使能芯片输出,此时输出受到输入波动的影响且上电缓慢,影响了后级电路的工作稳定性; l如曲线②所示,输入电压VIN上升到70%~80%的时候,VEN才到达使能阈值,此时芯片输出摒除了输入电源的不稳定阶段,上电迅速,输出平稳,减小了输入电压波动的影响; l同时预留了20%~30%的余量避免了输入电源波动导致输出关闭的问题; l由此可知将电源芯片的EN阈值电压通过分压网络设定在70%~80%×VIN是较为合理的,EN阈值可以通过芯片手册查得。如下图3所示,根据已知的EN阈值和输入电压即可求得合适的分压电阻比例。 图3根据已知的EN阈值分配网络电阻 图4是调整EN引脚的分压电阻阻值后的输出波形,输出的电压波动得到了明显的改善。再继续调整分压电阻阻值,就可以得到更加平稳的输出波形,此方法简单有效的解决了前面提到的输出不稳定的问题。 图4调整分压电阻后的电压波形 由此可见,小小的EN引脚,设置不当也会引起不小的麻烦,因此在满足EN耐压值的件下,根据实际情况将EN的输入电压稳定在“合适”的范围之内,也是非常重要的。这个小小的使用技巧,您学会了吗? 2.巧用EN功能,实现上电时序 电路设计中,芯片或模块往往需要多种工作电源,同时对这些电源的上电顺序也提出了相应的要求。若没有满足这些上电时序的要求可能导致总线冲突、器件闩锁等故障。例如某系统上的工作电源有VCC_Core、VCC_DDR、VCC_DIO三种电源,通过分立的电源芯片控制。此时可以通过调整电源芯片EN引脚的RC回路来控制上电时序,即图中的R1和C1。 图5 RC延时电路 RC时间常数大的也必定产生动作延迟,即后开始工作,改变不同的参数得到不同的延时时间,从而控制分立电源芯片的上电时序。此法还可以满足用一个EN信号控制多个电源芯片的使用需求。 需要注意的是RC中的电阻也不能过大,要满足EN引脚所需的电流需求。如下图所示为某电源芯片手册中EN输入电流条件。 图6 EN脚输入电流举例 三、总结 通过对EN的控制,可以实现相应的功能,包括合理设置EN的静态工作点,既可以避免在电源电压不稳定阶段开启芯片电源供电,又能避免在正常工作时,电源电压波动引起系统意外掉电。通过对EN的逻辑时序控制,可以实现多路电源上电时序的控制。 此外,在EN端加上适当的控制电路,可以放大EN的滞回电压。这一点对于电池供电的系统,在电池接近耗尽的时候,可以避免电路循环重复上下电。 由此可见,这看似简简单单的EN引脚,使用时也是需要多加注意的。通过本文的介绍,您是不是也觉得这小小EN,蕴含大大的智慧呢?

    时间:2018-05-14 关键词: 电路设计 en 嵌入式硬件 电源芯片

  • 嵌入式硬件设计04-电源芯片的EN脚怎么用

    某电机控制板带有动力回收的功能,在没有助力电池时,电机的转动也可以继续为控制板供电。而电机的不均匀转动会产生快速波动的电压,从而导致电源芯片输出极不稳定的电压,使得后级设备在极短的时间内频繁的上下电,导致板子上的蓝牙模块频繁丢失固件甚至烧坏,降低了产品性能。后来通过调整电源芯片EN引脚的相关配置,完美解决了该问题。想知道对EN做了什么“手脚”吗?小小的EN还蕴含着什么样的大智慧呢? 一、概述 EN即Enable,即“使能”的意思,不同的芯片的叫法也有所不同,如EA、RUN等。而它们的功能基本是一样的,即只有该引脚激活时,芯片或模块才能正常的输出。针对这一功能,我们可以添加一些简单的外围电路来实现稳定芯片或者输出上电排序的功能。一些较高级的电源芯片的EN引脚通常还带有滞回的特性。 二、应用技巧 1. 巧用分压电阻,实现电源芯片的稳定输出 对于电源芯片,我们通常使用分压电阻将EN信号接到电源的输入引脚上,来防止EN端的电压超过它的耐压值。而在满足耐压值得条件下,还要将EN脚的电压设定在“合适”的范围。 例如文章一开始提到的,某电机控制板的24V电源在给电机供电的同时也通过DC/DC:MP2451输出12V给其他电路供电。在没有助力电池时,电机发电为控制板供电,而电机的转动并非是匀速的,产生了波动较大的电压,如下图1所示,黄色线为电机反向发电电压,绿色则为MP2451输出的电压。 图1电机发电曲线和DCDC的输出曲线 由上图1可以看出,电机的发电电压(DC/DC的输入电压)VIN大概在6.2V时候就使能了DC/DC输出,此时输入电压小于设定的12V输出电压,使得DC/DC内部的MOS管由于输出反馈的作用一直在快速的导通和关闭,形成了一个噪声包络随着输入波动的、不稳定的输出电压。当电机的发电电压大于12V时,DC/DC才输出了平稳的12V电压。 这是因为电路中的分压电阻网络设置不当,在输入电压很低的时候就达到了EN的阈值电压,导致过早使能电源芯片输出。这就是设计过程中只考虑了将电源芯片的EN引脚电压设置在耐压值以下,而未考虑将EN脚的分压网络设定在“合适”的范围的例子。 那么EN脚的分压网络设定在什么位置比较合适呢? 图2EN使能输出曲线 •如曲线①所示,输入电压较低时就达到了VEN的使能阈值,使能芯片输出,此时输出受到输入波动的影响且上电缓慢,影响了后级电路的工作稳定性; •如曲线②所示,输入电压VIN上升到70%~80%的时候,VEN才到达使能阈值,此时芯片输出摒除了输入电源的不稳定阶段,上电迅速,输出平稳,减小了输入电压波动的影响; •同时预留了20%~30%的余量避免了输入电源波动导致输出关闭的问题; •由此可知将电源芯片的EN阈值电压通过分压网络设定在70%~80%×VIN是较为合理的,EN阈值可以通过芯片手册查得。如下图3所示,根据已知的EN阈值和输入电压即可求得合适的分压电阻比例。 图3根据已知的EN阈值分配网络电阻 图4是调整EN引脚的分压电阻阻值后的输出波形,输出的电压波动得到了明显的改善。再继续调整分压电阻阻值,就可以得到更加平稳的输出波形,此方法简单有效的解决了前面提到的输出不稳定的问题。 图4调整分压电阻后的电压波形 由此可见,小小的EN引脚,设置不当也会引起不小的麻烦,因此在满足EN耐压值的件下,根据实际情况将EN的输入电压稳定在“合适”的范围之内,也是非常重要的。这个小小的使用技巧,您学会了吗? 2. 巧用EN功能,实现上电时序 电路设计中,芯片或模块往往需要多种工作电源,同时对这些电源的上电顺序也提出了相应的要求。若没有满足这些上电时序的要求可能导致总线冲突、器件闩锁等故障。例如某系统上的工作电源有VCC_Core、VCC_DDR、VCC_DIO三种电源,通过分立的电源芯片控制。此时可以通过调整电源芯片EN引脚的RC回路来控制上电时序,即图中的R1和C1。 图5 RC延时电路 RC时间常数大的也必定产生动作延迟,即后开始工作,改变不同的参数得到不同的延时时间,从而控制分立电源芯片的上电时序。此法还可以满足用一个EN信号控制多个电源芯片的使用需求。 需要注意的是RC中的电阻也不能过大,要满足EN引脚所需的电流需求。如下图所示为某电源芯片手册中EN输入电流条件。 图6 EN脚输入电流举例 三、总结 通过对EN的控制,可以实现相应的功能,包括合理设置EN的静态工作点,既可以避免在电源电压不稳定阶段开启芯片电源供电,又能避免在正常工作时,电源电压波动引起系统意外掉电。通过对EN的逻辑时序控制,可以实现多路电源上电时序的控制。 此外,在EN端加上适当的控制电路,可以放大EN的滞回电压。这一点对于电池供电的系统,在电池接近耗尽的时候,可以避免电路循环重复上下电。 由此可见,这看似简简单单的EN引脚,使用时也是需要多加注意的。通过本文的介绍,您是不是也觉得这小小EN,蕴含大大的智慧呢?

    时间:2018-05-10 关键词: 电路设计 硬件设计 en脚 电源芯片

首页  上一页  1 2 下一页 尾页
发布文章

技术子站