当前位置:首页 > 电路
  • IBM光芯片获突破 可望取代传统半导体电路

        12月26日消息,IBM宣称在光芯片领域获得重大突破,已成功减缓光信号在芯片中的传输速度,将来可用于传送资料,取代传统的半导体芯片电路。    据ZDNet报道,IBM表示该技术确保资料传输的控制,让光在传输中通过环状线路,而非原本的直线,可望加快光芯片的商业化时程;目前除了IBM,还有英特尔、Luxtera等进行光芯片方面的研究,期望以省电、高速特性,摆脱矽芯片的限制。    以光传送资料所需要的耗电量低,也不会产生额外的热量,传输速度也高于金属电路,英特尔在这方面的动作积极,已经开发出结合光芯片与矽芯片的原型产品。    报道中指出,IBM这次的技术突破和过去不同,通过镜像共振器(microring resonator)让光通过环状线路,因为速度会比直线要慢,成功地控制光传输资料的速度,进而进行资料缓冲的机制;新技术另一个重要里程碑,是能让光元件缩小到整合成1颗芯片,在0.03平方公分的面积中,传送10位元的光信号资料,大幅度提高商业化的可能性。 

    时间:2006-12-27 关键词: 半导体 IBM 光芯片 电路

  • 处理器整合32kHz电路 移动装置时脉设计丕变

     行动装置时脉设计架构将改弦更张。由于高通(Qualcomm)、联发科及锐迪科等晶片大厂已在新款基频处理器中整并32kHz谐振电路,使得行动装置时脉设计大幅精简,仅须再搭配一颗MHz石英晶体(Crystal)即可完成,可较以往采用三颗时脉元件的设计方案更加节省占位空间与物料成本。不过,此一架构的改变,亦将影响既有石英和微机电系统(MEMS)振荡器的需求。 台湾晶技研发处长姜健伟(右)提到,未来手机将朝向仅搭载一颗石英晶体的设计,以节省PCB占位空间。中为台湾晶技产品经理张毓芳,左为台湾晶技研发经理陈志恂 台湾晶技研发处长姜健伟表示,一线行动晶片商正大举推动时脉共享(Clock Co-share)的整合设计方式,已将32kHz谐振电路内建至基频处理器,甚至也开始研拟整入应用处理器中,期促进有线、无线功能共用时脉的架构成形,扩大取代行动装置内部多个主动时脉元件,以精简系统零组件用量和总体功耗,并可再扩充电池容量。 据悉,过往行动装置时脉设计须使用一颗MHz石英晶体、32kHz振荡器及温度补偿晶体振荡器(TCXO),才能涵盖所有无线和有线技术的频率与时脉运作需求;然而,行动装置精简用料的趋势,驱使处理器业者不断推升周边功能整合度,内建32kHz谐振电路的基频晶片遂应用而生,目前主流手机已有不少比重改采此类晶片搭配一颗MHz石英晶体及两颗电容的设计方案,进而牵动时脉主动元件需求急缩。 对此,台湾晶技产品经理张毓芳不讳言,处理器业者包山包海的产品研发策略,已为时脉元件发展带来负面冲击,无论是传统石英业者或近来动作频频的MEMS时脉元件商,均将面临振荡器产品需求逐步放缓的严峻挑战。 不过,张毓芳也强调,对石英业者来说,仅32kHz振荡器事业会受影响,至于MHz石英晶体被动元件仍是必需品,市场需求将随着行动装置出货量成长而持续攀升。相形之下,现阶段仅能以振荡器形式存在的MEMS元件,因价格较石英晶体贵上好几倍,在系统厂紧缩物料成本的考量下,将受到较大冲击,未来在行动装置时脉市场的发展前景变数颇多。 除价格因素外,张毓芳也指出,MEMS时脉元件的耗电流通常在10毫安培(mA)左右,而石英晶体仅有一半;加上系统厂顾及产品设计延续性往往尽可能避免换料,所以包括功耗、投资风险等问题,都将使MEMS时脉业者在行动市场上的发展绑手绑脚,难以全面取代石英。 事实上,晶技与全球前十大行动晶片商、前五大智慧型手机品牌合作多年,旗下石英主被动元件早已被列入建议系统厂优先选用的料件清单,因此,即便近来MEMS厂频频祭出产品攻势,晶技还是老神在在。 姜健伟也分析,就算石英与MEMS振荡器商未来逐渐淡出行动市场,转而侧重高阶时脉应用领域的布局,石英阵营还是赢面较大。主因系高阶产品对相位杂讯(Phase Noise)规格要求严格,MEMS因物理特性限制,压低相位杂讯势必牺牲功耗,整体效能表现将不及石英,成为拓展应用版图的最大罩门。此外,石英业者也积极开发可编程频率、多重输出(Multiple Output)的次世代振荡器,将挟数10年产业发展优势,以及优异的特性、价格,持续吸引系统厂采用。

    时间:2013-04-19 关键词: 32 处理器 khz 电路

  • 明确芯片设计流程(一),芯片设计之数字集成电路设计

    数字集成电路设计多采用自顶向下设计方式,首先是系统的行为级设计,确定芯片的功能、性能,允许的芯片面积和成本等。然后是进行结构设计,根据芯片的特点,将其划分成接口清晰、相互关系明确的、功能相对独立的子模块。接着进行逻辑设计,这一步尽量采用规则结构来实现,或者利用已经验证过的逻辑单元。接下来是电路级设计,得到可靠的电路图。最后就是将电路图转换成版图。 1 系统功能描述 系统功能描述主要确定集成电路规格并做好总体设计方案。其中,系统规范主要是针对整个电子系统性能的描述,是系统最高层次的抽象描述,包括系统功能、性能、物理尺寸、设计模式、制造工艺等。功能设计主要确定系统功能的实现方案,通常是给出系统的时序图及各子模块之间的数据流图,附上简单的文字,这样能更清晰的描述设计功能和内部结构。 为了使整个设计更易理解,一般在描述设计可见功能之后,对系统内部各个模块及其相互连接关系也进行描述。描述从系统应用角度看,需要说明该设计适用场合、功能特性、在输入和输出之间的数据变换。 2 逻辑设计 逻辑设计是将系统功能结构化。通常以文本、原理图、逻辑图表示设计结果,有时也采用布尔表达式来表示设计结果。依据设计规范完成模块寄存器传输级代码编写,并保证代码的可综合、清晰简洁、可读性,有时还要考虑模块的复用性。 随后进行功能仿真和FPGA 验证,反复调试得到可靠的源代码。其中,还要对逻辑设计的RTL 级电路设计进行性能及功能分析,主要包括代码风格、代码覆盖率、性能、可测性和功耗评估等。 3 电路设计 电路设计大体分为逻辑实现、版图前验证和版图前数据交付三个阶段。逻辑实现将逻辑设计表达式转换成电路实现,即用芯片制造商提供的标准电路单元加上时间约束等条件,使用尽可能少的元件和连线完成从RTL描述到综合库单元之间的映射,得到一个在面积和时序上满足需求的门级网表。 时钟树插入也将在逻辑实现中完成,插入时钟树后,再进行逻辑综合、功耗优化和扫描链插入后得到门级网表,并通过延迟计算得到相关标准延时格式(SDF)文件。版图前验证利用逻辑实现得到的相关门级网表和SDF文件,进行门级逻辑仿真和测试综合,包括静态时序仿真、动态仿真、功耗分析、自动测试图形生成等,经过版图前验证得到的电路设计门级网表必须要满足一定的时序/功耗约束要求。 4 物理设计 物理设计就是版图设计。将综合得到的网表和时序约束文件导入EDA软件中,进行布局布线,生成符合设计要求的Layout,在完成了全部的Layout之后,利用相关提取软件进行寄生参数提取,并重新反馈到物理实现的布局布线软件中,进行时序计算和重新优化,直得到满意的时序结果为止。 这时可以生产包含精确寄生信息的SDF文件,与布局布线后生成的网表一道进行时序分析。时序分析通过后,就可以导出布局布线后的GDS格式的版图数据,供后续流程使用。 5 设计验证 在版图设计完成之后,非常重要的一步工作就是版图验证。版图验证保证了芯片依照其设计功能准确无误地实现,主要包括设计规则检查(DRC)、电路版图对照检查(LVS)、版图的电路提取(NE)、电学规则检查(ERC)和寄生参数提取(PE)。

    时间:2019-07-11 关键词: 芯片设计 电路 数字集成电路设计

  • 什么是信号调理电路?

    什么是信号调理电路?

    现在的电路各种各样,发挥着独自的作用,但是很多电路都需要信号调理电路,信号调理电路(signal conditioning circuit)是指把模拟量信号变换为用于数据采集、控制过程、执行计算显示读出或其它目的的数字信号的电路。 模拟传感器可测量很多物理量,如温度、压力等,但由于传感器信号不能直接转换为数字数据,因此在变换为数字信号之前必须进行调理。调理就是放大、缓冲或定标模拟信号等,使其适合于模/数转换器(ADC)的输入,ADC对模拟信号进行数字化,并把数字信号送到MCU或其它数字器件,以便用于系统的数据处理。 二、信号调理电路主要实现哪些功能? 对于绝大多数数据采集和控制系统来说,信号调理是非常重要的,典型的系统一般都需要信号调理硬件,用于将原始信号以及传感器的输出接口到数据采集板或模块上。信号调理电路主要具有以下几点功能: 1、传感器驱动:包括为无源传感器提供所需的电压源或电流源,为有源传感器提供其运转所需的特殊电路结构; 2、信号放大:为了提高模拟信号转换成数字信号时的精度,我们希望输入的模拟信号的最大值刚好等于A/D转换设备输入范围。大多数传感器的输出范围在mV级,而A/D转换设备输入范围为V级,因此我们需要使用信号调理电路对传感器的信号放大; 3、隔离:在测量高电压信号时,隔离电路可以保护后端设备被意外的高电压输入损坏,常用的有光隔离和磁隔离。隔离放大电路的缺点是可能引入噪声; 4、信号滤波:模拟信号在数字化前必须进行低通滤波,以消除噪声和防止混叠现象; 5、扩展通道数:有些信号调理电路具有多路转换器或矩阵变换电路功能,可以把信号通道扩展至上千路。以上就是信号调理电路的相关知识,希望能对大家有所帮助。

    时间:2020-03-17 关键词: 信号 电路 调理

  • 升压芯片和LED闪光灯电源

    升压芯片和LED闪光灯电源

    一、基于 XL6009 升压芯片的 LED 闪光灯电源设计 1、系统方案 本系统由输入直流电源经过开关型升压电路转换,输出 12V 电压,为恒流源电路提供工作电压。通过按键控制单片机内部的 D/A 输出信号,使恒流源电路输出恒定电流。此时负载两端的电压值大于设定值时,由单片机内部 A/D 信号控制报警模块报警。系统结构框图如图 1 所示: 2、升压电路分析 电路主要由 XL6009 升压型直流电源变换器芯片、肖特基二极管 B54 以及电感组成。XL6009 的 3 脚输出为方波信号。作为开关,当 3 脚输出低电平时,D1 截止,电感 L1 作为储能元件储存电压,电容与 RV1 和 R1 组成一个回路放电,使输出电压下降;当 3 脚输出高电平时,D1 导通,电感 L1 向电容两端充电,输出电压升高。RV1 与 R1 是 XL6009 内部组成的电压放大器,作为负反馈稳定输出电压,由电阻 RV1 和 R1 控制电压放大倍数。升压模块电路原理图如图 2 所示: 3、恒流源电路设计 该电路主要由 LM358 运放和 P 沟道场效应管 F9530N 组成。当 D/A 输出电压(即 2 脚电压)升高时,LM358 的 1 脚输出电压减小,F9530N 的门极 G 和源极 S 电压增大,控制 SD 间电压减小,使负载和地之间电压增大,采样电压随之增大,使 LM358 的 3 脚电压跟随 2 脚电压变化,从而起到恒流作用。通过开关通断,切换不同的负载,使输出电流满足不同档位恒流的要求。恒流源电路原理如图 3 所示。 4、输入电源的分析计算 输入电压为 3.0~3.6V,所以选择额定输出电压为 Uout=3.6V 的锂电池。根据最大输出功率是 Pmax=10V*0.6A=6W,按系统整机效率 80%计算,则输入电源的输出功率 Pout=Pmax/0.8=7.5W,输入电压的输出电流 I=Pout/Uout=2.08A。一节干电池最大输出电流为 2.2A,为保证续流能力,故选择两节 3.6V 锂电池。 5、提高效率的方法 (1)F9530N 为低压差场效应管,属于电压控制型器件,它的导通几乎不会消耗电流,功耗极小,故选择 F9530N 来提高效率。 (2)采样电阻的阻值很小,功耗相对较小。 (3)电源的接线采用粗铜丝导线,内阻非常小,对应的损耗小,提高了输出功率,故效率有所提高。 6、系统测试结果及分析 当接上负载,在连续输出模式下,对应的输出电压、输出电流及相对误差如表 1 所示: 从表 1 中可以看出,当接上负载,在连续输出模式下,输出电流可设定 3 个档。最高输出电压为 10.23V,最大输出电流相对误差为 1%,LED 闪光灯可正常工作,具有控制精确,误差小,并有高精度实时显示电压和电流大小的优点。 二、直流升压芯片快速选择指导 由于升压芯片种类繁多,因此对于新手来说升压芯片的选择就显得有些困难,应该参考哪些参数?各种各样的参数又对电路起着怎样的作用?在本文中,小编将介绍一种较为快速对 DC-DC 升压芯片进行选择的方法。 首先需要确定的,就是输入与输出电压,一般而言,DC-DC 输入电压范围较宽,不过还是尽量接近实际输入值,这样能够实现效率较高。其次看是否隔离输出,这一点要根据设计需要而言,一般第一级电源采用隔离型较好,内部用于不同电压等级的应用,可采用非隔离型,降低成本。 当然,如果作为输入或输出隔离器件使用,如需要两侧供电的光电隔离器等。还要看纹波和电磁兼容性能,一般工业应用选择 IEC 三级足以。最后还要看效率,效率越高,电路板能耗越小,重要的是发热也小。从结构与周边的电路简单程度来看,DC-DC 升压芯片可以分为三种类型,即 PWM、PWF、电荷泵。以上就是升压芯片和LED闪光灯电源的相关知识,相信对大家会有所帮助。

    时间:2020-03-17 关键词: 电路 升压芯片 xl6009

  • 三极管的倒置状态的来由

    三极管的倒置状态的来由

    学过电流的人都知道三极管,那么它有时候也会倒置,三极管的倒置状态是怎么形成的,又是怎么一回事?想了解相关知识的赶紧往下看! 1、什么是三极管的倒置状态? 集电结正偏,发射结反偏,为倒置状态;集电结正偏,发射结正偏,为饱和状态;集电结反偏,发射结反偏,为倒截止态;集电结反偏,发射结正偏,为放大状态; 2、对三极管倒置状态的分析 实际上,当NPN型三极管的三个电极电位关系为UE>UB>UC 时,三极管内两个PN结的状态为be结反偏,bc结正偏。这时三极管工作在“倒置”状态。倒置状态的三极管其工作原理与放大状态相似,bc结正偏时,集电区发射电子,一部分自由电子在基区和空穴复合形成基极电流,另一部分电子被反偏的发射结“收集”形成发射极电流。倒置时由于三极管集电区掺杂浓度不高,发射的电子少,同时由于发射区面积小,最终收集的电子也少,形成的电流很小,因此三极管没有放大能力。倒置状态的三极管β是小于1的。当增大“倒置”三极管的基极电流时,倒置的三极管也可以进入饱和状态,但这时基极电流较大,同时管子的导通压降比正接时要小得多。 3、对三极管倒置放大的理解 ①三极管工作于倒置状态时相当于把发射极与集电极对调使用(即集电极当作发射极使用,发射极当作集电极使用),倒置时的三极管同样具有三种工作状态。但是等效集电极电流(IE)与基极电流的比值即β要比正接时小得多,所以要使倒置的三极管进入饱和区,所需的基极驱动电流要比正接时大得多,但是倒置时的管压降要比正接时的小。 4、三极管倒置状态的应用 ①TTL 数字集成电路中作为信号输入用的多发射极三极管, 当输入为高电平1 时,就是一个倒置使用的三极管。三极管在倒置使用时,它的两个PN 结的偏置情况与工作在放大状态时是相反的:发射结反向偏置,集电结正向偏置。因此,集电结可能烧毁,而发射结可能击穿。但是,由于工作于倒置状态的三极管的电压放大倍数β通常很小, 如平面三极管倒置使用时的β值约为0.1~0.5,因此一般不会出现烧坏的情况。目前已经很少使用三极管作倒置状态。 ②在使用万用表检测判断三极管的三个电极时,可以通过“三颠倒”方法找到基极和并判断三极管的管型,而集电极和发射极的判断就需使用三极管的倒置状态。以NPN型三极管为例,万用表选择欧姆档的R×100 或R×1K量程,按照图1所示,用手指捏住三极管的基极和未知电极,将万用表黑表笔接未知电极Y,红表笔接X极,观察表针偏转角度。再按照图2所示连接,观察表针偏转角度。 比较两次指针偏转角度,偏转大的那一次黑表笔接的是集电极。这种判断方法的两种接线方式对应了三极管的两种状态:放大状态和倒置状态。其中指针偏转小的那次,黑表笔(万用表内直流电源正极)接三极管的发射极。此时,三极管三个电极的电位关系为UE>UB>UC ,三极管工作在倒置状态,万用表表针偏转所通过的电流为发射极电流,因为这个电流较小,所以指针偏转较小。另一种接线方式对应为三极管的放大状态,通过指针的电流为集电极电流这个电流较大,对应万用表的指针偏转也较大。以上就是三极管倒置的一些可能的原因,相信能给大家一些帮助。

    时间:2020-03-17 关键词: 电路 三极管 倒置状态

  • 电子电路的设计技巧解析

    电子电路的设计技巧解析

    相信很多人都会电路的设计,对于初入茅庐的初级电子工程师,在从事电子工作中需要抓住重点,学会设计原则等,有助于工作中提高效率。下面我们从设计原则、方法、步骤三方面深入学习电子电路的设计技巧。 电子电路设计原则 1 整体性原则在进行电子电路设计时,最需要重视的原则就是整体性原则,因为在设计电子电路时,必须要从整体的角度出发,从整体到局部的进行电子电路的设计,也就是说在进行设计时,要考虑电子电路各个部件之间的关系,通过对部件的分析,从而判断其整体性质。 2 功能性原则虽然电子电路的设计是十分复杂的,但是无论是多么复杂的大型电子电路,都可以通过划分部件的方式将电子电路分成不同层次的小电路。所以在进行电子电路设计时,要按照各个部件的功能进行明确的划分,再通过实际电路情况,将各个部分部件进行融合。 3 最优化原则最优化原则其实指的就是对一个设计标准达标的电子电路而言,都会是由多个不同的小组件组成的,也就是说,在一个电子电路中,无论是哪一个小部件的质量没有达标,都会导致整体电子电路质量不达标,所以在进行电子电路设计时,一定要保证每一个部件都能够达标。 4 稳定性原则其实影响电子电路稳定性的因素有很多,并且有一些问题并不是人为可以控制的,也就是说,在进行设计电子电路时,一定不定因素很多,并且发生的时间也是完全不受控制的,所以在设计电子电路时,最重要的一点原则就是要保证其稳定性。 5 性价比原则在现如今电子产业竞争如此激烈的当下,无论是任何产品,都必须要将生产周期和成本进行有效的控制,因为只有通过出色的使用性能和性价比,才能够提升产品的竞争力,所以在进行电子电路设计时,还要注重性价比的原则。 电子电路设计方法 1、层次化设计 层次化设计的方法其实就是在设计时,要将设计思路进行分层次化处理,将各个部分的电路进行分别分析和描述,只有这样才能够最大程度上保证电子电路的整体使用性能和稳定性。在设计过程中,要将整体的电子电路分成一个个不同的部分和组件,通过分别分析,最后进行整理。 2、渐进式组合设计 在进行电子电路设计时,要利用渐进式组合设计的方法进行设计,这样能够有效的避免在设计过程中,出现失误的几率,从而最大程度上提升电子电路的稳定性。 3、硬件语言描述设计 利用硬件语言描述的方法进行设计,能够最大程度上保证电子电路设计的准确性,因为硬件语言描述设计方法是利用计算机进行数字化设计和整理的,所以这种方法比人工设计准确性要更高。 4、最佳化设计 电子电路不仅仅是在设计过程中很繁琐,电子电路设计完成之后在进行调整也是非常麻烦的一件事情,所以在设计过程中, 一定要保证电子电路的精准度,也就是需要最佳化设计方法。 5、电路方程设计 在进行一个比较复杂的电子电路设计时,可以利用电路方程的设计方法进行设计,这种方法都是由一个数字模型进行模拟设计,最大程度上简化了设计过程,提升了精准度。 电子电路设计步骤 1、明确功能要求在设计电子电路时,第一个步骤就是要明确功能的具体要求,通过设计要求和目标进行分析和整理,判断出设计要求中需要哪些功能,控制关系是怎样的,最后画出功能框架设计图,在根据用户的设计要求,进行相应的整改。 2、确定整体设计方案用户要求和功能框架设计图全部完成之后,就要根据设计要求和目的进行整理和分析,通过对成本的计算和器件的采购难易度进行分析,再根据各个功能画出系统功能框架最终设计图纸,必要时也可以设计多个方案,在从中挑选。 3、优选设计方案在确定了设计目标和要求之后,通过已经完成的功能框架设计最终图进行最后的分析和整理,根据用户的需求和实际情况,进行优选整理,比如有多个操作方案,必须要选择最佳操作方案,以成本、操作难易度、使用性能为首要考虑条件。 4、初步形成设计方案在各个部分组件都完成的之后,然后就需要将各个部分的组件进行连接和整理,这个过程必须要准确的设计图才能够完成,所以设计者必须要画出整体电子电路设计图,再根据设计图进行连接,这样能够最大程度上减少失误,提升电子电路的整体质量。 5、电路调试在制出成品之后,设计人员要对其进行相应的电路调试,包括系统故障的问题的排查,还有一点就是系统使用性能的测试以及功能测试,在调试过程中,必须要将以上三种情况进行分别测试,以保证整体电子电路的使用性能和整体质量。 6、电路定型电子电路设计最终也是最重要的一部就是电子电路的定型,做出最终的样品之后就要对所有的电路和分电路进行测试,最终将调试合格的样品进行定性,再由专业的专家进行鉴定,电子电路才能够算是真正的定型。以上就是从设计原则、方法、步骤三方面深入学习电子电路的设计技巧,相信会对大家有所帮助。

    时间:2020-03-18 关键词: 电子 电路 电路调试

  • 集成电路IC检测方法

    集成电路IC检测方法

    现在的市场上的集成电路多种多样,为我们的生活带来便利,那么大家知道怎么检查集成电路的IC是否工作吗?1、首先要掌握该电路中 IC 的用途、内部结构原理、主要电特性等,必要时还要分析内部电原理图。除了这些,如果再有各引脚对地直流电压、波形、对地正反向直流电阻值,那么,对检查前判断提供了更有利条件; 2、然后按故障现象判断其部位,再按部位查找故障元件。有时需要多种判断方法去证明该器件是否确属损坏。 3、一般对电路中 IC 的检查判断方法有两种:一是不在线判断,即电路中 IC 未焊入印刷电路板的判断。这种方法在没有专用仪器设备的情况下,要确定该电路中 IC 的质量好坏是很困难的,一般情况下可用直流电阻法测量各引脚对应于接地脚间的正反向电阻值,并和完好集成电路进行比较,也可以采用替换法把可疑的集成电路插到正常设备同型号集成电路的位置上来确定其好坏。当然有条件可利用集成电路测试仪对主要参数进行定量检验,这样使用就更有保证。 还有在线检查判断,即集成电路连接在印刷电路板上的判断方法。在线判断是检修集成电路在电视、音响、录像设备中最实用的方法。以下分几种情况进行阐述: 1、直流工作电压测量法:主要是测出各引脚对地的直流工作电压值;然后与标称值相比较,依此来判断集成电路的好坏。用电压测量法来判断集成电路的好坏是检修中最常采用的方法之一,但要注意区别非故障性的电压误差。测量集成电路各引脚的直流工作电压时,如遇到个别引脚的电压与原理图或维修技术资料中所标电压值不符,不要急于断定集成电路已损坏,应该先排除以下几个因素后再确定。 1)所提供的标称电压是否可靠,因为有一些说明书,原理图等资料上所标的数值与实际电压有较大差别,有时甚至是错误的。此时,应多找一些有关资料进行对照,必要时分析内部原理图与外围电路再进行理论上的计算或估算来证明电压是否有误。 2)要区别所提供的标称电压的性质,其电压是属哪种工作状态的电压。因为集成块的个别引脚随着注入信号的不同而明显变化,所以此时可改变波段或录放开关的位置,再观察电压是否正常。如后者为正常,则说明标称电压属某种工作电压,而这工作电压又是指在某一特定的条件下而言,即测试的工作状态不同,所测电压也不一样。 3)要注意由于外围电路可变元件引起的引脚电压变化。当测量出的电压与标称电压不符时可能因为个别引脚或与该引脚相关的外围电路,连接的是一个阻值可变的电位器或者是开关(如音量电位器、亮度、对比度、录像、快进、快倒、录放开关、音频调幅开关等)。这些电位器和开关所处的位置不同,引脚电压会有明显不同,所以当出现某一引脚电压不符时,要考虑引脚或与该引脚相关联的电位器和开关的位置变化,可旋动或拔动开头看引脚电压能否在标称值附近。 4)要防止由于测量造成的误差。由于万用表表头内阻不同或不同直流电压档会造成误差。一般原理上所标的直流电压都以测试仪表的内阻大于 20KΩ/V 进行测试的。内阻小于 20KΩ/V 的万用表进行测试时,将会使被测结果低于原来所标的电压。另外,还应注意不同电压档上所测的电压会有差别,尤其用大量程档,读数偏差影响更显着。 5)当测得某一引脚电压与正常值不符时,应根据该引脚电压对 IC 正常工作有无重要影响以及其他引脚电压的相应变化进行分析,才能判断 IC 的好坏。 6) 若 IC 各引脚电压正常,则一般认为 IC 正常;若 IC 部分引脚电压异常,则应从偏离正常值最大处入手,进口泵检查外围元件有无故障,若无故障,则 IC 很可能损坏。 7)对于动态接收装置,如电视机,在有无信号时,IC 各引脚电压是不同的。如发现引脚电压不该变化的反而变化大,该随信号大小和可调元件不同位置而变化的反而不变化,就可确定 IC 损坏。 8)对于多种工作方式的装置,如录像机,在不同工作方式下,IC 各引脚电压也是不同的。 以上几点就是在电路中 IC 没有故障的情况下,由于某种原因而使所测结果与标称值不同,所以总的来说,在进行集成块直流电压或直流电阻测试时要规定一个测试条件,尤其是要作为实测经验数据记录时更要注意这一点。通常把各电位器旋到机械中间位置,信号源采用一定场强下的标准信号,当然,如能再记录各功能开关位置,那就更有代表性。如果排除以上几个因素后,所测的个别引脚电压还是不符标称值时,需进一步分析原因,但不外乎两种可能。一是集成电路本身故障引起;二是集成块外围电路造成。分辨出这两种故障源,也是修理集成电路家电设备的关键。 交流工作电压测量法:为了掌握 IC 交流信号的变化情况,可以用带有 dB 插孔的万用表对 IC 的交流工作电压进行近似测量。检测时万用表置于交流电压挡,正表笔插入 dB 插孔;对于无 dB 插孔的万用表,需要在正表笔串接一只 0.1~0.5uF 隔直电容。该法适用于工作频率比较低的 IC,如电视机的视频放大级、场扫描电路等。由于这些电路的固有频率不同,波形不同,所以所测的数据是近似值,或者作为有无。以上就是检查检查集成电路的IC是否工作的一些方法,相信对我们的设计者来说都不算是难事。

    时间:2020-03-19 关键词: 电路 ic 印刷电路板

  • 电路图的分流电路

    电路图的分流电路

    各种电子设备离不开各种各样的电路图,对于初级工程师对于各方面的应变能力还是欠缺,其实电路图里面能反应出来问题的,电路设计是否合理,各器件间是否融洽(兼容问题)等,本文带你进一步了解电路图之分流电路的篇章。 分流意思是:总电流等于并联的各条支路电流之和,每支路分配得某个电流值。支流电流的大小与该支路阻抗成反比。若是恒定电源,用变阻器改变某支路电流大小,其它支路电流不变,但总电流大小相应改变。电流是由正极开始,流出。沿着导线 ,碰到分叉就分开,一直流到负极终止。 如果要看并联(混联)电路中电流的走向,首先要找出最开始的分流点和最后的合流点,并联(混联)电路中,分流点与合流点之间总有多条支路。若是若干支路中有一条是没有用电器的,那么电流就会走“捷径”,于是就会出现短路。 由电路图可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。在设计电路中,工程师可从容在纸上或电脑上进行,确认完善后再进行实际安装。通过调试改进、修复错误、直至成功。采用电路仿真软件进行电路辅助设计、虚拟的电路实验,可提高工程师工作效率、节约学习时间,使实物图更直观。 向左转|向右转 电路中电流分流的基本原因是什么? 电路中有几条并联电路就有几个分流: 电压表在电路中是并联的,所以也有分流成分,只是它电阻大,所以分流的电流不是很明显。 因为电流表是串联到电路里的,不起分流作用。如果并联了导线,由于导线的电阻很小,电流基本上都从导线上分流去了,电器上流过的电流就非常小了,这时就变成了短路了。电流表内阻很小,在电路中可以当作导线看待。电压表则是一个很大的电阻。以上就是电路图之分流电路的电路走向,希望更多的人来加以讨论交流。

    时间:2020-03-24 关键词: 电路 电路图 分流

  • 负反馈的类型判定方法

    负反馈的类型判定方法

    现在的电子设备都离不开电路的支撑,很多都要用到负反馈电路,本文的主题是在放大电路中,如何判断负反馈的类型,这是工程师们比较棘手的问题。在放大电路中加入负反馈可以提高放大器的很多性能指标,譬如提高放大器的输入阻抗,降低输出电阻,扩展放大器的频响,提高闭环增益的稳定性,故现在的放大电路一般都根据实际需要加入各种负反馈。由于不少初学者不会判断电路究竟属于哪一种负反馈,这里我们就来详细介绍一下? 1、电压负反馈与电流负反馈的判断 判断一个放大电路是电压负反馈和电流负反馈时,可以看一下,若反馈信号是直接从放大电路输出端引出的,则为电压反馈;若是从负载电阻靠近地端的一侧引出的为电流反馈。 2、串联负反馈和并联负反馈的判断。 判断一个放大电路为串联负反馈还是并联负反馈,可以看输入信号和反馈信号若是分别加在放大器的同相输入端和反相输入端,则为串联负反馈;若两个信号都是加在放大器的反相输入端,则为并联负反馈。知道了基本的判断方法后,我们可以来看看下面两个电路是哪种负反馈。 电压并联负反馈电路。 上图中,电阻Rf为反馈电阻,输出电压Vout信号可以通过此电阻反馈到输入端一部分,由于反馈信号直接从放大器的输出端引出,故本电路为电压负反馈;由于输入信号Vin和反馈信号同时加在放大器的反相输入端a点,故电路为并联负反馈。从以上判断可知,本电路为电压并联负反馈电路。 电流串联负反馈电路。 上图电路中,Rf为反馈电阻,反馈信号从负载RL的下端引出,通过Rf加至放大器的反相输入端,故电路为电流负反馈;由于反馈信号是加在放大器的反相输入端,而输入信号Vin是加在放大器的同相输入端,故为串联负反馈。综上,这个放大电路为电流串联负反馈电路。以上就是负反馈的电路判定方法。

    时间:2020-03-24 关键词: 放大电路 电路 负反馈

  • 损坏的晶振如何修复?

    损坏的晶振如何修复?

    在生活的各个角落,无处不见晶振的身影,晶振无时无刻不对我们的生活产生影响,例如在电脑主板上晶振就发挥重要的作用。你知道晶振发生故障后,该如何修理吗?本文将为你分析晶振的故障原因,以及如何修理好一个晶振。 诸多的人都会这样问到,电脑主板上的晶振究竟能起到什么作用。一般主板内藏最少2-3个石英晶振,甚至更多。电脑主板中最不可缺少的为圆柱晶振,初接触晶振这行业的人,很是疑惑,不知道这款晶振是做什么来用的。其实圆柱晶振最常规的频点为32.768KHZ,行业中人们通俗称为音叉晶体或表晶。时钟上用到的石英晶振,32.768K是数字电路板上最常见的了,做时钟客户经常选用的音叉晶振。 举个例子:笔记本主板上的晶振起什么作用,是振荡发出的频率吗?晶振全称为晶体振荡器,其作用在于产生原始的时钟频率,这个频率晶振经过频率发生器的放大或缩小后就成了电脑中各种不同的总线频率。 然而电脑主板所用到的石英晶体振荡器又称为有源晶振,根据极性,又可分为无源晶振。 主板中最常规的用到的晶振可归为五类,下面我们一一来道清它们所起到的作用。 1、14.318M晶振为时钟晶振,工作电压为1.1-1.6V。 2、24M晶振为BGA内部VGA部分提供相关工作时钟。 3、24.576M晶振用于音效芯片,工作电压为1.1-2.2V。 4、25M晶振用于网卡部分,为网卡提供工作时钟,也用于Nvidia芯片上电时序中所需的时钟,电压为1.1-2.2V。 5、32.768KHZ晶振为实时晶振,工作电压为1.4V左右,系统时间基准时钟,上电之前为南桥内部提供工作所需时钟。 音叉晶体最常规的晶体3*9mm、3*10mm、3*8mm、2*6mm、1*5mm、1*4mm。 电子产品在目前的趋势发展下,诸多产品都会采用石英晶振,然而选用陶瓷晶振的日益减少。我司针对目前的市场前景,细细研究过,其中原因有以下几点:1、石英晶振的高精准度和耐高温范围要比陶瓷晶振好,而陶瓷晶振精度往往达不到预期的效果,所以濒临的是被后续市场所淘汰掉。2、普通石英插件晶振价格没有以前那么高,实现了优质优价,以低价格优品质站稳市场,并冲击陶瓷晶振市场。 晶振损坏造成的影响 1、14.318M:不起振动,会影响主板上电后全板无复位,起振波形不正常,可能会直接导致主板开机不定时宕机的现象。举个实例:一片经过测试员多次放回的主板,故障原因定为不开机。后经确认,该板开机不稳定,大部分时间能开机,有时不开机,而不开机时全板无复位(14.318M也不起振),更换晶振后恢复正常。{此为晶振工作不稳定}。 2、25M晶振用于NVIDIA电时序时,25M不起振会影响不上电,或上电断电或不开机,单边起振也出现上电断电现象。而25M用于网卡芯片时,不起振则会抓不到网卡,频率异常会出现不连网或网灯不亮等现象。举个实例:一片NF520T的主板,抓不到网卡,测量25M晶振两端,发现有电压无波形,更换晶振后,故障消失。一片七彩虹CN61G 1.5B主板,故障现象为不开机数码卡显FF,进行了两三次维修测量均未发现问题,而此板为短期板,并且换过BGA,音暂时无法修复,放在工位上。在第四次插上电源后断电,后猛然醒悟,量得25M不起振,更换OK。 3、32.768KHZ晶振周期有误,直接会影响主板系统时钟的准确性,会出现时钟走不准的问题,这跟手机时间走不准是一个道理。 对于INTEL、AMD、ATI芯片的主板,32.768KHZ晶振不起振,会导致主板不上电或上电后全板无复位。对于NVIDIA芯片主板,32.768KHZ晶振不起振则会出现跑CF或45(对应的数码卡),数码卡跑FF{有可能会出现I/O(winbond83627)第18脚或21脚两者中有一个无时钟}。举个实例:开机数码卡跑45,量得为32.768KHZ不起振,用二极体分别测量连段晶振对地阻值偏低,并且两者阻值相似,而OK板晶振两端分别为670欧、775欧(维修中没必要记住其阻值,不准确时可参照OK板)。以上就是毁坏的晶振的修复方法,希望对相关行业的从业者有所帮助。

    时间:2020-03-24 关键词: 频率 电路 晶振

  • 模拟电路应该怎么学习?

    模拟电路应该怎么学习?

    相信很多理工科都会学习模拟数字电路,那么应该怎么学习呢?刚开始学习模拟电路?觉得学的云里雾里的?觉得老师讲的不好?觉得教材烂?好了,别找理由了,学不好应该是没找到方法,分享3位前辈的经验给你,看看前辈们都是怎么成菜鸟变成大牛的。 第一位,资深模拟ic设计工程师,知乎用户Yike,本着强大的责任感来为大家传道授业解惑,让各位看到这篇文字的人学模电的时候少走弯路,有更多的时间踢球把妹聊天喝酒…… 知道各位学业繁重,赶紧进入正题: 我念大学的时候,也觉得模拟电路这门课,学得稀里糊涂的。特别是在玩过一把CS以后,这种感觉更加明显。这里先要肯定题主是一个有上进心的好孩子。想把模电学好。我当年感觉到云里雾里的时候,根本没想过要学好模电。我做的事情,就是跟班里学习好的同学搞好关系。这样等到期末的时候,我就能顺利地借到笔记,高分就很简单了。 所以谈到这里,首先第一步是要明确:什么样才算”学好“模拟电路。如果你的诉求是期末拿到高分而已,那么您不用往下看了。出门往右电子科技书屋有历年的考题和课件。平日里该干嘛干嘛。拿星爷的台词说,妞照泡舞照跳。等到期末背一下就行啦。如果分数不说明问题。那么怎样才算学好模拟电路呢?问一下自己一个问题:我学模拟电路可以做什么? 为了设计一个增益为5的放大器吗?很多年以后,我回顾我自己大学那段时光,终于搞清楚我为什么老是觉得没有学好模拟电路了。答案其实很简单。我感觉自己学了好多东西,但不知道这些东西学来干什么。不知道各位觉得模电奇奇怪怪的朋友,是不是有类似的感觉。 模拟电路学来干什么? 我想回答一下这个问题。这是一个重要的问题。很多人有疑问,现在是一个数字时代,我为什么要学模拟电路。zhihu里面还有一个问题是“模拟电路设计师会不会消失掉” 答案是:不会的。 只要我们还需要跟真实的世界接触,那么我们不可避免地就会需要模拟电路,因此就需要可爱的模拟电路设计师们。打一个比方。就拿CPU来说好了。CPU处理的都是数字信号。但是它没有办法用数字电路来监控自己的温度。这个接口永远会是一个模拟接口。CPU需要的工作电压要求很精准。比方说,就是1V。各位想一想,这个1V怎么实现呢?用数字电路时没有办法实现的。你在你的手机屏幕上划了一下,你的手机怎么能知道你划了一下呢? 重力感应怎么实现呢? 你离不开模拟电路。模拟电路就好像是你的眼睛,耳朵,还有嘴巴,鼻子,手脚一样。数字电路就好比你的大脑。只要未来的世界不会发展成直接在大脑上接两根线,需要的时候打点儿多巴胺进去,这个世界就需要模拟电路来完成虚拟世界和真实世界的接口。 现在可以说说看,我们是怎么完成这个接口的。 现在假设我们要坐一个电路来sense你手机电池的温度,以免它越来越高,最后在你正在跟妹子聊天的时候爆了。毁容是小,还得花钱重新买一个手机。负责外围应用的工程师很贴心地给了你一个热敏电阻。电阻的阻值会随着温度的上升而不断减小。他希望你能做一件事儿,就是当温度高过一定值的时候,给一个幅度为3V的数字信号出来,让系统能关掉电池。 我们需要什么东西呢?首先我们需要一个电源。没有电源,什么东西都没办法工作。电源需要怎么做呢?直接从电池来拿电或许是个好方法,可是输出电压的幅度有限制,怎么办呢?有了,做一个local的3V电源吧。电源的要求是什么?内阻越低越好。什么样的电路能够给出一个低的输出内阻呢?电压-电压反馈运放。 所以第一个需要的block是一个运放。(题外话:在分立器件的时代,我们可以买一个运放。如果你想做的是芯片级的设计,那么我们需要选取合适的器件,把这个运放做在芯片上面。)好吧,运放是有了,可是没有基准电压,运放怎么才能输出一个恰好3V的电压呢? 第二个需要的block是一个基准电压源。 (在分立器件时代,我们可以买一个基准电压源,题主如果想做芯片级的设计,那么我们需要在芯片上面做一个基准电压。目前几乎所有的基准电压,都是依靠硅本身的能带来实现的。所以叫做带隙基准。约为1、2V。实现带隙基准的过程,不会是开环实现的,是闭环的过程。需要经行环路分析,稳定性分析,失配分析。) 现在,你把1、2V的电压源得到了,然后做了一个1、2:1、8阻值的电阻作为反馈电阻,使用运放得到了一个3V的电源电压。你使用环路稳定性分析方法分析知道环路是稳定的。算一算电路的输出电阻,知道大概这个电路有多少电流输出能力,能带多少负载。还不错,你觉得。虚短路虚断路的分析方法挺靠谱的。 紧接着就是真正有用的部分了。你需要一个比较器,来把热敏电阻与非热敏电阻的分压与一个基准电压进行比较。那么就用一个比较器吧。 (分立器件时代,你可以买一个比较器,想在单片上做完,那么就自己设计一个比较器吧。自己设计的比较器往往不那么理想。没有全电压输出范围,也没有全电压输出范围。增益也可能只有60个dB。但是你一看参数要求,够啦,60dB就60dB吧,总比没有好。) 好了。你完成了设计。 以上只是举了一个简单例子。实际遇到的模拟电路系统远比这个小系统复杂的多。市场的要求也越来越变态。谁叫有那么多聪明的人在设计模拟电路呢。所以设计模拟电路的人,都在呕心沥血。穷其心智去满足各种不合理的要求,达到许多不合理的标准。 不过对题主来说,这些都是后话了。 题主假如希望做模拟设计这方面的工作,那么按照上面所写的这个小小的例子,可以看出来有多少科目需要学么? 1、电路分析 2、模拟电路设计基础 3、信号与系统 4、反馈理论/补偿理论 如果题主想做的是模拟IC设计,你还需要学习以下科目: 1、半导体工艺技术 2、半导体器件原理 3、概率统计知识 4、模拟IC设计。 其中,模拟IC设计包括: 1、小信号分析 2、放大器的线性建模 3、基准设计 4、ESD保护 5、版图设计 6、寄生效应 6、失效分析 7、噪声 8、振荡器 9、太多的省略号 希望回答能让题主满意,或者帮助更多的年轻EE们。 以上回答是针对模拟集成电路设计的,下面这位知乎用户Tariel重点关注针对信号链设计: (下面的内容主要针对信号链设计,即已知应用需求,在与现实世界的接口(传感器/执行器)、信号调理电路/执行器驱动电路、ADC、数字域器件之间分配指标,并对模拟部分进行设计的过程。) 首先跟大家灌点儿心灵鸡汤:怎样不去学模拟电路。 1、有经济压力的不要去学模拟电路,尤其是有在京沪穗等一线城市还房贷压力的。虽然模拟电路听起来很高洋上,被大家认为是黑科技,但是这一行市场实在过小,分得也太细,指望它赚钱,随机性太大;而且在这一行里,频繁跳槽其实对水平的提高不利。所以如果有经济压力,请考虑尽早转向目前风险最低的劳动致富方法——当码农。当然如果能承担得起创业风险,参与到目前很火的智能硬件行业里去也是不错的。 2、没兴趣的不要去学模拟电路。搞模拟电路需要大量的时间和持续的心情,如果对这项工作没有兴趣,并且也自我感觉培养不出兴趣的话,也是尽早改行为佳,因为如果没有兴趣,不去思考,脑袋里面留下的东西只会越来越芜杂,对工作的提高并无帮助。 3、不会动手,或者不想动手的不要去学模拟电路。搞数字电路的时候,设计工程师可以只画原理图,把下游的东西(布局布线乃至工艺上的事情)都扔给别人,但是搞模拟电路要求设计工程师必须亲自动手搭建原型、诊断故障,大部分情况下只靠仿真是不够的。所以如果不知道烙铁拿哪头,或者怕拿烙铁,或者不屑于拿烙铁,请尽早改行;如果焊出来的东西跟豆腐渣一样的话,在排除烙铁故障和使用了劣质焊锡的情况之后,也请尽早改行。 4、脑袋不好使,逻辑能力不够的;或者脑袋有跑偏倾向的,不要去学模拟电路。当然如果脑袋不好使,那么不光模拟电路,数字电路也搞不好,写码也写不好,其他工程技术工作应该也干不好,还是趁早别当工程师了比较好。至于脑袋有没有跑偏倾向,可以用@ChrisXia的语言学民科偏见大全来自测——因为语言是大家从小每天接触的东西,你在"自发的语言研究"上脑子跑得越偏,进入专业领域之后脑子跑偏的倾向也越大。如果看了刚才那个膝盖中箭数过多,并且看完之后还坚持自己的偏见,那么可以考虑先吃点被门夹过的核桃补补脑。 5、有把工作台收拾得特别整洁的癖好的,不适合搞模拟电路。这一点不展开说了,贴一张图(JimWilliams主编的书AnalogCircuitDesign:Art,ScienceandPersonalities的封面): 如果面对这样的工作台有不适感,那么也趁早改行为好。当然跟前面几点相比,这一点是比较容易克服的。。。 喝完了心灵***,大家活着的还有多少?恭喜活着看到了这儿的同学,我是不是可以认为你们已经有了学好模拟电路,并以此作为爱好或职业的觉悟?那么我们就回到正题——怎样学好模拟电路。 不完全地总结一下,模拟电路设计大概有这么几个不同于其他工程设计领域,尤其是不同于数字电路设计的特点: 1、模拟电路处理的量来自现实世界,因此模拟电路的输入中,既包含与设计相关的信号,也包含与设计不相关的信号。比如设计一个心电图机,电极采集进来的除了需要处理的心电信号本身,还包含电极的极化电位(直流),从电源感应来的50Hz干扰等等,而这些不相关的信号往往要比需要处理的信号强很多。因此,攻城狮需要分析信号的特点(如心电信号、极化电位、50Hz干扰所占的频率范围不同;50Hz干扰属于共模信号,而心电信号属于差分信号等),并设计相应的电路,来提取出需要处理的信号,抑制与设计不相关的信号(比如设计合适的滤波器滤除带外干扰,用差分输入的仪表放大器消除共模干扰等)。 2、理论分析和仿真时忽略的因素,在实际的电路中可能产生很大的影响,甚至是决定性的影响。电路原理图只能反映元器件之间的连接情况,是拓扑的;而实际的电路是物理的。这也是课本上讲的内容和实际的电路的最大差别。举例来说,任务要求攻城狮设计一个220V转5V的开关电源,OK,很多半导体厂家都有用于隔离开关电源的控制器,只要看数据手册里面给的参考设计,根据计算更改几个反馈元件的量值,是不是就可以了呢?这样做出来的东西,倒是大都可以工作;但是也只是可以工作——事实上印制板布图的不同,能够严重影响输出纹波的大小。甚至在很多情况下(如进行射频设计时),印制板的分布参数也会作为电路中的元件使用。 3、模拟电路设计中充满着技术指标、功耗、成本等各种约束,而这些约束往往不能同时满足,甚至会互相冲突。比如设计便携式心电图机时,考虑到对功耗的严格限制和直接使用系统提供的电源的方便性,会倾向于使用低压单电源供电;而考虑到共模抑制比和动态范围的要求,又会倾向于使用双电源供电。在这些约束之间妥协和折衷并作出取舍,贯穿整个设计的始终。 那么想要从事模拟电路设计,需要做些什么呢?下面是一个不完全的列表(详细内容待补充): 1、通晓电路分析的方法,掌握至少一种仿真软件的使用方法。 2、掌握阅读元器件数据手册的方法。 3、多动手实验。 4、及时整理自己获得的结果,尤其是负面结果。 5、掌握设计电源的技能。 6、了解热设计的内容。 7、关于排故技能。 以上两位还不够么,再来一个,这位知乎用户李瑄给你推荐了一个很好用的免费小软件:强烈的兴趣将是你模拟电路学习之路的不灭动力。业余无线电?音频功放?仪器工具发烧友?…许多大师都是从小时候的业余爱好中,爱上模拟设计的。 模拟电路设计=系统设计(精髓是反馈)+电路分析(数学方法的图形化理解)+有源/无源器件各种特性的利用(了解器件的各项实际特性) 具体到学习上: 1、U-I这类图解法的娴熟应用,结合各种器件的特性曲线,对电路的理解有极大帮助,促进直观理解。 2、叠加原理、戴维宁等效这些方法多去尝试使用。 (上面2条其实都需要一个良好的电路分析的基础) 3、不要记太多公式,注意合理近似和直观理解公式的意义。 4、模拟设计的精华——反馈,好好吃透,积累技巧,建议用纯晶体管制作AGC电路、稳压电源以便加深理解。 5、这是一门工程学科,需要大量的实践,以纠正自己理解上的偏颇。 强烈推荐:如果实验条件不足,推荐用LTspice仿真,小巧的免费软件,操作方便,爱不释手!以上就是推荐的一些学习方法,希望对大家学习模电有所帮助。

    时间:2020-03-25 关键词: 数字 模拟 电路

  • 电路设计注意事项

    电路设计注意事项

    这是一位技术工程师总结的精华学习比较,在这里分享给想了解电路设计的你,你们,在工作或者学习中能有所帮助~ 1.电压电流 电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。 2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。 3.全电路欧姆定律:U=E-RI 4.负载大小的意义:电路的电流越大,负载越大。电路的电阻越大,负载越小。 5.电路的断路与短路、电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 。 基尔霍夫定律 : 1.几个概念:支路:是电路的一个分支。结点:三条(或三条以上)支路的联接点称为结点。回路:由支路构成的闭合路径称为回路。网孔:电路中无其他支路穿过的回路称为网孔。 2.基尔霍夫电流定律: (1)定义:任一时刻,流入一个结点的电流的代数和为零。或者说:流入的电流等于流出的电流。 (2)表达式:i进总和=0 或: i进=i出 (3)可以推广到一个闭合面。 3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。或者说:在一个闭合的回路中,电压的代数和为零。或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。 电位的概念 (1)定义:某点的电位等于该点到电路参考点的电压。 (2)规定参考点的电位为零。称为接地。 (3)电压用符号U表示,电位用符号V表示 (4)两点间的电压等于两点的电位的差 。 (5)注意电源的简化画法。 理想电压源与理想电流源 1.理想电压源 (1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。理想电压源的输出功率可达无穷大。(2)理想电压源不允许短路。 2.理想电流源 (1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。理想电流源的输出功率可达无穷大。(2)理想电流源不允许开路。 3.理想电压源与理想电流源的串并联 (1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。(2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。 4.理想电源与电阻的串并联 (1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。(2)理想电流源与电阻串联,可将电阻去掉(短路),不影响对其它电路的分析。 5.实际的电压源可由一个理想电压源和一个内电阻的串联来表示。 支路电流法 1.意义:用支路电流作为未知量,列方程求解的方法。 2.列方程的方法: (1)电路中有b条支路,共需列出b个方程。(2)若电路中有n个结点,首先用基尔霍夫电流定律列出n-1个电流方程。( 3)然后选b-(n-1)个独立的回路,用基尔霍夫电压定律列回路的电压方程。 3.注意问题:若电路中某条支路包含电流源,则该支路的电流为已知,可少列一个方程(少列一个回路的电压方程)。 叠加原理 1.意义:在线性电路中,各处的电压和电流是由多个电源单独作用相叠加的结果。2.求解方法:考虑某一电源单独作用时,应将其它电源去掉,把其它电压源短路、电流源断开。3.注意问题:最后叠加时,应考虑各电源单独作用产生的电流与总电流的方向问题。叠加原理只适合于线性电路,不适合于非线性电路;只适合于电压与电流的计算,不适合于功率的计算。 戴维宁定理 1.意义:把一个复杂的含源二端网络,用一个电阻和电压源来等效。 2.等效电源电压的求法:把负载电阻断开,求出电路的开路电压UOC。等效电源电压UeS等于二端网络的开路电压UOC。 3.等效电源内电阻的求法: (1)把负载电阻断开,把二端网络内的电源去掉(电压源短路,电流源断路),从负载两端看进去的电阻,即等效电源的内电阻R0。(2)把负载电阻断开,求出电路的开路电压UOC。然后,把负载电阻短路,求出电路的短路电流ISC,则等效电源的内电阻等于UOC/ISC。 诺顿定理 1.意义:把一个复杂的含源二端网络,用一个电阻和电流源的并联电路来等效。2.等效电流源电流IeS的求法:把负载电阻短路,求出电路的短路电流ISC。则等效电流源的电流IeS等于电路的短路电流ISC。3.等效电源内电阻的求法:同戴维宁定理中内电阻的求法。 换路定则: 1.换路原则是: 换路时:电容两端的电压保持不变,Uc(o+) =Uc(o-)。电感上的电流保持不变, Ic(o+)= Ic(o-)。原因是:电容的储能与电容两端的电压有关,电感的储能与通过的电流有关。 2.换路时,对电感和电容的处理 (1)换路前,电容无储能时,Uc(o+)=0。换路后,Uc(o-)=0,电容两端电压等于零,可以把电容看作短路。 (2)换路前,电容有储能时,Uc(o+)=U。换路后,Uc(o-)=U,电容两端电压不变,可以把电容看作是一个电压源。 (3)换路前,电感无储能时,IL(o-)=0。换路后,IL(o+)=0,电感上通过的电流为零,可以把电感看作开路。 (4)换路前,电感有储能时,IL(o-)=I。换路后,IL(o+)=I,电感上的电流保持不变,可以把电感看作是一个电流源。根据以上原则,可以计算出换路后,电路中各处电压和电流的初始值。 正弦量的基本概念 1.正弦量的三要素(1)表示大小的量:有效值,最大值 表示变化快慢的量:周期T,频率f,角频率ω。表示初始状态的量:相位,初相位,相位差。 复数的基本知识: 1.复数可用于表示有向线段,复数A的模是r ,辐角是Ψ 2.复数的三种表示方式:1.代数式2.三角式3.指数式4.极坐标式 3.复数的加减法运算用代数式进行。复数的乘除法运算用指数式或极坐标式进行。 4.复数的虚数单位j的意义:任一向量乘以+j后,向前(逆时针方向)旋转了,乘以-j后,向后(顺时针方向)旋转了。 正弦量的相量表示法: 1.相量的意义:用复数的模表示正弦量的大小,用复数的辐角来表示正弦量初相位。相量就是用于表示正弦量的复数。为与一般的复数相区别,相量的符号上加一个小圆点。 2.最大值相量:用复数的模表示正弦量的最大值。 3.有效值相量:用复数的模表示正弦量的有效值。 4.注意问题:正弦量有三个要素,而复数只有两个要素,所以相量中只表示出了正弦量的大小和初相位,没有表示出交流电的周期或频率。相量不等于正弦量。 5.用相量表示正弦量的意义: 用相量表示正弦后,正弦量的加减,乘除,积分和微分运算都可以变换为复数的代数运算。 6.相量的加减法也可以用作图法实现,方法同复数运算的平行四边形法和三角形法。 电阻元件的交流电路 1.电压与电流的瞬时值之间的关系:u=Ri ,u与i同相位。 2.最大值形式的欧姆定律(电压与电流最大值之间的关系) 3.有效值形式的欧姆定律(电压与电流有效值之间的关系) 4.相量形式的欧姆定律(电压相量与电流相量之间的关系)相位与相位同相位。 电感元件的交流电路 1.电压与电流的瞬时值之间的关系:u与i相位不同,u 超前i 2.最大值形式的欧姆定律(电压与电流最大值之间的关系) 3.有效值形式的欧姆定律(电压与电流有效值之间的关系) 4.电感的感抗: 单位是:欧姆 5.相量形式的欧姆定律(电压相量与电流相量之间的关系) 由式1和式2 得:相位比相位的相位超前 。 6.无功功率:用于表示电源与电感进行能量交换的大小 Q=UI=XL 单位是乏:Var 。 电容元件的交流电路 1.电压与电流的瞬时值之间的关系u与i不同相位,u 落后i 。 2.最大值形式的欧姆定律(电压与电流最大值之间的关系) 3.有效值形式的欧姆定律(电压与电流有效值之间的关系) 4.电容的容抗: 单位是:欧姆 5.相量形式的欧姆定律(电压相量与电流相量之间的关系) 相位比相位的相位落后 。 6.无功功率:用于表示电源与电容进行能量交换的大小为了与电感的无功功率相区别,电容的无功功率规定为负。 Q=-UI=-XC 单位是乏:Var 1.阻抗的串联电路: (1)各个阻抗上的电流相等:(2)总电压等于各个阻抗上和电压之和:(3)总的阻抗等于各个阻抗之和:(4)分压公式: 多个阻抗串联时,具有与两个阻抗串联相似的性质。 2.阻抗的并联电路如图: (1)各个阻抗上的电压相等:(2)总电流等于各个阻抗上的电流之和:(3)分流公式: 多个阻抗并联时,具有与两个阻抗并联相似的性质。 3.复杂交流电路的计算 在电工学中一般不讲复杂交流电路的计算,对于复杂的交流电路,仍然可以用直流电路中学过的计算方法,如:支路电流法、结点电压法、叠加原理、戴维宁定理等。 交流电路的功率 1. 瞬时功率:p=ui=UmIm sin(ωt+φ) sinωt=UIcosφ-UIcos(2ωt+φ) 2. 平均功率:P= = =UIcosφ平均功率又称为有功功率,其中 cosφ称为功率因数。电路中的有功功率也就是电阻上所消耗的功率。 3. 无功功率:Q=ULI-UCI= I2(XL-XC)=UIsinφ电路中的无功功率也就是电感与电容和电源之间往返交换的功率。 4. 视在功率: S=UI 视在功率的单位是伏安(VA),常用于表示发电机和变压器等供电设备的容量。 5.功率三角形:P、Q、S组成一个三角形,其中φ为阻抗角。 电路的功率因数 1.功率因数的意义从功率三角形中可以看出,功率因数。功率因数就是电路的有功功率占总的视在功率的比例。功率因数高,则意味着电路中的有功功率比例大,无功功率的比例小。 2.功率因数低的原因: (1)生产和生活中大量使用的是电感性负载异步电动机,洗衣机、电风扇、日光灯都为感性负载。(2)电动机轻载或空载运行(大马拉小车) 异步电动机空载时cosφ=0.2~0.3,额定负载时cosφ=0.7~0.9。 3.提高功率因数的意义: (1) 提高发电设备和变压器的利用率 发电机和变压器等供电设备都有一定的容量,称为视在功率,提高电路的功率因数,可减小无功功率输出,提高有功功率的输出,增大设备的利用率。 (2) 降低线路的损耗 当线路传送的功率一定,线路的传输电压一定时,提高电路的功率因数可减小线路的电流,从而可以降低线路上的功率损耗,降低线路上的电压降,提高供电质量,还可以使用较细的导线,节省建设成本。 (3) 并联电容的法,在电感性负载两端并联电容可以补偿电感消耗的无功功率,提高电路的功率因数。 总结:学习这些精华笔记,对于初学者是很有帮助的,一步一个脚印扎实基础。相信大家在看完之后会有一定的收货。

    时间:2020-03-25 关键词: 电路 电流 电源

  • 电流电压反馈判断方法

    电流电压反馈判断方法

    大家知道什么是反馈电路吗?首先,先和大家一起来学习一下负反馈放大电路的基本要点。什么是负反馈,负反馈就是为了保证我们的放大电路能够正常在我们的运行范围内工作,挖掘含义就是反馈的信号和我们的放大电路的输入信号相位相反,做减法。 什么是正反馈,正反馈的反馈信号和我们的输入信号的相位相同,做加法,这个时候其实很容易出现震荡的出现。说完了这个我们回到我们的主题来,我们先来看看电压反馈是个什么。电压反馈从放大器输出端取出输出信号的电压,目的稳定输出信号的电压。电压反馈判定:输出信号撤销,反馈没有信号,采样点和输出端是否是在一个点,如果是一个点,属于电压反馈,并联电路输出端。 如何理解电压反馈输出电阻小:利于并联电压处处相等,并联电阻变小来理解。总结:电压反馈的采样元件是并联输出端,输出电阻小。 我们看到这里输出端是并联反馈出来的;断定是电压反馈,同时输出信号撤销,反馈也没有信号。 看完了什么是电压反馈,我们来看看电流反馈。 电流反馈:就是对我们的放大器的输出端进行信号的电流的采集,我们知道,串联电阻的电流处处相等,串联电阻等于各个电阻之和,我们可以借用这个来理解,电流反馈就是反馈元件串联在我们的反馈的输出端。提高输出电阻的阻值。同时反馈采样的信号是不和我们的输出端在一个端点。 看图说话:我们看下这个,R是我们的负载电阻。 我们看下,RF的采样点和输出端是不同点,串联在采样输出电阻上,当输出信号撤销,还有信号过来(看端点是负信号)。总结:电压电流反馈看放大器的输出端,电压反馈减少输出电阻,电流反馈增大输出电阻 电压反馈可以稳定输出电压,减少输出电阻,提高带动负载能力。电流反馈稳定输出电流,增大输出电阻,负载带动能力不强。以上就是电流负反馈的判断方法,希望有很多人参与到讨论的行列中。

    时间:2020-03-25 关键词: 电路 电压反馈 电流反馈

  • 电感的作用和工作原理解析

    电感的作用和工作原理解析

    电路设计离不开电感,那么它的作用是什么呢?电感的特性与电容的特性正好相反,它具有阻止交流电通过而让直流电顺利通过的特性。电感的特性是通直流、阻交流,频率越高,线圈阻抗越大。电感器在电路中经常和电容一起工作,构成LC滤波器、LC振荡器等。另外,人们还利用电感的特性,制造了阻流圈、变压器、继电器等。 电感的作用:通直流,阻交流 通直流:所谓通直流是指在直流电路中,电感的作用相当于一根导线,不起任何作用. 阻交流:在交流电路中,电感会有阻抗,即XL,整个电路的电流会变小,对交流有一定的阻碍作用 电感的工作原理是什么 电感线圈当加上交流电时,自身电流变化,引起自身磁通量发生变化而引起感应电动势,这种现象叫自感,自感电流的方向总是阻碍引起自感的电流变化,当交流电流增强时,自感电流跟交流电方向相反,当交流电流减弱时,自感电流跟交流电方向相同,这样对交流具有阻截作用。 1、自感 当线圈中有电流通过时,线圈的周围会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压)。 2、互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。 用途: 电感按电感的作用可分为振荡电感,校正电感,显像管偏转电感,阻流电感,滤波电感,隔离电感,被偿电感等。 1、振荡电感又分为电视机行振荡线圈,东西枕形校正线圈等。 2、显像管偏转电感分为行偏转线圈和场偏转线圈。 3、阻流电感(也称阻流圈)分为高频阻流圈,低频阻流圈,电子镇流器用阻流圈,电视机行频阻流圈和电视机场频阻流圈等。 4、滤波电感分为电源(工频)滤波电感和高频滤波电感等。以上就是电路设计中的电感的需求知识,相信会对大家有所帮助。

    时间:2020-03-25 关键词: 电路 电感 电流

  • 值得看的工程师的电源设计心得

    值得看的工程师的电源设计心得

    现在的电源越来越多,那么如何设计电源呢?现如今,在一个电子系统中,电源部分的设计可谓是相当的重要,本篇文章主要想通过和大家探讨一些自己关于电源设计的心得,来个抛砖引玉,让我们在电源设计方面能够都有所深入和长进。 Q1、如何来评估一个系统的电源需求? Answer:对于一个实际的电子系统,要认真的分析它的电源需求。不仅仅是关心输入电压,输出电压和电流,还要仔细考虑总的功耗,电源实现的效率,电源部分对负载变化的瞬态响应能力,关键器件对电源波动的容忍范围以及相应的允许的电源纹波,还有散热问题等等。功耗和效率是密切相关的,效率高了,在负载功耗相同的情况下总功耗就少,对于整个系统的功率预算就非常有利了,对比LDO和开关电源,开关电源的效率要高一些。同时,评估效率不仅仅是看在满负载的时候电源电路的效率,还要关注轻负载的时候效率水平。 至于负载瞬态响应能力,对于一些高性能的CPU应用就会有严格的要求,因为当CPU突然开始运行繁重的任务时,需要的启动电流是很大的,如果电源电路响应速度不够,造成瞬间电压下降过多过低,造成CPU运行出错。一般来说,要求的电源实际值多为标称值的+-5%,所以可以据此计算出允许的电源纹波,当然要预留余量的。散热问题对于那些大电流电源和LDO来说比较重要,通过计算也是可以评估是否合适的。 Q2、如何选择合适的电源实现电路? Answer:根据分析系统需求得出的具体技术指标,可以来选择合适的电源实现电路了。一般对于弱电部分,包括了LDO(线性电源转换器),开关电源电容降压转换器和开关电源电感电容转换器。相比之下,LDO设计最易实现,输出纹波小,但缺点是效率有可能不高,发热量大,可提供的电流相较开关电源不大等等。 而开关电源电路设计灵活,效率高,但纹波大,实现比较复杂,调试比较烦琐等等。 Q3、如何为开关电源电路选择合适的元器件和参数? Answer:很多的未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCBlayout问题,元器件的参数和类型选择问题等。其实只要了解了,使用一个开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很多影响的。 而输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些的选择基本上就是要满足一个性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。使用低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。 Q4、如何调试开关电源电路? Answer:有一些经验可以共享给大家 1) 电源电路的输出输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。 2) 一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。 Q5、接地技术的讨论① ①为什么要接地? Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。 同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。 随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。 而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。最近,高速信号的信号回流技术中也引入了“地”的概念。 Q6、接地技术的讨论② ②接地的定义 Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。注意要求是”低阻抗”和“通路”。 Q7、接地技术的讨论③ ③常见的接地符号 Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地 Q8、接地技术的讨论④ ④合适的接地方式 Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。而单点接地又分为串联单点接地和并联单点接地。一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。 Q9、接地技术的讨论⑤ ⑤信号回流和跨分割的介绍 Answer1:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。 第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。 第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。 第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。(这是针对多层板多个电源供应情况说的) 对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。 Q10、接地技术的讨论⑥ ⑥为什么要将模拟地和数字地分开,如何分开? Answer:模拟信号和数字信号都要回流到地,因为数字信号变化速度快,从而在数字地上引起的噪声就会很大,而模拟信号是需要一个干净的地参考工作的。如果模拟地和数字地混在一起,噪声就会影响到模拟信号。一般来说,模拟地和数字地要分开处理,然后通过细的走线连在一起,或者单点接在一起。总的思想是尽量阻隔数字地上的噪声窜到模拟地上。当然这也不是非常严格的要求模拟地和数字地必须分开,如果模拟部分附近的数字地还是很干净的话可以合在一起。 Q11、接地技术的讨论⑦ ⑦单板上的信号如何接地? Answer:对于一般器件来说,就近接地是最好的,采用了拥有完整地平面的多层板设计后,对于一般信号的接地就非常容易了,基本原则是保证走线的连续性,减少过孔数量;靠近地平面或者电源平面,等等。 Q12、接地技术的讨论⑧ ⑧单板的接口器件如何接地? Answer:有些单板会有对外的输入输出接口,比如串口连接器,网口RJ45连接器等等,如果对它们的接地设计得不好也会影响到正常工作,例如网口互连有误码,丢包等,并且会成为对外的电磁干扰源,把板内的噪声向外发送。一般来说会单独分割出一块独立的接口地,与信号地的连接采用细的走线连接,可以串上0欧姆或者小阻值的电阻。细的走线可以用来阻隔信号地上噪音过到接口地上来。同样的,对接口地和接口电源的滤波也要认真考虑。 Q13、接地技术的讨论⑨ ⑨带屏蔽层的电缆线的屏蔽层如何接地? Answer:屏蔽电缆的屏蔽层都要接到单板的接口地上而不是信号地上,这是因为信号地上有各种的噪声,如果屏蔽层接到了信号地上,噪声电压会驱动共模电流沿屏蔽层向外干扰,所以设计不好的电缆线一般都是电磁干扰的最大噪声输出源。当然前提是接口地也要非常的干净。以上就是电源设计工程师的经验分享,相信对大家有所帮助。

    时间:2020-03-25 关键词: 电路 开关电源 电源设计

  • PCB设计需要什么软件?

    PCB设计需要什么软件?

    现在的社会离不开电路谁工程师,为我们的各个设备设计保驾护航。今天讨论一个很多初学者都关注的一个问题。也是很多小伙伴最近老问到的一个问题:目前PCB设计软件这么多,到底应该学哪个PCB设计软件?(仅供参考) 目前主流的就 三大PCB设计软件,目前不主流的就不提了。 1、Altium Designer 下简称AD。可以说是 PROTEL 的升级版。 2、PADS 3、Cadence allegro Protel99 就不要提了。那已经是古董了。没法画复杂的板子。 除了这3个软件以外,还有很多软件,如Cadstar,CR5000,PCAD,Mentor EE,Mentor WG,Mentor en,PADS专业版等大把软件,而且这些软件有的功能也非常强悍,比上面说的3大软件功能强大的都有。但是市场占有率不高,这里就不说了。目前市场占有率不高,目前你学他意义不大,对一个初学者,学了估计也难找工作。没什么公司用。 所以我们主要讨论一下这3大软件。 1、AD软件分析 AD(包括PROTEL99) 这个软件的市场定位是一些简单的板子,比如单片机类,简单的工业类,一些相对简单的板子,用这个软件比较多。相对是偏低端产品设计。大部分都是简单的板子。大部分用这个软件的公司产品都是相对偏简单的。一般都是 2层 4层为主。在中国市场上,内地城市使用的比较多,发达城市比较少用。基本上可以说在发达城市,这个使用这个软件,找工作都不好找。但是这个软件,在内地城市使用的占有率很高。这个软件在内地城市为什么这么高,我个人认为主要是因为这个软件在学校里面的推广做得比较好,因为每个读电子或者机电相关专业的学生在学校里面就有教这个,或者有要求去学这个。所以目前还在用这个软件的工程师,我可以肯定的是超过 80%是因为在学校里面用的,出社会后就继续用了。所以可以说这个软件如果没有中国大学生这一部分的市场,这个软件应该在中国市场上估计就非常少见了。 2、PADS软件分析 PADS的前身是 POWER PCB ,这个软件界面菜单很少,上手不难。我估计也是这一点能得到了市场的认可。特别是消费类电子产品市场占有率非常高,早期都可以说在消费类产品里面差不多是垄断的地位,比如从早期的 VCD,DVD,MP3 ,MP4,U盘,液晶电视,到现在的平板电脑,行车记录仪,车载电子产品,导航仪,数字机顶盒,安卓智能电视盒、手机等都是绝对的市场占有率。特别是手机PCB设计,PADS软件几乎占了垄断的优势。 在整个消费类电子产品里面,几乎PADS都占了大头。特别是前几年的市场占有率更是绝对的高。这几年因为allegro 这个软件慢慢的起来了。PADS占有率感觉有所下降的趋势。 但是目前在沿海发达城市里面,PADS还是占主流市场,特别是深圳大部分公司还是用PADS ,其次是allegro 。PADS找工作在深圳很容易。 3、allegro软件分析 Cadence allegro 这个软件的优势是功能强大,缺点是不好学,不容易上手。所以这个软件 在10年前或者说7 8年前,市场占有率都还比较低,一般只有大公司用,特别是做电脑主板的公司用,因为这个软件功能强大,画大型板子有优势。如电脑主板,大型工控板,服务器主板,等大型板子,他的效率和优势非常明显。所以他的市场目前主要还是在电脑主板,大型工控板,服务器主板,等这些大型板子上,以及现在一些平板电脑,手机板也会有少量公司用。和大公司在用。长远角度来讲allegro市场前景比较大。 学习软件结论: 想要画简单的板子,就学AD 。想要画消费类电子产品就学PADS 。想要画大型板子就学allegro 。 如果学PADS 和allegro 以后你基本上也都是在沿海等发达城市工作,内地城市没这么好找工作。 如果学AD ,主要就是内地工作,沿海城市用的不多。当然这个是相对比例而已,就好比深圳用PADS非常多,但是也还是有公司用AD ,只是说非常少而已。 另外比如你想要学AD 就不要想着去画消费类产品,比如你学AD去画 行车记录仪,有P用了,用AD软件想去找个画行车记录仪的工作,根本就找不到,根本就没有做行车记录仪的公司用AD这个软件画板,谁要你。做平板电脑,做液晶电视,做手机,等这些产品也是如此,学AD 想要画这种产品,你非常难找工作或者说根本就找不到这类的工作。这类也许会有人反驳,我现在就是用AD 画平板啊,现在用AD画平板也没错,或者用AD 画手机也没错,但是你去看看整个市场上用的有多少? 但是不管怎么少人用,应该也还是有个别公司再用,用的公司不多,对一个刚学的新手来说,更是难找工作。 工资方面,用不同的软件,画不同的板子,工资差很远的都有。比如现在有一些内地城市画板,3K多的都有。 有一些地方拿 2W多的也有,这个具体还是要看你画什么板来定。 板子差不多的话,个人感觉用ALLEGRO 的工资稍微比PADS的高一点点,这是我个人根据身边很多朋友的收入来看觉得的。个人看法。 学习主要还是为了工作,所以学习就应该学到合适的东西,比如学AD 也就应该学画一些简单的板子和工业类相对简单的板子就差不多了,再复杂的板子,也少公司用AD 。 学PADS ,你想要学画电脑主板,或者大型工控主板,也也没什么P用,学了也找不到工作。基本没有公司用PADS画电脑主板。 学allegro 你想要画液晶电视或者行车记录仪,那也没什么P用,用allegro 想找个画液晶电视,行车记录仪的工作也是找不到,根本没公司用。 下面我们来讨论一下目前就业问题,和定位: 就业,这是每一个想要进入这个行业都关注的问题,也就是说我学这个PCB设计软件后。能不能找到工作,如果不能找到工作那就是白学了。这些软件目前在中国城市分工,感觉还是有区域划分,比如大部分内地城市都是AD (PROTEL)占有率比较高, 1、如果你想要在内地城市工作,画一些简单的 2层,4层板,那我建议你学AD 软件,内地城市用这个软件找工作比较容易,但是由于用这个软件的公司板子一般都是比较简单的,所以工资一般不高。 2、如果你想要在沿海城市,特别是想要在深圳工作,想要画这种消费类产品的话,建议学PADS ,这个软件容易上手,而且深圳找工作非常容易。用的公司很多。 3、如果你想画大型产品板子,建议学allegro 。这软件目前市场占有率挺高,特别是在大型板子里面占有绝对的优势。学习PCB设计,大部分人都是为了工作,学完后,能找到一份好工作,这是每个人的期望。所以想要学哪个设计软件,要自己定位好,因为这个有好几个影响的因素,比如你以后想在哪个城市工作, 主要想设计什么产品。 上面在是我个人对这几个软件的见解。 怎么才能知道我所在的城市用哪个PCB设计软件? 方法是:你到一些招聘网站上,看你所在的城市,大部分招这方面职位的,都要求用哪个软件。这样你就知道你在的城市用哪个软件比较多了。 有一些公司招聘信息会这么写,要求精通PADS9.5 ,熟练allegro ,PROTEL 等设计软件。 看到这种信息其实马上就能知道这个公司主要用哪个设计软件,按照人的心理学来讲,一般都是写在第一个的就是常用的。 或者要求精通的那个就是他们主要使用的。所以你找100个招聘信息下来,统计一下。就能知道你所在的城市 主要用哪个软件了。这个软件占的份额大概有多少也就知道了。 也许这不是绝对准确,但是也是非常接近市场数据。 软件只是一个工具,其实用哪个软件都无所谓,如果你自己是老板,或者公司用什么软件你可以说了算的,那你学哪个软件问题都不大。但是如果你是为了找工作方便的,那还是要看哪个软件用的公司多才好找工作。以上就是学习PCB的一些软件的推荐,仅供参考。

    时间:2020-03-25 关键词: 电路 pcb设计 pcb设计软件

  • 传感器电路的噪声

    传感器电路的噪声

    在生活中处处可见传感器,为我们的生活带来便利,在电路设计中,感器电路的抗干扰设计尤为重要。在这学习之前,我们必须了解传感器电路噪声的来源,以便找出更好的方法来降低噪声。下面学习传感器电路噪声: 低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的电子和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。其产生噪声的大小与温度、频带宽度△f成正比。 高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。 通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。以一个1kΩ的电阻为例,如果电路的通频带为1MHz,则呈现在电阻两端的开路电压噪声有效值为4μV(设温度为室温T=290K)。看起来噪声的电动势并不大,但假设将其接入一个增益为106倍的放大电路时,其输出噪声可达4V,这时对电路的干扰就很大了。 电路板上的电磁元件的干扰 许多电路板上都有继电器、线圈等电磁元件,在电流通过时其线圈的电感和外壳的分布电容向周围辐射能量,其能量会对周围的电路产生干扰。像继电器等元件其反复工作,通断电时会产生瞬间的反向高压,形成瞬时浪涌电流,这种瞬间的高压对电路将产生极大的冲击,从而严重干扰电路的正常工作。 晶体管的噪声 晶体管的噪声主要有热噪声、散粒噪声、闪烁噪声。 热噪声是由于载流子不规则的热运动通过BJT内3个区的体电阻及相应的引线电阻时而产生。其中rbb所产生的噪声是主要的。通常所说的BJT中的电流,只是一个平均值。实际上通过发射结注入到基区的载流子数目,在各个瞬时都不相同,因而发射极电流或集电极电流都有无规则的波动,会产生散粒噪声。 由于半导体材料及制造工艺水平使得晶体管表面清洁处理不好而引起的噪声称为闪烁噪声。它与半导体表面少数载流子的复合有关,表现为发射极电流的起伏,其电流噪声谱密度与频率近似成反比,又称1/f噪声。它主要在低频(kHz以下)范围起主要作用。 电阻器的噪声 电阻的干扰来自于电阻中的电感、电容效应和电阻本身的热噪声。例如一个阻值为R的实芯电阻,可等效为电阻R、寄生电容C、寄生电感L的串并联。一般来说,寄生电容为0.1~0.5pF,寄生电感为5~8nH。在频率高于1MHz时,这些寄生电感电容就不可忽视了。 各类电阻都会产生热噪声,一个阻值为R的电阻(或BJT的体电阻、FET的沟道电阻)未接入电路时,在频带宽度B内所产生的热噪声电压为:式中:k为玻尔兹曼常数;T是绝对温度(单位:K)。热噪声电压本身是一个非周期变化的时间函数,因此,它的频率范围是很宽广的。所以宽频带放大电路受噪声的影响比窄频带大。 另外,电阻还会产生接触噪声,其接触噪声电压为: 式中:I为流过电阻的电流均方值;f为中心频率;k是与材料的几何形状有关的常数。由于Vc在低频段起重要的作用,所以它是低频传感器电路的主要噪声源。 集成电路的噪声 集成电路的噪声干扰一般有两种:一种是辐射式,一种是传导式。这些噪声尖刺对于接在同一交流电网上的其他电子设备会产生较大影响。噪声频谱扩展至100MHz以上。在实验室中,可以用高频示波器(100MHz以上)观察一般单片机系统板上某个集成电路电源与地引脚之间的波形,会看到噪声尖刺峰-峰值可达数百毫伏甚至伏级。以上就是传感器的噪声的讲解,希望能给大家一些帮助。

    时间:2020-03-27 关键词: 传感器 电路 噪声

  • 独石电容和电解电容区别

    独石电容和电解电容区别

    什么是独石电容和电解电容,他们有哪些区别?随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。同时在电路设计中,电容的作用是不容忽视的。在调谐、旁路、耦合、滤波等电路中起着非常重要的作用。那么问一下各位独石电容和电解电容有何差异性?这个问题你能屡清楚思路吗? 什么是电解电容? 电解电容是电容的一种,金属箔为正极(铝或钽),与正极紧贴金属的氧化膜(氧化铝或五氧化二钽)是电介质,阴极由导电材料、电解质(电解质可以是液体或固体)和其他材料共同组成,因电解质是阴极的主要部分,电解电容因此而得名。同时电解电容正负不可接错。铝电解电容器可以分为四类:引线型铝电解电容器;牛角型铝电解电容器;螺栓式铝电解电容器;固态铝电解电容器。 电解电容器通常是由金属箔(铝/钽)作为正电极,金属箔的绝缘氧化层(氧化铝/钽五氧化物)作为电介质,电解电容器以其正电极的不同分为铝电解电容器和钽电解电容器。铝电解电容器的负电极由浸过电解质液(液态电解质)的薄纸/薄膜或电解质聚合物构成;钽电解电容器的负电极通常采用二氧化锰。由于均以电解质作为负电极(注意和电介质区分),电解电容器因而得名。 什么是独石电容器? 独石电容器是多层陶瓷电容器的别称, 简称MLCC,广泛应用于电子精密仪器。各种小型电子设备作谐振、耦合、滤波、旁路。 独石电容除有电容器 “隔直通交”的通性特点外,其还有体积小,比容大,寿命长,可靠性高,适合表面安装等特点。随着世界电子行业的飞速发展,作为电子行业的基础元件,独石电容也以惊人的速度向前发展,每年以10[%]~15[%]的速度递增。世界独石电容的需求量在 2000亿支以上,70[%]出自日本,其次是欧美和东南亚(含中国)。随着片容产品可靠性和集成度的提高,其使用的范围越来越广,广泛地应用于各种军民用电子整机和电子设备。如电脑、电话、程控交换机、精密的测试仪器、雷达通信等。 作用都是电容性,都是存电作用。不过用的材料不一样决定了特定领域的应用。点解电容成本低,容量可以比较大,同时有极性,常用。瓷片的高频性能 比较好,便宜,常用。独石的稳定稳定性较好。另外的统称为薄膜电容好了。由于制作工艺是一层层薄膜叠加而来的。性能各有所长,在不同的地方不同的工艺可以有特定的优点。总体就是性能优秀,算是最好的电容了,也是很贵的,好些。独石电容比较稳定,问温漂系数小,电容值可以做到1uF,寿命长,等效直流电阻小,价格稍贵。 差异性体现到以下几点: 1、容量区别: 独石电容容量:0.5PF--1UF  耐压:二倍额定电压 电解电容电容量:0.47--10000u  额定电压:6.3--450V 2、特性不同 独石电容:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好,温度系数很高 电解电容:体积小,容量大,损耗大,漏电大 3、应用范围不一样 独石电容:广泛应用于电子精密仪器,各种小型电子设备作谐振、耦合、滤波、旁路。 电解电容:主要作用与电子元件中的电源滤波,低频耦合,去耦,旁路等 独石又叫多层瓷介电容,分两种类型,I型性能挺好,但容量小,一般小于0.2U,另一种叫II型,容量大,但性能一般。 电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感。它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波。铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险。以上就是独石电容和电解电容的一些区别,希望能给大家帮助。

    时间:2020-03-30 关键词: 电路 电解电容 独石电容

  • 热敏电阻的使用方法

    热敏电阻的使用方法

    很多人都知道热敏电阻,那么它一个个如何使用呢?热敏电阻是元器件其中之一,大多数用于仪器线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用的检测元件。 1 过液面控制 将两只负温度系数热敏电阻置于容器高、低液面安全位置,并施加定值加热电流。处于底部浸没于液体中的热敏电阻表面温度与周界温度相同,而处于高处暴露于空气中的热敏电阻表面温度则高于周界温度。若液面淹没高处电阻,使其表面溢度下降阻值增高,判断电路可利用阻值变化而及时通知报警装置,动作电路切断进液管路,起到过液面保护作用。若液面下降到低位,底部热敏电阻逐渐暴露于空气中,此时表面温度升高阻值下降,判断电路可利用阻值变化而及时通知动作电路打开进液管路供液。 2 温度测量 作为测量温度的热敏电阻一般结构简单。由于本身阻值较大,所以可忽略连接处的接触电阻,并可应用在数千米之外的远距离遥测过程。 3 温度补偿 利用负温度特性,可在某些电子装置中起到补偿作用。当过载而使电流和温度增加时,热敏电阻阻值加大反向下拉电流,起到补偿、保护等作用。此时应注意热敏电阻需串接在电子线路中。 4 温度拉制 在机电保护与控制中,常将临界点热敏电阻串接在继电器控制回路中,当某一设备遇突发性故障发生过载时,引起温度增高。若达到临界点阻值突然下降,继电器电流超过动作电流额定值而动作,起到切断、保护作用。 5 温度保护 热敏电阻在一些设备的功能管理中起着非常关键的作用,如无线话机、笔记本计算机、等。如果充电电阻很大,这些设备的电池完成充电就会很快。但同时也会存在过热的危险。如果过热使得温度超过电池的居里温度,电池的损坏就不能恢复。但如果充电电压太低,则电池充电时间就会长到无法忍受。在电池中使用热敏电阻,就可以检测过热的电阻或电池的过热,从而调整充电的速度。其结果是,电池开始充电时的电压会比较大,这样,在比较短的时间内就可以以较大的充电电压快速充电。而当将要达到临界电压或临界温度时,可以控制充电的速度使之降低,然后,再比较平稳地完成充电。 6 过热保护 例如笔记本计算机越来越小的尺寸,主板对温度是非常敏感的,而主板又是非常接近发热的电源电阻,不断提高的CPU 主频不仅提高了CPU 的速度,也使得它的工作温度高。在这种场合,表面封装式热敏电阻既可以快速响应又有过热的保护,也比较容易使用。以上就是热敏电阻的一些使用方法,在使用的过程中要严格遵守。

    时间:2020-03-31 关键词: 温度 电路 热敏电阻

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客