当前位置:首页 > 电路图
  • PCB大牛风骚走位画法与技巧!

    01 AD布蛇形线方法 Tool里选Interactive length tuning要先布好线再改成蛇形,这里用的是布线时直接走蛇形:先P->T布线,再Shift+A切换成蛇形走线。 按Tab可设置属性,类型了选用圆弧,Max Amplitude设置最大的振幅,Gap就是间隔(不知这么翻译对不),下面左边是振幅增量,右边是间隔增量。 然后开始布线: 让边缘变"圆"-按快捷键"2",就会增大弧的半径,增到最大就是两个1/4的弧直连,就是一个180度的半圆了,快捷键 "," "." 可以调节振幅。 要是不记得快捷键,没关系,随时按"`"可以显示当前支持的操作。 可以看到网络的长度,还不止一个地方哟。 等长可使用调节器完成等长布线。 02 大电流走线中去除阻焊层 这里要注意的两点,首先Paste层才是真正的喷锡层,但是默认走线上是有阻焊层的,所以单单使用Paste,是没用的,故需要使用Solder,此层中划出的部分是没有阻焊的,故可使用Paste+Solder的方法达到喷锡线的绘制,若板上本来就有走线,可直接使用对应层的Solder 进行开窗。 03 总线画法 altium Designer支持多条网络同时布线,布线可以起始于焊盘也可以起始于线路开端。按住shift键选择多个网络,或者用鼠标框选多个网络,选择菜单命令PLACE>>Interactive Multi-Routing再单击布线工具栏上的总线布线工具,既可以开始总线布线,在布线过程中可以放置过孔,切换直线层,可以按逗号,和句号。分支线间距进行调整。 期间按2可加过孔,L可设换层~ 04 从原理图到PCB 在原理图中用鼠标框选一块电路或选中若干个器件,按 T—>S,就能马上切换到PCB中,同步选中那些器件。 05 走线中换层、操作过孔、操作走线 06 走线推挤与连线方式快速设置 07 简易图元的PCB黏贴 图元文件的粘贴让机械层设计文档的生成更容易完成,通过使用习惯的与Windows相同的粘贴命令(Ctrl+V),任何来自剪贴板中的图元文件都可以粘贴到PCB编辑中。图元文件可以是直线、弧线、简单的填充和True Type文本,任何导入的数据将被放置在当前层。 从Word或Excel中拷贝数据到PCB中支持的图元文件包括位图,线,圆 弧,简单填充和true type文字,允许您简单的粘贴logos和其他图形。 08 复杂图元(logo)PCB制作 09 栅格设置与捕获 在Altium Designer中可视化网格和电气网格可以按捕获网格的倍数来设置(Design>>Board Options)。 010 丝印文字反色输出及位置设置 PCB编辑中增添了新的有效字符串属性框选项,新的选项可以为使用了True Type字体的反转文本定义不同矩形边界范围,而不是如原来使用反转文本本身的边界。 反转尺寸(宽度/高度):设置反转文本矩形框的宽度和高度; 版面调整:定义文本框中文字的相对位置; 反转文字的偏移:定义反转文字相对矩形框的偏移量。 011 各种~多边形填充 使用以选择对象定义多边形形状功能使得用外部资源(如DXF、AutoCAD等)来创建公司Logos或多边形非常容易。多边形形状的定义分两步:首先从菜单Tools>>Polygon Pours>>Define From selected objects定义多边形区域,然后右键点击多边形填充区域并从弹出菜单上选择“属性”选项,就可以在对话框中设置填充模式了。 012 PCB中高亮选中网络 013 单层操作与定制操作 对于纷乱的器件布局,已经很是麻烦如果要在混乱中走线,实属不易,在 AD 中可以使用shift+s解决这一问题(PCB编辑状态下): 另外从网上学会了定制方法,开始比较麻烦,但是学会了会很实用。 方法是: 只操作顶层走线的表达式为: expr=IsTrack and OnTopLayer|mask=True|apply=True; 只操作底层走线的表达式为: expr=IsTrack and OnBottomLayer|mask=True|apply=True; 只操作电气走线的表达式为: expr=IsTrack and IsElectrical|mask=True|apply=True; 只操作过孔的表达式为: expr=IsVia|mask=True|apply=True; 只操作顶层元件的表达式为: expr=IsComponent and OnTopLayer|mask=True|apply=True。 订制若干种过孔尺寸,以小键盘区的数字键做快捷键,3表示0.3孔径的过孔、4表示0.4孔径的快捷键5……,这样你想用任一种尺寸的过孔,都可以很方便地调出来。我知道AltiumDesigner本身可以通过快捷键“shift+v”在走线过程中调用你填写好的各种尺寸过孔,但我单独放置过孔,要想改尺寸的话,要按Tab键后改写过孔尺寸的数据,非常麻烦。改用下面的方法: 本来 Altium放置过孔默认用快捷键“P”+“V”,我现在用小键盘区的“.”来实现同样的功能: 014 多层线的操作 有些人问这样的线是怎么画出来的: 答:一根根画出来的。 如何设置才可以使线重叠?Preferences、PCB Editor,Interactive Routing,Interactive Routing Options,Automatically Remove Loops选项取消即可: 不一根根画的话也可以,Place-Region,放一个多边形区域即可,不过要小心哦,不会自己添加网路的,会变绿。 015 走线切片的操作 016 对等差分线的设置与走线 很多新手会听到“差分线”,其实说起差分线并不难,只是布线方式而已,比起之前说过的等长线,要容易的多,不过设置起来有一定规则: 放置元件和绘制差分对信号。差分对命名规则是名称相同,后缀分别标以_P和_N。再选择Place\directives\differential pairs,放置差分对符号。 更新至PCB后: 这样就好啦~ 017 3D显示操作 您的主窗口可以同时以2D和3D的方式显示。在2D和3D之间切换可以快捷键"3"来从一个2D视图切换到上个3D视图;按"0"拉平。Shift+right+click +drag可以旋转您的3D视图。 哈哈~在此展示作者的新设计的板子~带JLINK仿真器的STM32F103C8小板~ 018 快速放大缩小视图 有很多方法放大窗口,真正比较实用的就3种,以下做下介绍: 1、全界面视图; 2、ctrl+滚轮(鼠标中心为中心放大与缩小); 3、长时间按住滚轮变为放大镜形态,前后拖动鼠标~即可快速放大缩小。 差不多了,想到的零零碎碎的小技巧就写到这里,截图或者找图也蛮累的,有空也会更新一下把另外的妙招写进去的~个人认为除了编程之外,作为一名嵌入式工程师(或许也不这么叫吧,我们公司硬件工程师就要包括下位机所有的软件和硬件的,只有上位机才称为软件工程师的)应该熟练掌握画板这一项技能。希望大家多多交流,把好方法留下~这样才能多学多用啊~ 来源:网络 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-02-25 关键词: PCB 电路图

  • 知道了这些规则,再看电路图就不感觉乱了

    免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-02-24 关键词: 电路 DIY 电路图

  • 关于画电路图的10大分歧

    来源 | EDN电子技术设计 电子工程师在设计时,可能因为一个小小的问题都会互怼,下面分享一下关于画电路图的10大分歧。 1、电阻的表示方法 你是第一种,还是第二种?中间是方框还是折线?方框做多大? 现场一片混乱立马分成N派。 普通的电阻都这样,这么多种电阻现身的时候,我当时就凌乱了。 2、有极性电容的表示方法 下图厉害了!一张图表示三种方式,还有某世界五百强的原理图规范中,就标了好几种。 电容的种类已经够多了,选型时让人糟心,电容的表示方法一样让人糟心。 3、层次图分歧 正方辩友:要层次图,层次图利于原理图作为模块化的分享。 反方辩友:不要层次图,层次图带来不必要的麻烦,把原理图割裂之后,容易忽略一些问题,让我不放心。 4、差分对表示法:+/- 或 N/P 管脚描述,标N、P;网络名,标+、-。 485:带我玩玩呗! 5、电源和地表示法 正电源是否加+?+5V VS 5V0 小数点的表示法:5.0V、3.3V VS 5V0、3V3 数字模拟分开:DVDD5V0、AVDD3V3 VS 5V0_DVDD、3V3_ AVDD GND:数字地 AGND:模拟地 PGND:保护地 BGND:负48V地 6、电容的耐压值,是否需要填在Value里面? 7、100nF 或 0.1uF 或 104? 8、磁珠的表示方法 对了,磁珠到底是标称LB、还是FB? 比较痛恨,把磁珠直接画成电感,位号叫做LX的。 9、TX、RX网络名,到底怎么算? 到底以谁做为主设备? 有人说以CPU为主,MCU、FPGA、DSP为从设备; 那么FPGA和DSP之间也有呢? 你是不是死在这上面很多次? 10、位号和Value放在器件的什么位置和什么方向? 曾经,有次加班比较晚了。我让同事把图纸改完再走,然后我俩加班到快夜里12点。他老婆电话来了,两个人感觉在电话里面都吵架了。我说:“你先走吧,我来改!”他说:“行,我先回家,不过你不要动我图纸,我明天一早过来改完。” 然后他先走了…… 第二天,早上,他质问我:“你动我图了!”,我说:“没有!” 他说:“你一定动我原理图了,我电容位号都是放左侧的,这几个怎么到右侧了!” 免责声明: ------------ END ------------

    时间:2021-02-24 关键词: 元器件 PCB 电路图

  • 机械专业干着电子设计,业余写点代码和小说

    出品  21ic论坛  wziyi 网站:bbs.21ic.com 从河南艰难的考上了太原的一所大学,到了学校才发现自己从”土坑“跳进了”山沟“。还好是个清心寡欲的人,学校的偏僻与否影响不大。大一的机械制图课就彻底断了我“搞机”的心,一看那错落有致,虚实相应的线条我就头疼。后来迷上了电路,那布满花花绿绿,大小不一的元件的电路板,看起来就很美。一转眼,便成了打工人。和大多数人一样,过着大事没有,小事不断的平凡生活。想把自己走过路写出来,能给大家提供点参考也是极好的。 大学学得是机械专业,学校又挺穷的,根本就没多少机会能接触到电子仪器。刚工作的时候,连万用表和示波器都不会用。那段时间,夜晚看视频,白天在单位的设备上实际操作验证所学。电子这东西它的门槛很高,也难以自学。相比于机械,对理论水平要求更高,不懂电路理论就完全看不懂电路图。板子出了问题更是摸不着头脑。机械已经发展了几百年了,你能想到的设计基本上前人都玩过了,所做的无非是换换材料,改改工艺。遇到非标也不用怕,强度校核,尺寸设计等等都有固定的套路。这也注定了机械是一个极度靠经验吃饭的行业,它不需要经常更新知识,新人容易上手却难以出头。机械与电子有一个共同的特点,学习的过程都特别费钱费时费力。机械加工就不在这班门弄斧了。电子仪器的价格个个都在天上漂,高档一点的芯片的价格贵还很难买得到,PCB 特别是多层板更是肉疼,贴片元件的焊接也是一门手艺活。而搞计算机仅需一台电脑就行了。少年天才在计算机界司空见惯,华裔也是遍地走,电子大牛却是白人老头的天下。电子是一个板凳要坐十年冷的行业,即使科班出身,没有迷之热情,十年后可能连个泡泡都没有。 不少人对电子设计的理解还停留在用单片机设计个控制电路,这确实是入门必经之路,也是个大坑。把各色芯片手册上的原理电路删删改改,像搭积木一样组合成产品。但产品的可靠性到底有多少?临界条件在哪?哪里还可以继续降低成本等等。要是作为学生参加个 XX 比赛,参数好看就行了。工程师不能这么干呀,他得用最便宜的方案作出耐草的产品。即使入门,也不建议沉迷于 XX 开发板,久而久之就丧失了设计硬件的能力。硬件是门积蓄经验技术,多设计多验证是成长的必经之路。多个电阻少个电容可能结果就完全变了,处理这些变化莫测的实际问题光靠书本上那几个典型电路根本就不够,至于脑子了还装有几本书,更只有天知道了。电子技术的成长就是不断地填那些或明或暗的坑,这非一朝一夕便能完成,得活到老学到老。 我相信大多数电子人还是去不了名企的,在一个不大不小的公司打工才是常态。这意味着得多才多艺,一个顶三个。且不说电子内部的细分,机械软件也都要会一点。电路总得安装在产品内部吧,放不下是件挺尴尬的事。有些传感器还需一定的安装精度,功率元件的散热不得想想。要是没有软件工程师还得自己写单片机代码,在小公司这是很常见的事。工作中为了调试方便,用 Qt 写了不少上位机软件。这些小东西都能提高工作效率,减轻人的负担。不迷恋单一的技术,多尝试点新东西,说不定那天它们就用上了。多看看网课和书本,理论知识决定水平的上限。 本文系21ic论坛网友 wziyi原创 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-02-23 关键词: 机械 代码 电路图

  • 灵魂拷问:关于画电路图的10大分歧!

    某天,某实验室,几位工程师在讨论《原理图设计规范》。 一秒之前还很和谐,下一秒讨论原理图怎么画的时候,大家的意见就分歧很大了。 类似于“豆浆是喝甜的还是咸的”、“粽子里面是放枣子还是放肉”。 原来画电路图时,这样的问题,也有这么多?! 1 电阻的表示方法 你是第一种,还是第二种?中间是方框还是折线?方框做多大? 现场一片混乱立马分成N派。 普通的电阻都这样,这么多种电阻现身的时候,我当时就凌乱了。 2 有极性电容的表示方法 下图厉害了!一张图表示三种方式,还有某世界五百强的原理图规范中,就标了好几种。 电容的种类已经够多了,选型时让人糟心,电容的表示方法一样让人糟心。 3 层次图分歧 正方辩友:要层次图,层次图利于原理图作为模块化的分享。 反方辩友:不要层次图,层次图带来不必要的麻烦,把原理图割裂之后,容易忽略一些问题,让我不放心。 4 差分对表示法:+/- 或 N/P 管脚描述,标N、P;网络名,标+、-。 485:带我玩玩呗! 5 电源和地表示法 正电源是否加+?+5V VS 5V0 小数点的表示法:5.0V、3.3V VS 5V0、3V3 数字模拟分开:DVDD5V0、AVDD3V3 VS 5V0_DVDD、3V3_ AVDD GND:数字地 AGND:模拟地 PGND:保护地 BGND:负48V地 6 电容的耐压值,是否需要填在Value里面? 7 100nF 或 0.1uF 或 104? 8 磁珠的表示方法 对了,磁珠到底是标称LB、还是FB? 比较痛恨,把磁珠直接画成电感,位号叫做LX的。 9 TX、RX网络名,到底怎么算? 到底以谁做为主设备? 有人说以CPU为主,MCU、FPGA、DSP为从设备; 那么FPGA和DSP之间也有呢? 你是不是死在这上面很多次? 10 位号和Value放在器件的什么位置和什么方向? 曾经,有次加班比较晚了。我让同事把图纸改完再走,然后我俩加班到快夜里12点。他老婆电话来了,两个人感觉在电话里面都吵架了。我说:“你先走吧,我来改!”他说:“行,我先回家,不过你不要动我图纸,我明天一早过来改完。” 然后他先走了…… 第二天,早上,他质问我:“你动我图了!”,我说:“没有!” 他说:“你一定动我原理图了,我电容位号都是放左侧的,这几个怎么到右侧了!” 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-02-05 关键词: 原理图 电路图

  • -5V、-3V……这些负电压是怎么产生的?

    负电压的产生电路图原理 在电子电路中我们常常需要使用负的电压,比如说我们在使用运放的时候常常需要给他建立一个负的电压。下面就简单的以正5V电压到负电压5V为例说一下他的电路。 上面的电路是一个最简单的负压产生电路了。他使用的原件是最少的了我们只需要给他提供1kHZ左右的方波就可以了,相当的简单。这里需要注意这个电路的代负载能力是很弱的,同时在加上负载后电压的降落也比较大。 负电压产生电路分析  说白了就是:某个点的电压就是相对于一个参考点的电势之间的差值。V某=E某-E参。一般我们把供电电源负极当作参考点。电源电压就是Vcc=E电源正-E电源负。 当PWM为低电平时,Q2关闭,Q1打开,C1开始放电,放电回路是C1-C2-D1,这实际上也是对C2进行充电的过程。C2充好电后,下正上负,如果VCC的电势为5点几伏,就可以输出-5V的电压了。 产生负电压(-5V)的方案 7660和MAX232输出能力有限,做示波器带高速运放很吃力,所以魏坤也得用4片并联的方式扩流。 用普通的DC/DC芯片都可以产生负电压,且电压精确度同正电压一样,驱动能力也很强,可以达到300mA以上。 整个示波器的设计数字电源的+5V和模拟电源的+5V是分开供电的,但是数字地和模拟地应该怎么处理呢? 数字部分的地返回电流不能流过模拟部分地,两个地应该在稳定的地参考点连在一起。 负电压的意义  2、通讯接口需要。例如RS232接口,就必须用到负电压。-3V~-15V表示1,+3~+15V表示0。这个是当初设计通讯接口时的协议,只能遵守咯。PS:MAX232之类的接口芯片自带电荷泵,可以自己产生负电压。 4、这个比较有中国特色,自毁电路。一般来说芯片内部的保护电路对于负电压是不设防的,所以只要有电流稍大,电压不用很高的负电压加到芯片上,就能成功摧毁芯片。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-01-08 关键词: 原理 负电压 电路图

  • 电路图的美与丑

    电路图是用于表达、设计、制作、调试电子系统的重要的工具。它是由电子元器件符号按照电子系统内部实际连接关系按照一定规范绘制的。借助于标准化的电路图,可以让来自不同国家的电子工程师,即使他们的语言不通,但也能够准确无误理解同一个电子设备的设计原理。 ▲ 一个简单电子时钟的电路图 早期的电路图都是通过手工绘制的。为了便于电路绘图员绘制电路,提高绘制效率,在上个世纪80年代,国际电气与电子工程师协会(IEEE)将传统的逻辑电路符号进行了统一修订,去掉了逻辑门电路的外形曲线,只使用方框再配合符号来表达门电路的功能。 下图左边是传统的逻辑门电路符号,右边是 IEEE Standard 91-1984[1] 标准中定义的逻辑门电路符号。 ▲ 两种不同的逻辑电路表达方式 这种改动简化了对绘图工具的要求,提高了绘图效率。改变后的标准后来被广泛使用。 更早期的电子管电路图也曾经有过类似的简化。在1944年,《RADIO CRAFT》杂志刊登过一篇文章:Are Radio Symbols Wrong?[2] 讲述了D.S.B  Shannon(英国人)提出对于传统电子管电路图的改动方案。 早期的电子管脱胎于电灯泡,所以绘制电子管的外形大都使用圆形、椭圆形来表示。内部电极也分别使用线段、虚线、曲线、线圈来分别表示内部的屏极、栅极、阴极、灯丝等等。 早期电路中的变压器、互感器、电阻、电容也大都使用线圈、折线、弧形来表示,这与当时元器件的工艺相符合。 下图是一幅标准五管超外差电子管收音机的电路图。 ▲ 标准五管超外差电子管接收机 传统电子管电路图比较形象,容易辨识,但有一个缺点,那就是对于电路绘图员来说比较麻烦。 为此,D.S.B Shannon提出了一种新的电路图绘制方案。使用直线、折线、菱形来替代原来的弧线、线圈等,这种改动简化绘制的步骤。 对比一下,对于上述电路图混频级所使用的 3-7极电子管,传统的绘制需要38条线段,改进后的电路图只需要22条线段便可以绘制完毕。 下图是Shannon风格的电子管收音机电路图。看起来颇具立体主义艺术风格。 ▲ Shannon风格的电子管接收机 改进后的电路绘制标准可以节省近一半的绘图工作量,在当时还是手工绘图的阶段,Shannon乐观的认为他的提议会带来革命性的意义,被广泛接受。但现实并非如此,对英国同行带有成见的美国工程师对于这种改动嗤之以鼻。最终,这种改动没有流行开来。 说实在的,就我的眼光看来,改动后的电子管电路的确不如原来传统的优雅,清晰。 当然,任何标准化的改变都是对现有绘制符号的改变,引起相关人员的困惑和不满。所以,与其小打小闹的改动,不如使用彻底的改变会博得人们的采纳。 ▲ 一个单片机电路原理图 随着电子管器件的日薄西山以及电路图绘制工具的电子化,对于电路图绘制的风格,人们就不再有更多的纠结了。 参考资料 [1]IEEE Standard 91-1984: https://www.ti.com/lit/ml/sdyz001a/sdyz001a.pdf [2]Are Radio Symbols Wrong?: https://www.rfcafe.com/references/radio-craft/radio-symbols-wrong-radio-craft-march-1944.htm 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-01-06 关键词: 元器件 电路图

  • 那些年画电路时干的傻事,你中了几个?

    1、有极性的电容,原理图和PCB把管脚搞反了? 2.电源和地忘记接了。。。。还有接反的。。。 3、连接器的线序搞反了 4、RX、TX接反了。。。 5、想当然的写一个封装,结果没有这个规格的器件。百度文库下载datasheet,结果根本买不到这个器件。 6、直接抄电路,结果器件根本买不着。 曾经一个做智能锁的团队,电路直接抄三星的智能锁,结果里面一个电容式触摸按键的控制器,是韩国产的很难买到,而且没有什么代理和支持。纯靠自己试验和摸索。 7、选择电容的时候,只考虑容量,没有考虑耐压,结果这么大的封装放不下满足规格电容。 8、选择电阻的时候,只看阻值,不看功耗。 9、画完PCB,不看DRC报告,靠眼睛看飞线,回板后就真的飞线了。 10、封装做反了。。。 11、散热焊盘的阻焊层没有处理 版权归原作者所有,如有侵权,请联系删除。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-01-04 关键词: PCB 电路图

  • 那些年画电路时干的傻事!你中了几个?

    0 1 有极性的电容,原理图和PCB把管脚搞反了? 0 2 电源和地忘记接了...还有接反的... 0 3 连接器的线序搞反了... 0 4 RX、TX接反了... 0 5 想当然的写一个封装,结果没有这个规格的器件。百度文库下载datasheet,结果根本买不到这个器件。 0 6 直接抄电路,结果器件根本买不着。 曾经一个做智能锁的团队,电路直接抄三星的智能锁,结果里面一个电容式触摸按键的控制器,是韩国产的很难买到,而且没有什么代理和支持。纯靠自己试验和摸索。 0 7 选择电容的时候,只考虑容量,没有考虑耐压,结果这么大的封装放不下满足规格电容。 0 8 选择电阻的时候,只看阻值,不看功耗。 0 9 画完PCB,不看DRC报告,靠眼睛看飞线,回板后就真的飞线了。 1 0 封装做反了... 1 1 散热焊盘的阻焊层没有处理... END 来源:eepw 版权归原作者所有,如有侵权,请联系删除。 ▍ 推荐阅读 成功为华为“续命:中国芯片之父张汝京 一个工程师的“噩梦”:刚分清CPU和GPU,却发现还有…… 这位“华为天才少年”,竟然要我用“充电宝”打《只狼》 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-01-04 关键词: PCB 电路图

  • DIY一个1pA超微电流测试器,非常易懂!

    整理:张晓宇 -END- | 整理文章为传播相关技术,版权归原作者所有 | 往期好文合集 当电路与艺术相结合,美的让人窒息!  必备!最全电路基础知识讲解! 最 后 转发分享5T资源大放送!C/C++,Linux,Python,Java,PHP,人工智能,PCB、FPGA、DSP、labview、单片机、等等!

    时间:2020-12-25 关键词: 电源设计 电路图

  • 关于图腾柱驱动的点点滴滴

    为什么取名图腾柱?  由于此结构画出的电路图有点儿像印第安人的图腾柱,所以叫图腾柱式输出(也叫图腾式输出)。输出极采用一个上电阻接一个NPN型晶体管的集电极,这个管子的发射极接下面管子的集电极同时输出;下管的发射极接地。两管的基极分别接前级的控制。就是上下两个输出管,从直流角度看是串联,两管联接处为输出端。上管导通下管截止输出高电平,下管导通上管截止输出低电平,如果电路逻辑可以上下两管均截止则输出为高阻态。在开关电源中,类似的电路常称为“半桥”。 一种比较有意思的解释: 图腾大多是出于部落中对生殖器官及其能力的崇拜,因为古时人类的寿命很短,生存困难,所以对能增加生存能力的生殖力很看重,说到男性身上就是这个人的那个能力很强,部落里的人就会很佩服他。图腾柱驱动在电路上也具备了同样的能力:向上向下的推动和下拉力量很强,速度很快,而且只要有电就不知疲倦。 图腾柱驱动的作用与原理 图腾柱驱动的作用: 图腾柱型驱动电路的作用在于:提升电流驱动能力,迅速完成对于门极电荷的充电或者放电的过程。 什么情况下用到图腾柱驱动? 某些管子可能需要比较大的驱动电流或者灌电流,这时候就需要用到图腾柱电路。 分析一下图腾柱提升驱动的原理 器件作用说明: Qn:N BJT Qp:P BJT Qmos:待驱动NMOS Rb:基极电阻 Cb:加速电容 Rc:集电极电阻 Rg:驱动电阻 原理分析: 左边一个输入驱动信号Drv_b(驱动能力很弱)通过一个图腾柱输出电路,从三极管的发射极公共端出来得到驱动能力(带载能力)大大增强的信号Drv_g;从能量的角度来讲,弱能量信号Drv_b通过Qn和Qp的作用,从Vcc取电(获取能量),从而变成了携带高能量的Drv_g信号;在这个能量传递的过程中,Qn和Qp分别交替工作在截至和饱和状态; 具体工作过程(逻辑分析)如下: 这里以方波为例,1代表高电平,0代表零电平,-1代表负电平;Vb表示Qn和Qp的公共基极电压,Vqn_c表示Qn管子的集电极电压,Vqn_be表示Qn管子基极-发射极电压,Vqp_be表示Qp基极-发射极电压 当输入驱动信号Drv_b=1则Vb=1,Vqn_be=1,由于:Qn两端有一个Vcc电压,即Vqn_ce=1,所以,Qn管饱和导通,Qn管电流主要由集电极流向发射极,Drv_g=1,这时MOS管结电容迅速充电;(Qn管饱和导通,能量由Vcc提供驱动能力大大增强) 当输入电压为低电平Drv_b=0则Vb=0,Vqp_be=-1,由于MOS管上的结电容存在电压,即Vqp_ec=1,所以,Qp管饱和导通,Qp管电流主要由发射极流向集电极,Drv_g=0;这时MOS管结电容迅速放电;(Qp管饱和导通,MOS管放电速度加快) 实际分析一个图腾柱驱动电路的驱动能力 电路描述 图腾柱放大电路由两个三极管Q2和Q3构成,上管是NPN型三极管,下管是PNP型三极管;NPN型三极管的集电极接变压器辅助绕组供电输出端,与R7相连,与芯片共用同一VCC,供电电压为20V,该电路从直流角度看是串联的,两对管共射联接处为输出端,本电路结构类似于乙类推挽功率放大器OCL。 理论分析 GATE输出的方波信号正负两个半周(高-低电平)分别由推挽输出级Q2、Q3的两“臂”轮流运算放大,每一“臂”的导电时间为脉冲的半个周期,此处方波脉冲的工作频率为25-50KHz(该频率根据负载的不同而变化)。电路工作的逻辑过程是,高电平输入,上管导通下管截止,输出高电平;低电平输入,下管导通上管截止,输出低电平;当电路逻辑的上下两管均截止时,则输出为高阻态。在开关电源电路中,类似的电路常称为“半桥”。图腾柱简化及等效电路图如下 理论计算如下: A、工作状态分析 静态:Vi=Vo→→Q2、Q3均不工作,Vo=0V 动态:Vi=H(高电平)→→Q2导通、Q3截止;Vi=L(低电平) Q3导通、Q2截止;两只三极管分别在半个周期内工作,该电路的工作原理类似于乙类推挽功放。 由等效电路可知:驱动电流Io=C×(Vgs÷Dt)=(Vcc-Vgs)÷R,由此推出如下关系式: Vcc=Vgs*(1+RC/Dt)    ∵て=RC

    时间:2020-12-23 关键词: 晶体管 电路图

  • 超详细!开关电源电路图及原理讲解

    关注+星标公众号,不错过精彩内容 编排 | strongerHuang 微信公众号 | 嵌入式专栏 成为一名合格的电源工程师要涉猎的知识包罗万象,小到家用电器,大到航天飞机,卫星等供电系统,大型电力行业所用的仪器设备,高精密医疗设备无不需要电源来提供稳定能源,这也更需要大量具有电源专业知识水平的工程师来完成设计和研发。但是,如何做好第一步,打好电源工程师的基本功?小编在这里对开关电源电路图及原理进行讲解,仅供参考! 嵌入式专栏 1 开关电源的电路组成  开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。 辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 嵌入式专栏 2 输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。 当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 嵌入式专栏 3 功率变换电路 1、MOS管的工作原理: 目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。 在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。 从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容CGS、CGD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。 Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多; 当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。 IC根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。C4和R6为尖峰电压吸收回路。 4、推挽式功率变换电路: Q1和Q2将轮流导通。 5、有驱动变压器的功率变换电路: T2为驱动变压器,T1为开关变压器,TR1为电流环。 嵌入式专栏 4 输出整流滤波电路 1、正激式整流电路: T1为开关变压器,其初极和次极的相位同相。D1为整流二极管,D2为续流二极管,R1、C1、R2、C2为削尖峰电路。L1为续流电感,C4、L2、C5组成π型滤波器。 2、反激式整流电路: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、C1为削尖峰电路。L1为续流电感,R2为假负载,C4、L2、C5组成π型滤波器。 3、同步整流电路: 工作原理:当变压器次级上端为正时,电流经C2、R5、R6、R7使Q2导通,电路构成回路,Q2为整流管。Q1栅极由于处于反偏而截止。当变压器次级下端为正时,电流经C3、R4、R2使Q1导通,Q1为续流管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成π型滤波器。R1、C1、R9、C4为削尖峰电路。 嵌入式专栏 5 稳压环路原理  1、反馈电路原理图: 2、工作原理: 当输出U0升高,经取样电阻R7、R8、R10、VR1分压后,U1③脚电压升高,当其超过U1②脚基准电压后U1①脚输出高电平,使Q1导通,光耦OT1发光二极管发光,光电三极管导通,UC3842①脚电位相应变低,从而改变U1⑥脚输出占空比减小,U0降低。 当输出U0降低时,U1③脚电压降低,当其低过U1②脚基准电压后U1①脚输出低电平,Q1不导通,光耦OT1发光二极管不发光,光电三极管不导通,UC3842①脚电位升高,从而改变U1⑥脚输出占空比增大,U0降低。周而复始,从而使输出电压保持稳定。调节VR1可改变输出电压值。 反馈环路是影响开关电源稳定性的重要电路。如反馈电阻电容错、漏、虚焊等,会产生自激振荡,故障现象为:波形异常,空、满载振荡,输出电压不稳定等。 嵌入式专栏 6 短路保护电路 在输出端短路的情况下,PWM控制电路能够把输出电流限制在一个安全范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。 1、短路保护电路通常有两种,下图是小功率短路保护电路,其原理简述如下: 当输出电路短路,输出电压消失,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。 UC3842停止工作后①脚电位消失,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。当短路现象消失后,电路可以自动恢复成正常工作状态。 2、下图是中功率短路保护电路,其原理简述如下: 当输出短路,UC3842①脚电压上升,U1③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842停止工作,输出电压为0V,周而复始,当短路消失后电路正常工作。R2、C1是充放电时间常数,阻值不对时短路保护不起作用。 3、下图是常见的限流、短路保护电路。其工作原理简述如下: 当输出电路短路或过流,变压器原边电流增大,R3两端电压降增大,③脚电压升高,UC3842⑥脚输出占空比逐渐增大,③脚电压超过1V时,UC3842关闭无输出。 4、下图是用电流互感器取样电流的保护电路,有着功耗小,但成本高和电路较为复杂,其工作原理简述如下: 输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842停止工作,周而复始,当短路或过载消失,电路自行恢复。 嵌入式专栏 7 输出端限流保护 上图是常见的输出端限流保护电路,其工作原理简述如上图:当输出电流过大时,RS(锰铜丝)两端电压上升,U1③脚电压高于②脚基准电压,U1①脚输出高电压,Q1导通,光耦发生光电效应,UC3842①脚电压降低,输出电压降低,从而达到输出过载限流的目的。 嵌入式专栏 8 输出过压保护电路的原理 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。 应用最为普遍的过压保护电路有如下几种: 1、可控硅触发保护电路: 如上图,当Uo1输出升高,稳压管(Z3)击穿导通,可控硅(SCR1)的控制端得到触发电压,因此可控硅导通。 Uo2电压对地短路,过流保护电路或短路保护电路就会工作,停止整个电源电路的工作。当输出过压现象排除,可控硅的控制端触发电压通过R对地泄放,可控硅恢复断开状态。 2、光电耦合保护电路: 如上图,当Uo有过压现象时,稳压管击穿导通,经光耦(OT2)R6到地产生电流流过,光电耦合器的发光二极管发光,从而使光电耦合器的光敏三极管导通。 Q1基极得电导通,3842的③脚电降低,使IC关闭,停止整个电源的工作,Uo为零,周而复始。 3、输出限压保护电路: 输出限压保护电路如下图,当输出电压升高,稳压管导通光耦导通,Q1基极有驱动电压而道通,UC3842③电压升高,输出降低,稳压管不导通,UC3842③电压降低,输出电压升高。周而复始,输出电压将稳定在一范围内(取决于稳压管的稳压值)。 4、输出过压锁死电路: 图A的工作原理是,当输出电压Uo升高,稳压管导通,光耦导通,Q2基极得电导通,由于Q2的导通Q1基极电压降低也导通,Vcc电压经R1、Q1、R2使Q2始终导通,UC3842③脚始终是高电平而停止工作。 在图B中,UO升高U1③脚电压升高,①脚输出高电平,由于D1、R1的存在,U1①脚始终输出高电平Q1始终导通,UC3842①脚始终是低电平而停止工作。 嵌入式专栏 9 功率因数校正电路(PFC) 1、原理示意图: 2、工作原理: 输入电压经L1、L2、L3等组成的EMI滤波器,BRG1整流一路送PFC电感,另一路经R1、R2分压后送入PFC控制器作为输入电压的取样,用以调整控制信号的占空比,即改变Q1的导通和关断时间,稳定PFC输出电压。 L4是PFC电感,它在Q1导通时储存能量,在Q1关断时施放能量。D1是启动二极管。D2是PFC整流二极管,C6、C7滤波。PFC电压一路送后级电路,另一路经R3、R4分压后送入PFC控制器作为PFC输出电压的取样,用以调整控制信号的占空比,稳定PFC输出电压。 嵌入式专栏 10 输入过欠压保护 1、原理图: 2、工作原理: AC输入和DC输入的开关电源的输入过欠压保护原理大致相同。保护电路的取样电压均来自输入滤波后的电压。 取样电压分为两路,一路经R1、R2、R3、R4分压后输入比较器3脚,如取样电压高于2脚基准电压,比较器1脚输出高电平去控制主控制器使其关断,电源无输出。 另一路经R7、R8、R9、R10分压后输入比较器6脚,如取样电压低于5脚基准电压,比较器7脚输出高电平去控制主控制器使其关断,电源无输出。 参考资料: https://www.wingot.com.cn 免责声明:本文部分素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。 ------------ END ------------ 推荐阅读: 精选汇总 | 专栏 | 目录 | 搜索 精选汇总 | ARM、Cortex-M 精选汇总 | ST工具、下载编程工具 关注 微信公众号『嵌入式专栏』,底部菜单查看更多内容,回复“加群”按规则加入技术交流群。 点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-22 关键词: 电源设计 电路图

  • 34个动控制原理图,老电工看了都说好!

    有时我们关注的公众号消息比较多,错过了一些自己喜欢的消息,不能及时看到工控论坛的推送,我们可以给公众号加星标或置顶。那如何星标置顶呢?【打开一篇工控论坛公众号的文章,点击文章标题下方的蓝色字体进入工控论坛公众号,右上角“···”选择设为星标,置顶公众号】 01 可控硅调速电路 02 电磁调速电机控制图 03 三相四线电度表互感器接线 04 能耗制动 05 顺序起动,逆序停止 06 锅炉水位探测装置 07 电机正反转控制电路 08 电葫芦吊机电路 09 单相漏电开关电路 10 单相电机接线图 11 带点动的正反转起动电路 12 红外防盗报警器 13 双电容单相电机接线图 14 自动循环往复控制线路 15 定子电路串电阻降压启动控制线 16 按启动钮延时运行电路 17 星形 - 三角形启动控制线路 18 单向反接制动的控制线路 19 反接制动电阻,可逆运行反接制动的线路 20 以时间原则控制的单向能耗制动线路 21 以速度原则控制的单向能耗制动控制线路 22 电动机可逆运行的能耗制动控制线路 23 双速电动机改变极对数的原理 24 双速电动机调速控制线路 25 变频器的异步电动机可逆调速系统控制线路 26 正确连接电器的触点 27 线圈的连接 28 继电器开关逻辑函数 29 三相半波整流电路图 30 三相全波整流电路图 31 三相全波6脉冲整流原理图 32 六相12脉冲整流原理图 33 负载两端的电压 在一个周期中,每个二极管只有三分之一的时候导通(导通角为120度)。负载两端的电压为线电压。 34 直流调速原理功能图 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-18 关键词: 电源设计 电路图

  • 30种EMC标准电路分享,再不收藏就亏大了!

    01 AC24V接口EMC设计标准电路 02 AC110V-220VEMC设计标准电路 03 AC380V接口EMC设计标准电路 04 AV接口EMC设计标准电路 05 CAN接口EMC设计标准电路 06 DC12V接口EMC设计标准电路 07 DC24V接口EMC设计标准电路 08 DC48接口EMC设计标准电路 09 DC110V接口EMC设计标准电路 010 DVIEMC设计标准电路 011 HDMI接口EMC设计标准电路 012 LVDS接口EMC设计标准电路 013 PS2接口EMC设计标准电路 014 RJ11EMC设计标准电路 015 RS232 EMC设计标准电路 016 RS485EMC设计标准电路 017 SCART接口EMC设计标准电路 018 s-video接口EMC设计标准电路 019 USBDEVICE EMC设计标准电路 020 USB2.0接口EMC设计标准电路 021 USB3.0接口EMC设计标准电路 022 VGA接口EMC设计标准电路 023 差分时钟EMC设计标准电路 024 耳机接口EMC设计标准电路 025 复合视频接口EMC设计标准电路 026 汽车零部件电源口EMC标准设计电路 027 室内外天馈浪涌设计标准电路 028 无源晶振EMC设计标准电路 029 有源晶振EMC设计标准电路 030 以太网EMC(EMI)设计标准电路 031 以太网EMC(浪涌)设计标准电路(差模要求较高方案) 032 以太网EMC(浪涌)中心抽头方案(节约空间) END 版权归原作者所有,如有侵权,请联系删除。 ▍ 推荐阅读 太美了!PCB布线怎么可以这么美? 对于PCB厂的工程师来说,Layout就是硬件的艺术 图文并茂解析变压器各种绕线工艺!(包含各种拓扑) 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-18 关键词: EMC 电路图

  • 电路设计容易忽视的11个细节,帮你避免问题电路!

    很多人都一样,我们很多工程师在完成一个项目后,发现整个项目大部分的时间都花在“调试检测电路整改电路”这个阶段,也正是这个阶段,很多项目没有办法进行下去,停滞在那边。想要快速完成项目,摆脱实验调试时的烦闷,苦恼不知道问题出在哪里,那就快点了解下面这些电路设计中的细节! (1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。   (2)积分反馈电路通常需要一个小电阻(约560欧)与每个大于10pF的积分电容串联。 (3)在反馈环外不要使用主动电路进行滤波或控制EMC的RF带宽,而只能使用被动元件(最好为RC电路)。仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。在更高的频率下,积分电路不能控制频率响应。   (4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。 (5)使用EMC滤波器,并且与IC相关的滤波器都应该和本地的0V参考平面连接。   (6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。   (7)在模拟IC的电源和地参考引脚需要高质量的RF去耦,这一点与数字IC一样。但是模拟IC通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于1KHz后增加很少。在每个运放、比较器和数据转换器的模拟电源走线上都应该使用RC或LC滤波。电源滤波器的拐角频率应该对器件的PSRR拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的PSRR。 (8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。   (9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。 (10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC效果,而且可以减少串扰。平衡电路(差分电路)驱动不会使用0V参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少RF辐射。   (11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。不要使用比需要速度更快的比较器(将dV/dt保持在满足要求的范围内,尽可能低)。   (12)有些模拟IC本身对射频场特别敏感,因此常常需要使用一个安装在PCB上,并且与 PCB的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-16 关键词: 电源设计 电路图

  • ​30种EMC标准电路分享,再不收藏就晚了!

    点击上方“大鱼机器人”,选择“置顶/星标公众号” 福利干货,第一时间送达! 01  AC24V接口EMC设计标准电路 02  AC110V-220VEMC设计标准电路 03 AC380V接口EMC设计标准电路 04 AV接口EMC设计标准电路 05 CAN接口EMC设计标准电路 06  DC12V接口EMC设计标准电路 07  DC24V接口EMC设计标准电路 08  DC48接口EMC设计标准电路 09 DC110V接口EMC设计标准电路 010  DVIEMC设计标准电路 011  HDMI接口EMC设计标准电路 012  LVDS接口EMC设计标准电路 013 PS2接口EMC设计标准电路 014 RJ11EMC设计标准电路 015 RS232 EMC设计标准电路 016 RS485EMC设计标准电路 017 SCART接口EMC设计标准电路 018  s-video接口EMC设计标准电路 019 USBDEVICE EMC设计标准电路 020 USB2.0接口EMC设计标准电路 021 USB3.0接口EMC设计标准电路 022 VGA接口EMC设计标准电路 023 差分时钟EMC设计标准电路 024 耳机接口EMC设计标准电路 025  复合视频接口EMC设计标准电路 026 汽车零部件电源口EMC标准设计电路 027 室内外天馈浪涌设计标准电路 028 无源晶振EMC设计标准电路 029 有源晶振EMC设计标准电路 030 以太网EMC(EMI)设计标准电路 031 以太网EMC(浪涌)设计标准电路(差模要求较高方案) 032  以太网EMC(浪涌)中心抽头方案(节约空间) -END- | 整理文章为传播相关技术,版权归原作者所有 | | 如有侵权,请联系删除 | 往期好文合集 知乎热议:嵌入式开发中C++好用吗? 国内大陆有哪些芯片公司处于世界前10?一起看看! 大佬终于把鸿蒙OS讲明白了,收藏了!   最 后      若觉得文章不错,转发分享,也是我们继续更新的动力。 5T资源大放送!包括但不限于:C/C++,Linux,Python,Java,PHP,人工智能,PCB、FPGA、DSP、labview、单片机、等等! 在公众号内回复「更多资源」,即可免费获取,期待你的关注~ 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-13 关键词: EMC 电路图

  • 电源的可靠性设计

    本文来源于硬件十万个为什么 1 引言   开关电源是各种系统的核心部分。开关电源的需求越来越大,同时对可靠性提出了越来越高的要求。涉及系统可靠性的因素很多。目前,人们认识上的主要误区是把可靠性完全(或基本上)归结于元器件的可靠性和制造装配的工艺,忽略了系统设计和环境温度对可靠性的决定性的作用。据美国海军电子实验室的统计,整机出现故障的原因和各自所占的百分比如表1所示。        在民用电子产品领域,日本的统计资料表明,可靠性问题80%源于设计方面(日本把元器件的选型、质量级别的确定、元器件的负荷率等部分也归入设计上的原因)。以上两方面的数据表明,设计及元器件(元器件的选型,质量级别的确定,元器件的负荷率)的原因造成的故障,在开关电源故障原因中占80%左右。减少这两方面造成的开关电源故障,具有重要的意义。总之,对系统的设计者而言,需要明确建立“可靠性”这个重要概念,把系统的可靠性作为重要的技术指标,认真对待开关电源可靠性的设计工作,并采取足够的措施提高开关电源的可靠性,才能使系统和产品达到稳定、可靠的目标。本文就从这两个方面来研究与阐述。 2 系统可靠性的定义及指标   国际上,通用的可靠性定义为:在规定条件下和规定的时间内,完成规定功能的能力。此定义适用于一个系统,也适用于一台设备或一个单元。描述这种随机事件的概率可用来作为表征开关电源可靠性的特征量和特征函数。从而,引出可靠度[R(t)]的定义:系统在规定条件下和规定时间内,完成规定功能的概率。   如系统在开始 (t=0)时有n0个元件在工作,而在时间为t时仍有n个元件在正常工作,   则   可靠性   R(t)=n/n0  0≤R(t) ≤1   失效率   λ(t)= - dinR(t)/dt   λ定义为该种产品在单位时间内的故障数,即λ=dn/dt。   如失效率λ为常数,则        dn/dt=-λt   n=n0e-λt   R(t)=e-λt0     

    时间:2020-12-11 关键词: 电源设计 电路图

  • 手把手教你,单端正激式开关电源拓扑图的选用技巧

    电源技术要求 选用单端正激式开关电源拓扑图如下,因为它是一种小型、经济,也是开关电源应用较多一种,并且它功率输出在50~200W是最合适的。设计技术要求如下: 输入电压:交流220V±10% 输出电压UO:15V 输出电流IO:10A 纹波电压UP:0.5V 输出波动电流IP:±0.1A 开关电源设计步骤 变压器设计 1、输出变压器次级电压U2计算 UL是输出扼流圈在内次级线圈的电压降,Uf是输出二极管的正向电压。 最低的次级电压U2min为: 2、初、次级线圈计算 输入直流电压U1的最小值使用按输出电路计算求得的U1min值。根据中国输配电情况U1=200~253V,则变压比N为: 根据输出容量磁心尺寸关系表选取EI-30。它的有效面积为S=111mm2磁心材质相当于TDK的H7C4,最大工作磁道密度Bm可查得.实际使用时的磁心温度约100℃,且要选择能保持线性范围的Bm,即0.3T以下。当磁心温度有100℃,工作频率200KHz时,约减少0.1T而成为 。根据线圈计算公式则 因而次级N2 = 4,式中Bm为磁心的磁通密度(T);S为磁心的有效截面积(mm2)。初级线圈的匝数则是 确定 。次级线圈所需要的电压U2min一定要充分,因此要进行ton max  的修正计算。 Dmax修正结果为0.42,仍然在0.4~0.45范围内,可以继续使用以下计算。 输出滤波器设计 在开关电源中带磁心的电感器,一般采用电感线圈Lf 与输出滤波电容器Cf 构成的“L”型滤波器如下图。电感线圈对高频成分呈现很高的感抗,而电容对高频成分呈现很小容抗,已达到在电路中抑制纹波和平滑直流的作用。 1、输出扼流圈的电感值设计 计算流入输出扼流圈电流 L为输出扼流圈的电感(μH);为输出电流的10%~30%。则有 电感L值为: 由此可见,需要11.86μH,10A的扼流圈。 2、输出滤波电容的确定 输出电容器的选定取决于输出脉动电压控制在多少毫伏。输出脉动电压 虽要根据 和输出电容器的等效串联电阻 确定,但一般规定为输出电压的0.3%~0.5%范围。 就是在200HKz范围内,需要 值在37.5m 以下电容器的。所以可以选择20V,8200 H,则 为31m ,容许脉动电流为2.9Ams。 流向电容器的纹波电流为: 3、滤波器电阻设计 要想不是输出扼流圈的电流中断而直接使用时,可以假设电阻值为Rd 则假设电阻Rd 电耗为Wrd 5、复位电路计算 复位电路如图所示。开关功率管VT1接通时,变压器T1的磁通增加,磁能被储存到T1,当VT1截止时,即放出这种受激磁的磁能下图复位线圈到T1上以在VT1截止时通过VD1把磁能反馈到输入。 则磁复位串接在N3的中二极管VD1承受最大电压为 那么选择VD1额定电压为800V,这样基本符合要求的。 6、功率开关管选择 下图为MOSFET型功率开关管,它主要具有驱动功率小,器件功率容量大;第二个显著特点是开关速度快,工作频率高,另外他的热稳定性优于GTR等优点,也是目前开关变换器广泛应用的开关器件。 根据单端正激式变换器计开关管VT1承受最大电压公式得: 流过MOSFET开关管最大电流为: 根据上面功率MOSFET表,可以选择2SK2718型号。它的最高承受电压为900V,允许最大电流为2.5A,而功率损耗是40W,是上面功率最小损耗的。 7、输出二极管选择 输出二极管有肖特基二极管(SBD),低损耗二极管(LLD)、高速二极管(FRD)。输出为低压大电流时应采用肖特基二极管,其他则采用低损耗或调整二极管。 选择二极管时要注意选择反向恢复时间trr快的二极管。这是因为主开关元件闭合时反向流入二极管的电流会影响初级线圈开关特性并致使损耗增大。同时,输出噪声也会受很大影响的。所以输出整流二极管选择一般原则有四点。 1、选用正向压降VDF小的整流二极管; 2、选用反向恢复时间trr整流二极管; 3、选用正向恢复电压VFRm整流二极管; 4、选用反向漏电流IR小整流二极管。 续流二极管VD2选择: 续流二极管VD2上的反向电压UVD2与输出变压器次级电压的最大值是相同的。根据单端正激式变换器公式得: 流过它方向电流Ir一般看作与IO大致相同的,即 Ir=Io=10A. 可选择低损耗二极管MBR1545 作为续流二极管它参数为,Uds=45V, IO=15A,trr<1.0ns. 8、恒流输出电路设计 ① 恒流输出原理 任何电源要实现恒流功能,均需对电源的输出电流进行检测取样,与电流设置值即参考值进行比较,经负反馈放大调节(P、PI、PID)。线性串联稳压是调节调整管的压降,而开关电源是调节变换器的脉宽(或占空比),维持输出电流的恒定。 下图是恒流控制反馈系统图。图中Iref是电流设置基准;CR是电流PI调节;Kfi是电流取样反馈系数;RS、Ro是电流取样电阻和负载电阻。该系统采用是电流模式控制,可以检测变换器输出电流,适当地选取反馈系数Kfi, 通过P(比例)、PI(比例积分)、PID(比例积分微分器)实现恒流控制。在反馈系数不变情况下,也可以通过改变电压或电流实现恒流值控制。 下图是恒流电源常用电路,其中采样电阻RS串联在功率回路里,作为回路电流的采样元件。它把回路电流转换成电压信号,并与基准电压Uref在放大器中进行比较放大,然后将其送至调整管VT的基极,驱动调整管VT对输出电流IO变化进行补偿校正。就可以实现恒流输出的。 9、缓冲吸收电路设计 在开关电源中,由于变压器的漏感、布线的引线电感存在、开关管在关断瞬间会产生很高的电压尖峰脉冲。整流快速恢复二极管由于存在存储效应,反向恢复过程中也会出现很高的反向恢复的碾压尖峰脉冲。这些过电压尖峰脉冲的出现不但危及功率器件的工作安全性,而且形成很强的电磁干扰噪声。为此必须在功率器件两端设计尖峰电压缓冲吸收电路。缓冲电路图如下 从缓冲电路中均有电容器元件,电容器的端电压不能突变,当MOSFET功率开关管关断是形成尖峰电压脉冲能量转移到电容器中储存,然后电容器的储能通过电阻消耗或返回电源,起到缓冲吸收电压尖端作用。而输出二极管两端产生的反向浪涌电压同时也受到限制,这样因此反向浪涌电流就会随之而减少,以及减少损耗和可能出现振荡。 10、控制电路设计 下面采用是UPC1094C控制电路 ① 振荡器 振荡器的振荡频率fosc有接在引脚6上的定时电阻器R17与接在引脚5上的定时电容器C15决定的。当 时振荡频率 。 ② 启动电路 启动电路由接在引脚8上R14接上外部电源为芯片工作提供Vcc=15V电源,而接在引脚9上是通过R10接在外部电路提供集电极电压。 ③ 限流电路 过流保护电路由R18、R19 、C16组成。它们是接到引脚3上的,在正常情况下,引脚3上电压低于200mV。当出现过流时,引脚3上的电压超过200mV的正负阀值,输出级被锁定为低电平,下个脉冲周期来之前,过流闭锁器复位,对下个周期的过电流进行检测,限制脉冲宽度。 ④ 过电压保护电路 过电压保护电路由光电耦合器PC1、R16组成的。当输出电压超过15V时,光电耦合器PC1动作,经过引脚2接入反馈电压电路,使输出级锁定为低电平。 ⑤ 最大占空比的设定和软启动 最大占空比是由电阻器R14、R15分压比来确定的。为了防止变压器的磁饱和,当电源电压刚启动时,与R14并联的电容器C14上电压不能突变,引脚1上电压为UREF,占空比为最大的。 ⑥ 输出电压控制电路 输出电压可通过调节R5、R6、R7组成分压电路确定的。 11、PCB布线 在画PCB布线时,应先确定元器件的位置,然后布置地线、电源线、再安排高速信号线,最后考虑低速信号线。 元器件的位置应按电源电压、数字及模拟电路、速度快慢、电流大小等进行分组,以免相互干扰。格局元器件的位置可以确定PCB连接器各个引脚的安排。所有连接器应安排在PCB的一侧,尽量避免从两侧引出电缆,减少共模辐射。 ① 电源 在考虑安全条件下,电源线应尽可能近地线,减小差模辐射的环面积,也有助于减小电路的交扰。 ② 时钟线、信号线和地线位置 信号线与地线距离较近,形成的环面积较小;这样才合理的。 ③ 按逻辑速度分割 当需要在电路板上布置快速、中速和低速逻辑电路时,高速的器件应按放在紧靠边缘连接器范围内,而低速逻辑和存储器,应放在远离连接器范围内。这样对共阻抗耦合、辐射和交扰的减小都是有利的。 ④ 应避免PCB导线的不连续性 1)、迹线宽度不要突变; 2)、导线不要突然拐角。 12、电路仿真 国内外电路仿真软件有:saber、EDA、EWB、Multisim、MATLAB、Special Puipose等,而在这次开关电源设计是利用Multisim电路仿真软件来测试电路的。Multisim仿真软件是继承了EWB软件的诸多优点的,并且在功能和操作方法上有很大改进的。它可以完成电路的瞬态分析和稳态分析、时域分析、器件的线性和非线性分析、电路的噪声分析和失真分析等强大的功能的,以帮助设计人员分析电路的合理性 ① 仿真原理图 2、进行各项参数与波形仿真测试 (1)、 市电输入交流电为220V,万用表读数输入电压波形图如下: (2)功率开关管出发脉冲图测试: (3)输出稳压波形测试: (4)变压器经过整流后二次直流电压测试: (5)输出电流测试: (6)功率测试: 最后,通过对整体电路的功能和典型性能参数进行了仿真验证,仿真结果均达到预定指标,证实了方案可行性与理论分析的正确性。 版权归原作者所有,如有侵权,请联系删除。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-11 关键词: 开关电源 电路图

  • 135张图!开关、电机、断路器、电热偶、电表接线图大全!

    这是非常齐全的一篇电工接线图的文章,包含开关接线图断路器、接触器控制回路接线图,电机逆转、正转原理接线图,电表进出接线图,电路开关接线图,电热偶接线图,希望能帮到想学这些专业的朋友,不是专业的也可以看一下懂得这些原理,以免家里电路有问题的时候出现手忙脚乱的现象,但是前提必须在安全的情况下动手去做,毕竟比较危险,电不能开玩笑的。 一、开关接线图 一开单控开关接线图 二三开连体单控开关接线图 四开连体单控开关接线图 一开五孔单控插座接线图 二开五孔单控插座接线图 一开双控开关接线图 二三开单控开关接线图 四开单控开关接线图 一开五孔单控插座接线图 二三开双控开关接线图 一开多控开关接线图 两开多控开关接线图 三开多控开关接线图www.diangon.com 二、断路器、接触器控制回路: 三:热电偶: 四、电能表: 三相四线电度表互感器接线 电源线从互感器P1进的接线方式 电源线从互感器P2进的接线方式 三相四线电度表互感器接线 电源线从互感器P1进的接线方式 三相三线电度表接互感器电路 单相电能表的接线 电源从P1进 电源线从P2穿过(逆穿)接线图 汇总 3个单相电度表互感器接线 电源线从P1面穿过 互感器二次线端接电流表不分彼此 五、其他: 单相电机顺逆转控制 控制顺逆转 电葫芦吊机 六、电动机:   延时 七、日光灯类: 双联开关的2种双控电路(如图) 两种控制方式(如图) 桥式全波整流滤波电路(如图) 通电延时亮灯(如图) 延时断电(如图) 延时通断不断循环且达到设置循环数断电(如图) 灯延时熄灭(如图) 传统镇流器和电子镇流器(如图) 延时通断不断循环且达到设置循环数断电(如图) 2灯循环点亮(如图) 循环流水灯(如图) 时间断电器断电延时控制(如图) 通电延时断电(如图) 通电延时亮灯(如图) 桥式全波整流滤波电路(如图) 延时通、断循环运行(如图) 2灯循环亮、熄(如图) 时间继电器断电延时控制(如图) END 版权归原作者所有,如有侵权,请联系删除。 ▍ 推荐阅读 太美了!PCB布线怎么可以这么美? 对于PCB厂的工程师来说,Layout就是硬件的艺术 图文并茂解析变压器各种绕线工艺!(包含各种拓扑) 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-08 关键词: 元器件 电路图

  • 135张图!开关、电机、断路器、电热偶、电表接线图大全

    这是非常齐全的一篇电工接线图的文章,包含开关接线图断路器、接触器控制回路接线图,电机逆转、正转原理接线图,电表进出接线图,电路开关接线图,电热偶接线图,希望能帮到想学这些专业的朋友,不是专业的也可以看一下懂得这些原理,以免家里电路有问题的时候出现手忙脚乱的现象,但是前提必须在安全的情况下动手去做,毕竟比较危险,电不能开玩笑的。 一、开关接线图 一开单控开关接线图 二三开连体单控开关接线图 四开连体单控开关接线图 一开五孔单控插座接线图 二开五孔单控插座接线图 一开双控开关接线图 二三开单控开关接线图 四开单控开关接线图 一开五孔单控插座接线图 二三开双控开关接线图 一开多控开关接线图 两开多控开关接线图 三开多控开关接线图 二、断路器、接触器控制回路: 三:热电偶: 四、电能表: 三相四线电度表互感器接线 电源线从互感器P1进的接线方式 电源线从互感器P2进的接线方式 三相四线电度表互感器接线 电源线从互感器P1进的接线方式 三相三线电度表接互感器电路 单相电能表的接线 电源从P1进 电源线从P2穿过(逆穿)接线图 汇总 3个单相电度表互感器接线 电源线从P1面穿过 互感器二次线端接电流表不分彼此 五、其他: 单相电机顺逆转控制 控制顺逆转 电葫芦吊机 六、电动机:   延时 七、日光灯类: 双联开关的2种双控电路(如图) 两种控制方式(如图) 桥式全波整流滤波电路(如图) 通电延时亮灯(如图) 延时断电(如图) 延时通断不断循环且达到设置循环数断电(如图) 灯延时熄灭(如图) 传统镇流器和电子镇流器(如图) 延时通断不断循环且达到设置循环数断电(如图) 2灯循环点亮(如图) 循环流水灯(如图) 时间断电器断电延时控制(如图) 通电延时断电(如图) 通电延时亮灯(如图) 桥式全波整流滤波电路(如图) 延时通、断循环运行(如图) 2灯循环亮、熄(如图) 时间继电器断电延时控制(如图) 版权归原作者所有,如有侵权,请联系删除。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-12-07 关键词: 电源设计 电路图

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包