当前位置:首页 > 直流电源
  • 可调稳压电源应用设计,你知道吗?

    可调稳压电源应用设计,你知道吗?

    你了解可调稳压电源应用设计吗?它有什么作用?直流稳压电源的控制芯片是采用目前比较成熟的进口元件,功率部件采用现国际上最新研制的大功率器件,可调直流稳压电源设计方案省去了传统直流电源因工频变压器而体积笨重。与传统电源相比高频直流电源就较具有体积小、重量轻、效率高等优点,同时也为大功率直流电源减小体积创造了条件,此电源又称高频可调式开关电源。可调直流稳压电源保护功能齐全,过压、过流点可连续设置并可预视,输出电压可通过触控开关控制。 工作原理 参数稳压器在输入交流电压150V-260V时,输出稳压在220V效果效好。低于和高于这个范围,其效率要下降。采用单片微机进行第一步控制,使310V以下和90V以上的输入电压,调整控制在190V—250V范围,再用参数稳压器进行稳压效果很好。 由市电输入的交流电压变化波动很大,经过过压吸收滤波电路将高频脉冲等干扰电压滤去后,送入直流开关稳压电源、交流取样电路和控制执行电路。 直流开关稳压电源的功率小,但能把60-320V的交流电压娈换成+5V,+12V,-12V的直流电压。+5V电压供给单片微机使用,±12V电压供给控制电路的大功率开关模块使用。 单片微机把取样电路采集到的输入电压数据,分析判断并发出控制信号送到触发电路,控制调节输出电压。 控制执行电路由SSR过零开关大功率模块和带抽头的自耦变压器组成。SSR之间采用RC吸收电路吸收过电压和过电流,使SSR在开关时不会损坏。控制执行电路把 90-310V的输入电压控制在190V-240V范围,再送到参数稳压器进行精确稳压。 参数稳压器由电感和电容组成LC振荡器,振荡频率50HZ。无论市电怎么变化,其振荡频率不会改变,因此输出电压不会变化,稳压精度高。即使输入电压波形失真很大,经参数稳压器振荡输出后却是标准的正弦波,因此稳压电源有强的抗干扰能力和净化能力。 保护告警电路:当有危害设备安全情况时,只发出声光告警,提示操作人员注意采取措施,而不用切断输出电压。在无输出电压,控制箱的温度过高,市电输入高过300V,市电输入低于130V时都会声光告警。当输入电流过大时,输入(输出)空气自动开关自动跳开。以上就是可调稳压电源应用设计解析,希望能给大家帮助。

    时间:2020-08-03 关键词: 直流电源 可调稳压电源 大功率器件

  • 你知道IT-M3100 系列直流电源吗?

    你知道IT-M3100 系列直流电源吗?

    什么是IT-M3100 系列直流电源?它有什么作用?ITECH艾德克斯电子有限公司于近日宣布将在2019年推出全新主打黑科技的M系列,并将在5月发布M系列的首个产品——IT-M3100 系列灵巧型宽量程直流电源。据了解,ITECH此次推出全新的M系列不仅具有全新的外观,同时也在产品的技术上创新,从行业应用的角度切入,提供用户更完整的创新解决方案。 M全系列拥有直流电源、双极性电源、交流电源、回馈负载、源载系统等多个产品,给了用户非常宽广的选择范围,满足客户多样性的测试需求。 此次率先推出IT-M3100 系列灵巧型宽量程直流电源突破传统桎梏,在仅½1U的超小体积里,不但可以输出高功率,同时具备高性能和多功能。IT-M3100系列由12个型号组成,提供6种电压,更可以通过组合搭配, 实现多种输出功率。灵活的模组式架构,通过巧妙设计"leg"插接来实现多台叠加,而且搭配上架安装套件可达到完美使用需求。这一系列的推出,可帮助工程师更方便更快速、更准确的创造和实现测试技术进步。 很多电子产品类似于像DC-DC变换器,电池老化测试的充电部分,LED以及电路板等需要DC供电的产品在做多路一起老化测试时,就需要用到多路电源,这样可以保证多路电源的同步性和输出的一致性。采用传统的多台电源物理组多路的方式会造成控制的不同步性,并且多台电源进行控制时,需要发送多台指令去控制每一台电源,不但无法提高效率,测试结果也无法保证精确。 IT-M3100系列拥有灵活的模组式架构,最多可达16*16的独立多通道设计,用户可依据待测物的测试需求任意配置每一个通道。同时,用户还可以设置On/Off、Track、Duplicate三种同步模式,多台电源只需发送一条命令即可控制,充分满足客制化需求,具有广阔的工程实用价值,适合研发、设计验证和自动测试系统等多种应用场合。 IT-M系列是ITECH产品史上的一个重大突破, 创造属于ITECH的黑科技。IT-M3100系列将开启这场黑科技风暴,为广大的工程师带来更为人性化的使用体验。以上就是IT-M3100 系列直流电源解析,希望能给大家参考。

    时间:2020-07-14 关键词: 直流电源 it-m3100 itech艾德克斯

  • 最大限度提高系统性能的双模功率监控IC,你了解吗?

    最大限度提高系统性能的双模功率监控IC,你了解吗?

    你听说过最大限度提高系统性能的双模功率监控IC?在同时使用交流和直流电源的系统中,实现双模功率监控传统上需要多个IC才能保证卓越的性能和准确性。越来越多的应用,例如太阳能逆变器、智能照明和云服务器通常使用双模式来保持安全运行,使用交流电作为主电源,直流电作为备用电源,或者反过来。 为了优化性能,降低此类系统的开发难度,Microchip Technology Inc.(美国微芯科技公司)推出灵活的双模功率监控IC,在测量交流和直流功率时,能在宽达4000:1的范围内,精度达到行业领先的0.1%。将功率计算和事件监控融入到一个IC中,降低了材料成本,缩短了固件开发时间。 MCP39F511A功率监控IC是一款高度集成的器件,可以满足高性能设计对功率测量精度越来越高的要求。为了简化校准步骤并满足对精度的极高要求,该器件包含两个24位模数转换器(ADC)(信纳比达94.5 dB )和一个16位计算引擎。MCP39F511A适用于消费类应用、物联网应用(IoT)和工业应用等应用类型,可以自动检测电源类型并在交流和直流模式间切换,从而优化测量结果。该器件的片内EEPROM可记录关键事件,帮助开发人员进行故障诊断,此外该器件还集成了低漂移基准电压和内部振荡器可降低成本。 使用MCP39F511A还具有灵活和方便实施的优点。该器件提供标准功率计算,例如有功、无功和视在功率、有功和无功电能、均方根(RMS)电流和电压、线频率以及功率因数,让设计人员能够通过最少的固件开发,就能为终端应用轻松添加高精度功率监控功能。为了进一步简化开发工作,MCP39F511A加入了许多高级功能,例如在断电或上电时自动将功率数据保存至EEPROM并从EEPROM自动读取功率数据,保证意外断电时测量结果永不丢失。针对各种功率条件的事件监控功能还可以改善预防系统维护,让开发人员能够更好地进行功耗管理。 Microchip混合及线性信号产品部门副总裁Bryan Liddiard表示:“在智慧城市和智慧家庭等新兴市场中,开发人员希望监控产品性能并改善能源利用,因此功率监控变得越来越普遍。MCP39F511A为客户提供简化的开发途径,让客户能够以业界领先的精度同时监控交流和直流电源。” 开发工具 该器件受全功能单相功率和电能监控系统MCP39F511A功率监控演示板(ADM00667)支持。该系统可以计算并显示有功功率、无功功率、RMS电流、RMS电压、有功电能(输入和输出)和四象限无功电能,通过USB轻松连接提供自动控制功能的“功率监控实用软件”,让用户轻松评估所有系统配置设置。 对于批量采购的情况,Microchip的Application Center of Excellence(卓越应用中心)可以基于客户硬件校验提供定制固件的器件,帮助节省校验成本和时间。以上就是最大限度提高系统性能的双模功率监控IC解析,希望能给大家帮助。

    时间:2020-06-08 关键词: Microchip 直流电源 交流电源

  • TE推出了照明控制的增强型底座

    TE推出了照明控制的增强型底座

    全球连接与传感领域领军企业TE Connectivity (TE)最新推出的LUMAWISE Endurance N 增强型底座是一款照明控制底座配件,可提供复杂控制节点解决方案所需的交流电源开关功能和直流电源,为 NEMA/ANSI 街道和室外照明控制解决方案搭建一个快速开发和制造的平台。 TE ConnecTIvity (TE)的LUMAWISE Endurance N 增强型底座有直流电源和信号传输接口布局有序合理,设计经济高效,支持重复使用,降低因更改设计而导致的项目进度和成本方面的风险。新项目机遇更多,所需认证和工程设计更少,因此减少了供应链支出,改善了可制造性,使设计人员更加专注于创新功能的开发。 作为TE ConnecTIvity授权分销商,Heilind可为市场提供相关服务与支持,此外Heilind也供应多家世界顶级制造商的产品,涵盖25种不同元器件类别,并重视所有的细分市场和所有的顾客,不断寻求广泛的产品供应来覆盖所有市场。

    时间:2020-06-04 关键词: 直流电源 照明控制 电源开关

  • 5G时代直流电源的部署建议解读

    5G时代直流电源的部署建议解读

    近日,全球领先的咨询公司Frost &Sullivan发布2019年度直流电源市场洞察报告。该报告涵盖了5G趋势、5G对直流电源影响、5G时代直流电源部署建议、业界电源厂商动态/市场份额等方面。本文就报告中的关键观点进行解读: 一、5G对直流电源的影响 Frost& Sullivan分析认为,5G商业部署正在加速,未来4-5年频谱超过5个以上的站点占比将达45%以上,甚至部分将达到10个频段。随频段增加及多输入/输出的无线MIMO技术使用,叠加2/3/4G后的5G站点总功耗可能超过10KW。功耗的增加给能源基础设施带来挑战,包括: (1)线缆损耗加大:由于频段增加和MIMO技术应用,5G站点功耗将大于4G。电源在传输时的线缆损耗会大于4G时代。某些情况下,拉远损耗后的电压无法满足设备工作电压需求。 (2)站点前级AC空开容量不足:由于5G设备功耗增加,站点前级AC空开要具备更大容量,因此不得不重新改造、重新审批,从而带来高昂的改造成本和5G部署进度的延迟。 (3)需要新机柜:新增的5G基带单元(BBU),需要新的安装空间和散热。同时,为保障5G业务的可靠性,电池也需要增加。因此需要新增机柜投资,以满足设备/电池安装空间和散热要求。 报告同时指出,除以上挑战外,还隐藏线缆改造、站点获取/加固、机柜吊装等一系列挑战。 二、对直流电源部署的建议 Frost& Sullivan在报告中建议,直流电源在规划时就应考虑后续网络发展,在一个站一套电源实现简单部署同时,可以灵活扩容来支持未来演进。对于空间受限场景,可以采用抱杆安装方式来最大减少工程要求。 针对站点AC空开容量不足的挑战,报告中指出应尽量避免传统的AC空开甚至变压器改造带来的高昂工程成本。建议采用通过设备/电源/电池之间的协同,在设备峰值功耗超过AC空开容量时,电池主动参与对设备供电,弥补AC空开容量不足。此外,为降低线缆损耗,相比采用粗线缆/双线缆改造,当前业界认可度较高的是将电源供电和备电进行升压。 在部分无市电或市电较差的站点,传统油机发电将带来高油耗和高维护成本。随着全球气候变化面临的挑战和节能减排诉求,通过太阳能等清洁能源的接入和高性能锂电主动参与循环供电,来减少甚至完全去掉油机,减少二氧化碳排放和运营成本,也将是当前运营商主流趋势。 三、业界直流电源厂商动态和市场份额 随着网络向5G演进,对直流电源系统也提出了越来越高的技术要求。靠低价低质策略生存,缺乏技术创新的厂商正在逐步淘汰。而拥有先进技术、高质量解决方案和成熟交付能力的一级制造商将继续在直流电源市场赢取更多的市场份额。 报告最后以华为为例指出:在全球市场70多个直流电源厂商中,华为直流电源收入一直保持显著增长,其中2018年增长达20%,市场份额全球第一达34.2%,在全球占据主导地位。 

    时间:2020-05-15 关键词: 4g 直流电源 5G

  • 在人工智能领域中ITECH直流电源的应用

    在人工智能领域中ITECH直流电源的应用

    (文章来源:艾德克斯) 智能巡检机器人和智能分拣机器人在产线物流中已经逐步代替人工完成较为重复繁重的工作,机器人工作电路较为复杂,包含机械驱动电路,传感器电路,通讯电路,电源电路等,而各个电路中又包含了大量的IC芯片以做到逻辑控制和数据分析等功能,这些芯片的性能好坏直接决定了机器人工作的效率和可靠性,很多IC芯片往往都有电源引脚作为电平控制输入或者使能信号,输入电压或者功率根据元器件的情况有高有低,对于大部分的IC芯片尤其是应用到传感器电路和逻辑控制运算的IC芯片来说,工作环境的要求是十分的严苛的,而对于为IC芯片提供这些信号的电源来说,高速度,高精度往往是必不可少的因素。 ITECH根据行业的测试需求,提供针对IC测试的解决方案,需求一:静态电流的测试,一定电压下,让IC处于无负载,无震荡状态,将电流表的一端接电源的正极,另一端接IC的VDD脚,电流表的读数极为IC的静态电流。 需求二:驱动电流的测试,一定电压下,将IC的负载用可调电阻代替,让IC正常工作,当输出口有输出时,调节可调电阻的阻值,使IC输出端的电平满足测试要求,以上测试需求,根据电压规格要求,精度要求,推荐合适的直流电源,如IT6400双极性电源;IT6100高速高精度电源;其中IT6400双极性电源高至na级别的精度,既作为供电电源,又可以测试静态电流。 综上:IC芯片的测试往往离不开一款高精度高速度电源,艾德克斯作为世界领先的电源测试方案提供商,对于机器人内部供能系统和电力器件的性能测试起了重要的作用,不论是作为使能电源做机器人传感器电路还是IC芯片部件的测试,或者是ITS9500电源测试系统测试机器人电源电路的供电工况,又或者是各个功率等级的测试需求,艾德克斯都能凭借高品质高精度的测试解决方案,为工程师的研发和生产保驾护航,真正实现“china made”。      

    时间:2020-04-28 关键词: 人工智能 直流电源

  • ITECH四大系列同发,引领黑科技-最新推出4款源+载

    ITECH四大系列同发,引领黑科技-最新推出4款源+载

    ITECH于近日推出4大系列共38个产品型号。分别是M系列旗下的:IT-M3600回馈式源载系统,IT-M3400双向可编程直流电源,IT-M3300能量回馈式直流电子负载和IT-M3200高精度可编程直流电源。这几款产品的问世,对于用户来说在测试解决方案上,将提供更多的选择, 其高功率密度,小体积,高性能,可回馈也将颠覆测试理念,产生巨大的影响力,另外,此系列产品具有特别宽广的选择范围,可以满足电池、工业、半导体、医疗、光伏、5G通讯、3C等各个领域的客户多样性测试需求。 据了解,此次发布的新品不但延续了M系列的½ U高功率密度设计和专利式的插接架构,同时也都具备多通道独立控制的功能,可以实现同步或比例跟踪功能。用户还可以透过并联功能满足不同功率的待测物测试,让使用更为弹性,设备使用率也大幅提高。 同系列共六款产品,提供的完善的测试解决方案,即可大限度的提高测试精度,又可降低日益增加的多路测试需求,在多路的连接复杂性上得到升级并可协助用户降低了成本 IT-M3300可编程直流电子负载延续了ITECH产品 一贯的特色,在超小体积下,最大功率可达800W并可支持能量回馈。轻松高效的将电能无污染的回馈电网。同时此系列产品具备高精度的输出和量测,并且针对测试做了多项安全保护设计,适合用于各种类型电池放电、多通道电源、半导体老化等多个测试领域。 IT-M3200是一款高精度可编程直流电源,不但具备动态负载响应能力,同时也提供多档位电流量程切换,分辨率最高可达10nA。广泛应用于3C产品,半导体器件,5G、物联网和医疗电子设备等领域。 IT-M3400是一款双向直流电源,同时也是一款电池模拟器。很好的将双向电源和回馈式负载功能特性于一体,可以适合用于电源模块、智能化工业设备、汽车电子和各种小容量电池充放电测试等多个测试领域。 IT-M3600 可以说是此次发布的最为重磅的产品了,他创新性的在½ U的Mini体积内融入了两台设备,既是一台双向电源,也是一台回馈式负载,能量双向流动,一机多用。很好的融合了两种设备的优点,适合用于多模组电池、多通道电源、微型逆变器、半导体IC器件等多个测试领域。 此次发布的4款产品都不同程度的填补了业内的空白,在小功率电子测试测量中刮起了一股势不可挡的黑科技风暴,不但展现了ITECH强大的研发力量,同时也体现了ITECH不断升级提供专业解决方案的创新理念,客户可根据自身要求进行选择适合自己的产品。更多信息,请访问http://www.itech.sh/cn/recommend/IT-MNewproduct.html

    时间:2020-04-20 关键词: 直流电源 itech 源载

  • AMETEK发布Sorensen品牌Asterion系列程控直流电源新产品

    AMETEK发布Sorensen品牌Asterion系列程控直流电源新产品

    美国圣地亚哥时间2020年2月18日,AMETEK程控电源事业部发布了Sorensen品牌Asterion系列程控直流电源的31个新型号产品。 Sorensen 品牌 Asterion系列程控直流电源现有43个型号,单机输出功率覆盖1.7kW到10kW,电压覆盖40V到400V,电流最高可达250A。Asterion系列程控直流电源适用于测试当今复杂电子产品,如国防军工设备,航空航天电子设备,通讯设备,汽车零部件及其他商用电子产品。Asterion系列程控直流电源可用于自动化测试,过程控制,研究开发应用,且可同时满足工程师对节约空间的需求。 具有多种输出特性的高功率密度电源 Asterion系列程控直流电源具有行业领先的功率密度,1U机架高度的产品可提供最高5kW的输出功率,2U机架高度的产品可提供最高10kW的输出功率。其中,28个型号产品具有矩形功率输出特性,15个型号产品具有自动量程输出特性。与矩形功率输出特性的电源相比,自动量程类型的电源扩展了电流和电压的输出范围,能够满足更广泛的测试需求。 最多可并联五台电源以满足更高电流需求 当需要使用大电流时,可以最多并联五台Asterion系列程控直流电源以实现最高1250A的电流输出。该电源具有内置智能的自平衡功能,并联时作为主机的电源最多可控制4台从机电源。 快速瞬态响应,低噪声和高效率 Asterion系列程控直流电源具有多种高级特性。快速瞬态响应,其中40V-100V型号产品的瞬态响应指标为1ms,其他400V以内的型号产品的瞬态响应指标为2ms;低噪声,对于一些1.7kW和3.4kW的型号品牌,其噪声低至7mVRMS;高效率,1.7 kW型号电源最低效率为89%,3.4kW、5kW和10kW的型号产品的最低效率为91%,由此可实现测试中的散热量最小化。 支持多国语言的触摸显示屏 Asterion系列程控直流电源使用触摸屏实现手动操作、测试开发、测试监控和故障排除。用户可以通过该触摸屏快速实现输出参数设定、数据测量、系统配置和系统设定。支持多国语言的触摸屏帮助世界各地的工程师轻松地使用母语工作,语言类型包括: 汉语、英语、德语、法语、西班牙语、俄语、日语和韩语。 客户可以通过触摸屏或编码器来实现设备的功能选择和参数输入。Asterion系列程控直流电源采用了创新的动态速率变化算法来实现控制功能,不必单独调整分辨率设置即可实现对小参数变化的精确控制和对全局范围的快速扫描。 图形化用户界面软件- Virtual Panels Asterion系列程控直流电源通过图形化用户界面软件 - Asterion Virtual panels实现便捷的远程编程和控制。Asterion Virtual panels 软件直观友好,可定制化,为测试提供最大的灵活性。其还支持商用和军用航电规范标准的测试选件,测试参数是一个数据文件,工程师可任意修改测试参数来满足特定要求。此外,Asterion Virtual panels 软件具有报告生成功能,该功能可创建包含测试参数和通过/失败标准的word格式报告。 对于自动化测试,工程师可以使用标配的LAN LXI、USB或RS-232接口与电源进行通讯。可选配的接口包括GPIB和EtherCAT接口。EtherCAT接口允许设备与可编程逻辑控制器直接接口,主要用于工业和过程控制应用。 指令兼容可简化上一代产品的升级 Asterion系列程控直流电源可替代上一代XG1500、XG1700、XFR、DCS、DLM系列电源,且可兼容上一代电源的指令。因此,测试工程师可以直接使用性能更加优异的Asterion系列程控直流电源,不必编写全新的测试代码。指令兼容节省了大量的测试开发时间和成本,保护了现有测试程序的投资。 所有Asterion系列程控直流电源符合美国和国际标准,设备经过CSA认证,CE认证,符合RoHS标准要求。产品具有五年的标准保修期。 AMETEK 为全球客户提供最值得信赖的交直流电源、负载和仿真测试系统

    时间:2020-03-02 关键词: 直流电源 ametek asterion

  • 基本运算放大器配置是怎样的?

    基本运算放大器配置是怎样的?

    必须为运算放大器始终提供直流电源,因此在添加任何其他电路元件之前,最好配置这些连接。图1显示了无焊试验板上的一种可能的电源配置。我们将两根长轨用于正电源电压和地,另一根用于可能需要的2.5 V中间电源连接。板上包括电源去耦电容,其连接在电源和地(GND)轨之间。现在详细讨论这些电容的用途还为时过早,只需知道它们用于降低电源线上的噪声并避免寄生振荡。在模拟电路设计中,务必在电路中每个运算放大器的电源引脚附近使用小型旁路电容,这被认为是良好实践。 图1.电源连接 将运算放大器插入试验板,然后添加导线和电容,如图1所示。为避免以后出现问题,可能需要在试验板上贴一个小标签,指示哪些电源轨对应5 V、2.5 V和地。导线应利用颜色加以区分:红色为5 V,黑色为2.5 V,绿色为GND。这有助于保持连接的有序性。 接下来,在ADALM1000板和试验板上的端子之间建立5 V电源和GND连接。使用跳线为电源轨供电。注意,电源GND端子将是电路接地基准。有了电源连接之后,可能需要使用DMM直接探测IC引脚,确保引脚7为5 V且引脚4为0 V(地)。 注意,使用电压表测量电压之前,必须将ADALM1000插入USB端口。 单位增益放大器(电压跟随器): 第一个运算放大器电路很简单(如图2所示)。这称为单位增益缓冲器,有时也称为电压跟随器,它由转换函数VOUT = VIN定义。乍一看,它似乎是一个无用的器件,但正如我们稍后将展示的那样,其有用之处在于高输入电阻和低输出电阻。 图2.单位增益跟随器 使用试验板和ADALM1000电源,构建图2所示的电路。请注意,此处未明确显示电源连接。任何实际电路中都会进行这些连接(如上一步中所做的那样),因此从这里开始,原理图中没必要显示它们。使用跳线将输入和输出连接到波形发生器输出CA-V和示波器输入CB-H。 通道A电压发生器设置为1.0 V最小值和4.0 V最大值(3 V p-p,以2.5 V为中心),使用500 Hz正弦波。配置示波器,使输入信号迹线显示为CA-V,输出信号迹线显示为CB-V。导出所产生的两个波形图,并将其包含在实验报告中,注意波形参数(峰值和频率的基波时间周期)。你的波形应当确认其为单位增益或电压跟随器电路的说明。 缓冲示例: 运算放大器的高输入电阻(零输入电流)意味着发生器上的负载非常小;也就是说,没有从源电路汲取电流,因此任何内部电阻(戴维宁等效值)上都没有电压降。所以,在这种配置中,运算放大器的作用类似于缓冲器,屏蔽信号源免受系统其他部分带来的负载效应。从负载电路的角度看,缓冲器将非理想电压源转换成近乎理想的电压源。图3给出了一个简单的电路,我们可以用它来演示单位增益缓冲器的这个特性。这里,缓冲器插在分压器电路和某一负载电阻(10 kΩ电阻)之间。 图3.缓冲器示例 断开电源并将电阻添加到电路中,如图3所示(注意这里没有更改运算放大器连接,我们只是相对于图2翻转了运算放大器符号以更好地安排导线)。 重新连接电源,并将波形发生器设置为500 Hz正弦波、0.5 V最小值和4.5 V最大值(4 V p-p,以2.5 V为中心)。同时观察VIN CA-V和VOUT CB-H,并在实验报告中记录幅度。使用示波器输入CB-H还能测量运算放大器引脚3上的信号幅度。 图形实例如图4所示。 图4.缓冲器曲线 移除10 kΩ负载,代之以1 kΩ电阻。记录幅度。现在移动引脚3和2.5 V之间的1 kΩ负载,使其与4.7 kΩ电阻并联。记录输出幅度如何变化。你能预测新的输出幅度吗? 简单放大器配置 反相放大器: 图5所示为常规反相放大器配置,输出端有10 kΩ负载电阻。 图5.反相放大器配置 现在使用R2 = 4.7kΩ组装图5所示的反相放大器电路。组装新电路之前,请记住断开电源。根据需要切割和弯曲电阻引线,使其平放在电路板表面,并为每个连接使用最短的跳线(如图1所示)。记住,试验板有很大的灵活性。例如,电阻R2的引线不一定要将运算放大器从引脚2桥接到引脚6;你可以使用中间节点和跳线来绕过该器件。 重新连接电源并观察电流消耗,确保没有意外短路。现在将波形发生器调整为500 Hz正弦波,设置为2.1 V最小值和2.9 V最大值(0.8 V p-p,以2.5 V为中心),并再次在示波器上显示输入和输出。测量和记录此电路的电压增益,并与课堂上讨论的原理进行比较。导出输入/输出波形图,并将其包含在实验报告中。 图形实例如图6所示。 图6.反相放大器曲线 趁此机会说一下电路调试。在课堂中的某个时候,你可能无法让电路工作。这并不意外,没有人是完美的。但是,你不应简单地认为电路不工作必定意味着器件或实验仪器有故障。这基本上不是事实,99%的电路问题都是简单的接线或电源错误。即便是经验丰富的工程师也会不时出错,因此,学会如何调试电路问题是学习过程中非常重要的一部分。为你诊断错误不是助教的责任,如果你以这种方式依赖其他人,那么你就错过了实验的一个关键点,你将不大可能在以后的课程中取得成功。除非你的运算放大器冒烟,电阻上出现了棕色烧伤痕迹,或者电容发生爆炸,否则你的元器件很可能没问题。事实上,大多数器件在发生重大损伤之前都能容忍一定程度的滥用。当事情不妙时,最好的办法就是断开电源并寻找一个简单的解释,而不要急着责怪器件或设备。在这方面,DMM可是一件十分有价值的调试工具。 输出饱和: 现在将图5中的反馈电阻R2从4.7 kΩ更改为10 kΩ。现在的增益是多少?将输入信号的幅度缓慢增加至2 V,仍然以2.5 V为中心,并将波形导出到实验室笔记本电脑中。任何运算放大器的输出电压最终都会受电源电压的限制,而在很多情况下,由于电路中存在内部电压降,实际限制要远小于电源电压。根据你的以上测量结果量化AD8541的内部压降。如果你有时间,可尝试用OP97或OP27放大器替换AD8541,并比较它能产生的最小和最大输出电压。

    时间:2019-11-10 关键词: 放大器 直流电源 电源资讯

  • 10T真空电弧炉用40kA直流电源的研制与应用

    10T真空电弧炉用40kA直流电源的研制与应用

      1.引言  直流真空熔炼是稀贵金属及高性能合金钢熔炼所必须采用的工艺,因而真空电弧炉及配套电源的设计是这种应用场合的关键与根本,近十年来我国直流真空自耗熔炼炉的设计与制造技术水平飞速发展,国产真空自耗熔炼炉单炉熔炼钛的重量已从原来常用的1T提升到10T,国产真空自耗凝壳炉单炉熔炼钛的重量已从原来常用的260kg提高到800kG,至2010年末,国产10T钛真空自耗熔炼炉及3T钢真空自耗熔炼炉和800kG凝壳炉相继投入运行,这三种填补国内空白的熔炼系统之供电电源都由我们研制,其中吸收了从世界名牌真空电弧炉成套厂---德国ALd公司进口设备的许多先进技术,本文介绍用于国产10T钛合金熔炼真空自耗炉的2×20kA/60V直流电源的设计及使用情况,热望能推进我国此行业的发展。  2.原理与设计  10T钛合金熔炼真空自耗炉工艺要求配套直流电源输出额定参数为40kA/60V,在此之前国产的此类用途的电源容量最大仅30kA/50V,图1给出了系统的总原理框图,从图显见,其构成可分为主电路及控制电路两大部分,下面分别分析各部分的工作原理。 2.1 主电路  主电路采用10kV经两级变压器直接降压再晶闸管可控整流的方案,为降低注入电网的谐波含量采用12相可控整流方案,另考虑到熔炼过程中起弧电压为60V,而熔炼电压仅40V左右,功率因数很低的实际工况,主电路中增加了功率因数补偿环节,图2给出了主电路的原理图,图中应用了两套双反星形可控整流单元并联,其中图2的上半部分给出了主电路中的降压匹配变压器部分。可控硅  (1)降压匹配变压器  显见,电网10kV先由第一级降压变压器降为690V,再由两台一次分别接为三角形与星形的整流变压器降压,这样设计的目的是为了将第二级整流变压器与可控整流部分装于一个柜体中,构成一体化电源,避免10kV输入整流变压器与整流单元装在一个柜体中,因电压太高,给结构设计带来的不便,同时从根本上解决了多年来,国产这类电源整流变压器放于柜外,现场安装整流变压器与整流柜之间大截面铜母排极难安装,工作量巨大的问题,使现场的安装工作量达到最小,更为可贵的是减小了整个电源的体积,缩小了占地面积,此结构方案是吸收了世界名牌真空电弧炉成套厂---德国ALd公司的先进技术设计与研制的,图中变压器T1采用油浸自冷,而整流变压器T2与T3采用干式水冷,CT1—CT5为进行690V侧交流电流取样的电流互感器,其作用表现在一则为直流霍尔电流  传感器失效后,原电流闭环系统变为开环运行故障的过电流保护提供电流取样信号,二则为功率因数控制器提供对功率因数进行计算的电流取样信号,UT为电压互感器,它用来把690V电压变为功率因数控制器需要的100V标准信号,作为功率因数控制器计算功率因数的电压依据。  (2)可控整流部分  该部分的电路原理构成如图2中的下半部分,其应用了常用的两个双反星形可控整流电路并联,图中HL1与HL2为两个霍尔电流传感器,用于检测每个整流部分输出的实际电流值,提供给闭环调节器及保护单元与显示环节,一则保证在同一个输出电流设定值下,两个双反星形可控整流部分每个承担负载电流的一半,另一方面在对实际运行电流进行实时显示的同时,监控运行状况,若超过实际值,则进行有效迅速的保护。  (3)功率因数补偿的主电路  几乎所有的真空熔炼炉(包括自耗电极熔炼炉和凝壳炉),都存在一个共性问题,这就是空载起弧电压高,随单炉可熔炼金属材料重量的不同为50~75V,熔炼过程中熔化电压又低,一般随单炉可熔炼金属材料重量的不同为30~45V,由此造成不论其使用的直流电源是先应用整流变压器降压,后晶闸管可控整流的方案,还是先采用饱和电抗器调压,后整流变压器再降压,整流管整流的方案,运行时其功率因数都很低,一般为0.45~0.7,为解决本10T钛合金熔炼真空自耗炉用40kA直流电源系统功率因数太低的问题,我们在国内首次在此领域使用的可控整流电源系统中,增加了按熔炼过程中实际负荷功率大小自动调节功率因数的环节,该部分的主电路构成如图2中的右上角所示,图中DZ1~DZ3为进行电容短路故障保护的自动空气断路器,KM3~KM5为用来按实际功率因数大小自动投切补偿支路的接触器,L1、C1~L3、C3分别为三个支路的防止谐波放大的电抗器和功率因数补偿电容器,该功率因数补偿主电路的工作原理为:装于控制回路的功率因数控制器,根据UT与CT1的电压与电流取样信号,实时计算功率因数,并按计算结果与目标值0.95的差别,按8421编码的组合,输出控制KM3~KM5中一个、两个、三个闭合,按功率因数的实际需要投入相应的补偿电容,满足无论是化一次锭还是化二次锭,在输出直流电流从10kA~40kA变化的整个工作范围内,都可以保证690V侧的功率因数既不低于0.95又不高于1.0。  2.2 可控整流部分的控制电路  可控整流部分的控制电路分为给定积分、闭环调节器、电压电流检测与处理、同步环节、触发脉冲形成、保护监控电路,限于篇幅本文仅介绍几个关键的单元电路,其余电路可参考文献3。  (1)闭环调节器  由于真空电弧炉有起弧、熔炼、补缩等工艺过程,起弧时电压高为空载电压、熔炼工作时电弧电压仅是直流电源输出空载电压的一半,熔炼过程中又希望构成稳定度很好的恒流源,另一方面为防止起弧时电压太低无法起弧或起弧电压太高击穿坩埚,我们设计了图3所示的起弧时为稳压源,熔炼时恒流控制的可按负载工况自动转换的动态双闭环调节器,图中IC4B与IC4A分别和外围元器件一起构成PI调节器,UF与IF分别为来自电压与电流检测环节的输出信号,电压与电流的检测分别使用了霍尔电压传感器与霍尔电流传感器,IC2为电子开关CD4066,当起弧前因IF几乎为零,比较器IC3A输出高电平,模拟开关IC2中的引脚  6为低电平,引脚12为高电平,其内部引脚11与10接通,反馈为电压反馈,电压闭环调节器工作,构成电压闭环,当起弧成功后,由于电流值通常已达几千安培,比较器IC3A输出低电平,模拟开关IC2中的引脚12变为低电平,电压调节器输出支路因IC2的引脚11与10断开而退出运行,同时IC2的引脚6变为高电平,电流调节器输出支路因IC2的引脚8与9接通而投入运行,电流取样值作为调节器的反馈信号送入电流闭环调节器,从而保证直流电源输出为稳定度很好的恒流源,满足熔炼过程中高精度稳定直流电流输出的需要。  (2)同步环节  10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,应用了光耦合器作为触发脉冲形成单元前级的  同步环节,省去了常规使用的同步变压器,使同步环节的体积及损耗都得以减小,且为构成相序自适应的触发器奠定了很好的基础,图4中6个光耦合器VLC1~  (3)触发脉冲形成  触发脉冲形成环节的原理电路如图4所示,其核心单元IC7为陕西高科电力电子有限责任公司应用CPLD芯片开发的准数字化触发集成电路芯片SGK198,该触发器利用对闭环调节器输出电压变换为与此电压相适应的频率脉冲信号,在SGK198内对这一脉冲信号进行6分频计数的方法来获得6路触发脉冲输出,6路触发脉冲形成的计数器开始计数的时刻由同步环节输出的6路同步信号的后沿所决定,由此可见,闭环调节器输出电压值高,说明反馈小于给定,且误差较大,图4差分器IC4C输出电压便低,压控振荡器输出的频率便低,计数器计满的时间便长,输出触发脉冲便距同步信号后沿距离便远,相当于控制角α减小,整流输出直流电压便增加,反之,当闭环调节器输出电压较小时,说明用户设定的直流电源输出运行参数与实际运行参数误差较小,图4中差分器IC4C输出电压便高压控振荡器输出频率便高,计数器计满的时间便短,输出触发脉冲的时刻便距同步信号后沿距离便近,相当于控制角α增大,晶闸管的导通角减小,输出直流电压降低。  (4)监控保护单元  10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,应用PLC完成运行状况的监控及故障时的保护工作,图5给出了监控与保护环节的软件流程框图,该软件随时监控主电路中对应与晶闸管串联的48只快速熔断器的报警开关输出及装于水冷母排上的报警用温度开关的接点闭合与否,由于两台整流电源共用了48只晶闸管元件,报警信号很多,常规的设计对应每一个故障点,需要一个PLC的输入端口,为减小PLC系统的硬件配置,本电源系统采用了一种矩阵式编程方法,从而使系统硬件得以简化,同时在软件编程时根据电弧熔炼的特殊要求,增加了给定不为零不能合闸起动,主电路合分闸都在脉冲封锁状态下进行,补偿与滤波电源输出功率达到一定值时才投入,在切除  电源功率前先切除功率因数补偿单元,从而有效的防止了次谐波振荡及过补偿状况的发生。  (5)熔速控制及自动给定  为了满足全自动熔炼的需要,本电源通过与炉子工况及熔炼控制的上位计算机之间的通讯,实现了自动熔炼时的按曲线给定,控制单元通过PLC的接口接受上位计算机输出的按工艺设定输出电流指令,在PLC内转换为相应的模拟给定电压从PLC的模拟输出口输出,控制触发脉冲的控制角相位,达到调节及稳定输出电流的目的,并在国内首次使用了熔速控制,使控制达到了很好的效果。  (6)应用电流断续补偿扩大电流稳定不断弧范围  由于自耗电极真空熔炼炉工艺有起弧、熔炼、补缩等工艺过程,为了保证成品锭快熔化完时使锭子端口尽可能的平整,提高熔化锭子成品率,要求补缩电流尽可能的小,尽管在主电路中直流输出端增加了平波电抗器Lo,但也很难使输出直流电流达到全范围连续,因而在控制回路中增加了电流断续的补偿环节,使补缩时的电流连续稳定工作范围达到了最小电流不大于500A的良好效果。  (7) 功率因数补偿环节的控制  由于真空自耗熔炼炉工艺过程较为复杂,工作时  开始初始化封脉冲有否电源冷却水压给定设定为零?高压合闸合闸到位否?解封锁按给定输入设检测实际电压有否故障信号?有停机信息?封脉冲 停机有 有不正常缺相故障?水流量正常?否正常无是未到位到位无无有 电流故障报警置输出调节大小分断高压给定设定为零?是否  图5 PLC监控保护单元的软件流程框图  分起弧、熔炼、补缩、停机等工艺流程,同时对应不同的工作段,要求电源输出稳定运行的电流与电压值不同,由此造成电源运行时其功率因数与注入电网的谐波电流含量会有很大不同,这就决定了对其功率因数补偿和谐波治理要采取变化的参数与结构。只有这样才能达到在整个工艺过程中都可保证功率因数不低于国标允许值,而注入电网的谐波电流不超过国标允许值,因本10T真空自耗炉用直流电源采用12脉波可控整流方案,总体装机用电容量并不大,所以其注入电网的谐波含量是满足国标《GB/T 14549-93电能质量 公用电网谐波》规定的,因而在本系统中仅考虑功率因数补偿,而未设置谐波滤波,只是功率因数补偿的控制电路,既要满足起弧、熔炼、补缩、停机等工艺流程的需要,又要适合熔炼一次锭、二次锭、合金锭及锭子直径不同对直流电源输出电流的要求不同的需要,为此设计了专门的控制器,控制器内对电源的功率因数按输入的电压和电流值随时进行计算,并按熔炼工况及锭子种类和实际使用电流的不同,按8421组合决定投入多大的补偿容量,既严格保证在整个工作周期中,补偿后的功率因数大于0.95,且使谐波不被放大,又可靠的按当电源负荷达到一定值时,功率因数补偿支路才投入,而当电源负荷小到一定值时,功率因数补偿支路先切除,在直流电源停机时,先退出功率因数补偿支路,再断开图2中的断路器DLQ,保证不发生次谐波震荡及谐波放大等不正常情况。  3. 实用效果简介  上述10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源,已成功的用于我们研制的国内首台10T电弧炉熔炼系统中,整流变压器、直流平波电抗器、晶闸管整流单元、控制环节、纯水冷却器、进线断路器全部装于两个柜体中,每个整流柜系统输出20kA/60V,使用中两柜并联运行,经实测稳流精度高于1%,功率因数不论是在熔化一次锭还是二次锭,电源输出电流稳定运行范围10kA~40kA,全范围内都不低于0.95,注入电网的谐波电流含量低于国标允许值,补缩工况最小可连续稳定运行电流为500A,现场安装仅需连接交流三相输入690V电缆线及直流输出正负母排和外循环水两根水管,安装甚为方便,运行稳定可靠,达到了十分理想的设计与运行效果。  4.结 论  综上分析,我们可得下述结论:  (1)10T钛合金熔炼真空自耗炉用2×20kA/60V直流电源的研制成功,填补了国内空白,它把整流变压器、平波电抗器、纯水冷却器、整流及控制和保护等单元装于一个柜体中,缩短了引线尺寸及占地面积,减小了现场安装工作量,是个很好的方案。  (2)文中介绍的同步环节及触发脉冲形成电路设  计的较为巧妙,可推广到低压可控整流系统。  (3)电压与电流可根据工况自动切换的闭环调节器设计,兼顾了稳定输出电压与输出电流的不同需要是个不错的设计方案。  (4)采用12脉波可控整流,同时增加动态功率因数补偿环节,通过巧妙的控制器设计,满足了真空自耗熔炼炉的复杂运行工况要求,使运行时的功率因数较高,并保证了注入电网的谐波不被放大,在该行业为首创,在国内真空自耗熔炼炉及凝壳炉电源的系统配置中具有推广性。  (5)文中介绍的PLC监控与保护单元应用矩阵式软件编程方法,使需要的硬件配置要求得以降低,节约了成本,具有创新性。  (6)理论分析和实用效果都证明了,上述方案的可行性,毫无疑问,其应用前景将是十分广阔的。  参考文献  [1] 王兆安 电力电子技术(M)(第四版),北京:机械工业出版社,2006,12  [2] 李 宏 浅谈直流电弧炉用电源的发展,电源技术应用(J),2010.2  [3] 李 宏著,常用电力电子变流设备的调试与维修基础(M),北京:科学出版社,2011  [4] 李 宏著,常用电力电子变流设备的调试与维修实例(M),北京:科学出版社,2011  [5] 李 宏,常用电力电子变流设备器件及集成电路应用指南,第一分册 电力半导体器件及驱动集成电路(M),北京:机械出版社,2001.5  作者简介:  李宏,男,现年52岁,西安石油大学电子工程学院教授,发表论文200多篇,出版专(编)著15部,获中国人民解放军空军科技进步三等奖1项。现兼任中国电工技术学会电力电子学会理事、中国电工技术学会电气节能研究会理事、中国电源学会特种电源专业委员会常务委员、中国电工技术学会电力电子学会学术委员会委员、陕西省电源学会常务理事、主要研究方向为电力电子技术、电气传动技术、特种电源技术及专用集成电路的开发和应用技术。主持设计与电力电子有关的工程项目近110个,研制开发的电力电子成套装置380多台套,运行于国内电力、冶金、化工、石油、机械、电子、核工业、军工等行业,并已出口到东南亚,还装备了中国人民解放军空军导弹部队及陆军科研所,开发的晶闸管、GTR、IGBT专用驱动控制板累计在全国销售15000多块,主编的实用电力电子技术资料在全国28个省市销售近30000多册。

    时间:2019-03-19 关键词: 电路设计 直流电源 电源技术解析 实际应用

  • 水电站直流电源系统接地故障的处理与技巧分析

      一、 前言  辰溪大洑潭水电站位于湖南省辰溪县境内、沅水干流中流,是沅水河的第八个梯级电站。电站装机容量为5×40MW,属大型水力发电站。面前电站五台灯泡贯流式机组均已投产发电。由于电站属河床式电站,闸门的可靠调度及电站机组的稳定运行是电站的工作重点问题,因此电站的电源稳定将是关键因素,而直流系统在水电站中承担的负荷极为重要,它提供为确保全厂继电保护、计算机监控、电气控制、二次信号、事故照明、交流不间断电源等的不间断供电,上述系统要求对供电的可靠性很高。因此直流系统的可靠性是保障电站安全运行的关键条件之一。  二、 直流系统故障接地的分析  大洑潭水电站直流系统安装完成投运后,经过一段时间的运行后出现了直流系统故障接地报警,但未出现接地故障断电退出运行的现象,经过现场对直流系统的蓄电池、一次回路、二次控制回路等的检查未发现有接地现象。  由于直流系统在电站分布范围广、外露部分多、电缆多、且较长。所以,特别是在仍再建水电站的很容易受尘土、潮气的腐蚀,使某些绝缘薄弱元件绝缘降低,甚至绝缘破坏造成直流接地。因此在分析直流接地的原因有如下几个方面:1、二次回路绝缘材料不合格、绝缘性能低,或年久失修、严重老化。或存在某些损伤缺陷、如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等;2、二次回路及设备严重污秽和受潮、接地盒进水,使直流对地绝缘严重下降;3、小动物爬入或小金属物件掉落搭接在元件上造成直流电源系统接地故障,另外老鼠、蜈蚣等小动物爬入带电回路导致接地故障;4、在安装施工过程中某些元件的线头、未使用的螺丝、垫圈等零件,掉落在带电回路上从而引起故障。  大洑潭水电站直流电源系统通过上述分析的原因进行排查,排除了由于设备本身质量发生个故障的原因,最后判断由于电站面前仍然处在建设工程中,蓄电池室由于土建在施工过程中存在室外雨水进入,电池工作环境下降导致受潮影响,采取适当措施后故障消失。  三、直流系统接地故障的危害  通常在直流电源的接地故障中,两点接地是危害较大的,由此可能造成严重后果。直流系统发生两点接地故障,便可能构成接地短路,造成继电保护、自动装置误动或拒动,二次信号异常,或造成直流电源动作消失,使保护及自动装置、控制回路失去电源。在复杂的保护回路中同极两点接地,还可能将某些继电器短接,不能动作于跳闸、致使断路器越级跳闸的发生。  1、直流正极接地,有使保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈正常与负极电源接通,若这些回路再发生一直接地,就可能引起误动作。并且两点接地还可能造成误合闸,误报动作信号。  2、直流负极接地,有使保护自动装置拒绝动作的可能。因为,跳、合闸线圈、保护继电器会在这些回路再有一点接地时,线圈被接地点短接而不能动作。同时,直流回路短路电流会使电源保险熔断,并且可能烧坏继电器接点,保险熔断会失去保护及操作电源。  三、直流系统接地故障的处理方法和技巧  查找直流接地故障的一般顺序和方法  1、分清接地故障的极性,分析故障发生的原因;  2、若站内二次回路有工作,或有设备检修试验,应立即停止。拉开其工作电源,看信号是否消除;  3、用分网法缩小查找范围,将直流系统分成几个不相联系的部分。注意:不能使保护失去电源,操作电源尽量用蓄电池带;  4、对于不太重要的直流负荷及不能转移的分路,利用“瞬时停电”的方法,查该分路中所带回路有无接地故障;  5、对于重要的直流负荷,用转移负荷法,查该分路而带回路有无接地故障。查找直流系统接地故障,后随时与调度联系,并由二人及以上配合进行,其中一人操作,一人监护并监视表计指示及信号的变化。利用瞬时停电的方法选择直流接地时,应按照下列顺序进行;  ① 断开现场临时工作电源;② 断合事故照明回路;③ 断合同信电源;④ 断合附属设备;⑤ 断合充电回路;⑥ 断合合闸回路;⑦ 断合信号回路;⑧ 断合操作回路;⑨ 断合蓄电池回路。  在进行上述各项检查选择后仍未查出故障点,则应考虑同极性两点接地。当发现接地在某一回路后,有环路的应先解环,再进一步采用取保险及拆端子的办法,直至找到故障点并消除;  直流接地故障发生排查同时注意某些技巧  1、查找必须及时。由于运行环境及气候的变化都可能导致直流系统其工作不稳定,或者造成故障的直接发生,因此,如果发生故障即应立即进行排查。  2、定期进行巡检。主要是利用精度较高的检查装置对直流回路进行检查,记录绝缘较差部位的回路,并在条件较为恶劣的情况下复查情况,做到重点部位重点检测。  3、按序查找。故障发生后,可先按:信号回路,照明回路,操作回路,控制回路,再保护回路进行。同时又要结合前面提及的绝缘情况较差的部位和回路优先排查。  四、 查找接地故障时的注意事项  1、瞬停直流电源时,应经调度同意,时间不应超过3秒钟,动作应迅速,防止失去保护电源及带有重合闸电源的时间过长;  2、为防止误判断,观察接地现象是否消失时,应从信号、光字牌和绝缘监察表计指示情况综合判断;  3、尽量避免在高峰负荷时进行;  4、防止人为造成短路或另一点接地,导致误跳闸;  5、按符合实际的图纸进行,防止拆错端子线头,防止恢复接线时遗留或接错;所拆线头应做好记录和标记;  6、使用仪表检查时,表计内阻应不低于2000欧/伏;  7、查找故障,必须二人及以上进行,防止人身触电,做好安全监护;  8、防止保护误动作,必要时在顺断操作电源前,解除可能误动的保护,操作电源正常后再投入保护。  五、结论  在各类电站就发电厂直流系统中,如发生直流接地系统故障发出报警时,应当用先进的检测设备和平时运行中积累的经验对问题进行具体分析,适当应用直流系统接地排查的一些方法和技巧,就能迅速查明接地的原因,排查故障,确保电站的安全稳定运行。

    时间:2019-03-18 关键词: 直流电源 电源技术解析 水电站

  • 试探影响真空自耗电极熔炼炉供电直流电源稳定性的因素

    试探影响真空自耗电极熔炼炉供电直流电源稳定性的因素

      1.引言  直流真空熔炼是稀贵金属及高等级合金钢必定要采用的工艺,这种工艺配套的设备从大的方面分为真空熔炼炉和给其供电的直流电源两大部分,随着是铸造产品和炼锭子的不同,真空熔炼炉分为以化锭子为主要目的的真空自耗电极熔炼炉和以浇铸模型件的真空浇铸凝壳炉两大类别,而它们的供电电源又分为整流变压器一次高压侧饱和电抗器交流调压、整流变压器二次侧整流管整流和整流变压器一次侧晶闸管可控调压、整流变压器二次侧整流管整流及整流变压器二次晶闸管一次调压三种方案,在国内由于整流变压器一次侧晶闸管交流调压,需要增加先将6kV或10kV甚至35kV降为晶闸管可以承受的几百伏电压后进行交流调压,然后再将调压后的电压经整流变压器降为几十伏,由整流管整流,使用中需要两级降压变压器,且随着近年真空熔炼炉单炉可熔化金属重量的不断增大,对直流电源的输出容量要求越来越大,由此决定了国内使用的直流供电电源基本状况可分为三个阶段:即1997年前,整流变压器二次侧晶闸管一次调压的方案几乎在国内没有使用,当时主要使用整流变压器一次侧饱和电抗器调压、整流变压器二次侧二极管整流;1997年~2004年之间,整流变压器二次侧晶闸管一次调压和整流变压器一次侧饱和电抗器调压、整流变压器二次侧二极管整流两种方案混合使用,2005年以后整流变压器二次侧晶闸管一次调压的方案可以说挤占了近95%的市场份额,由于饱和电抗器调压与晶闸管调压两种方案的响应时间相差近100个数量级,它们对供电直流电源输出电压电流稳定性有很大影响的坩埚比的敏感程度会有很大的不同,本文结合我们采用整流变压器二次侧晶闸管一次调压方案,为某研究院提供的65kA/80V直流电源与凝壳炉配套调试时,不同坩埚比的实验数据分析合理的坩埚比与弧压及弧流稳定性的关系,以期抛砖引玉,与同行探讨。  2.直流真空熔炼炉的工作过程和对直流电源的要求  无论是真空自耗电极熔炼炉还是凝壳炉,其工作流程的相同点就是工作时自耗电极,工作过程分起弧、熔炼阶段,而不同之处在于以熔化炼锭子为目的的自耗电极熔炼炉为提高化料成品率需要有化成品锭熔化快结束时的补缩工艺,且额定电流下工作时间长达1小时至数小时,而以精密铸造为目的的凝壳炉有熔化时间短一般几分钟~十几分钟,熔化需要电流密度大,熔炼过程中有凝壳的不同点,但他们的工作过程都可以图1所示原理来说明。图中1为要熔化的锭子称作电极,2为坩埚(又称为结晶器),3为水套,4为炉室密封盖,5为冷却水,6为抽真空管道,7为稳弧线圈,8为熔化时的电弧,9为已熔化后的金属溶液。系统工作过程为:在炉内的真空度达到不致被熔炼金属氧化的前提下,系统投入运行,直流电源输出在正负极之间有一定的电压通常为空载电压,随着操作人员的控制升降机构使电极杆下降,当电极杆下降到与坩埚底部的距离小到一定程度时,吊在电极杆下部的要熔化材料与放于坩埚底部的起弧料之间发生电离而产生电弧,电极开始熔化,随着时间的推移要熔化的金属变为液体流入坩埚中,坩埚内的液态金属高度不断增加,而要熔化的金属电极长度逐渐减小,为了保证熔化时由被熔化电极下端而与坩埚中液态金属上表面之间距离所决定的弧压相对恒定,需要此弧压不要大范围波动,另一方面为保证在同样的时间内被熔化掉的金属量基本相同,又需要流过被熔化金属与液态金属之间的直流电流高度恒定,由于在熔化过程中一但发生被熔化金属熔液成流动柱形短接被熔化金属与已熔化后位于坩埚中的金属溶液(行业内称为掉块)形成直流电源输出短路,需要直流电源具有很好的挖土机特性,即自动迅速把输出直流电压降低,保持输出电流不变。再应看到,由于两种炉型铜坩埚之外都是冷却水,为防止过高的瞬态功率加到坩埚壁与被熔化金属之间形成侧弧击穿坩埚使冷却水进入坩埚内,在高温下电解水引起氢气爆炸,不希望弧压太高,且被熔化锭子与坩埚内壁之间要留有合适的距离,综上的分析,直流真空熔炼炉对直流供电电源的要求有以下几点:  1)要有合适空载起弧电压,最早国内应用了德国人的起弧电压为82V的数据,这几年我们经不断的改进与总结,对自耗炉已降为50V,对凝壳炉已降为65V。  2)要有很硬的稳流特性,在稳流时输出直流电压波动不能过大。  3)要有快速的保护性能。  3.影响直流电源输出电压电流大小与稳定性的因素分析  从图1所示的工艺过程示图可以看出,影响直流熔炼炉供电电源输出电压与电流稳定性的关键因素有:  1)直流供电电源自身的闭环调节性能; 2)弧压的高低;  3)坩埚的内径与被熔化金属锭子外径之差的大小;  4)炉内真空度的高低;  5)坩埚冷却水温的高低;  6)稳弧电流的大小。  根据我们对近百台真空熔炼炉与电源的调试体会,上述因素对直流电源电压电流稳定性的影响表现在:  (1)直流电源自身调节性能首先取决于所用供电直流电源的方案,采用整流变压器一次饱和电抗器一次侧调压,整流变压器二次侧晶闸管相控整流的方案,因属电磁调节,调节响应时间为秒级,因而直流电流的稳定性不可能做的很高,表现出应用时输出直流电压与电流的波动都比较大,采用整流变压器二次侧晶闸管可控整流的方案,因闭环调节器的响应时间为毫秒级,因而在闭环调节器的参数整定好后,具有很好的快速调节性能,当弧压波动较大时,它可以提供很好的稳流特性,但需直流电源输出电压快速变化来保持电流稳定。  (2)炉内真空度越高,被熔化电极与已熔化完的金属之间电阻的影响越小,电流的波动就越小,真空度不好与波动可视同等效为该等效电阻波动,所以电压与电流就波动。  (3)坩埚冷却水温的高低虽然不直接参与影响直流电源输出电压与电流的稳定性,但却影响熔化时所需的电流大小,由于熔化时被熔化金属溶为液态流入坩埚中,坩埚外为流动的冷却水,水温过低靠近坩埚内壁的金属冷却的快,而远离坩埚内壁的金属溶液冷却的慢,对自耗电极熔炼炉有可能导致锭子外壁气孔增大,使用时剥皮较多,对凝壳炉水温太低将导致较厚的凝壳,而要解决此问题,则需要加热功率大于冷却功率,也就是说需要较大的熔化电流,在水温较低时需要保证靠近坩埚外壁的金属溶液散热速率要慢。由此可见,并非坩埚的冷却水温越低越好,一般建议冷却水温进口温度不低于+5℃,而出口水温不高于60℃。  (4)所谓弧压是指熔化过程中加在被熔化电极已熔化位于坩埚中的金属溶液上端面之间电压的高低,同样的电流下弧压越高熔化功率越大,熔化速率越快;另应看到,弧压越高,则等效电弧长度越长,图2给出了熔炼时电弧的分布断面示意图,同时标出了要熔化金属锭子外沿与坩埚内壁之间的距离δ,同时画出了有稳弧线圈且通有稳流电流时,金属溶液在磁场作用下旋转造成的中心低靠近坩埚部分液面高的形状,从此图可见,弧压越高,则熔化速度越快,要求被熔化锭子下降的速率越快,由于电极杆升降一般由伺服电机拖动,所以伺服电机不断启停,很难100%保证熔化速度与电极杆的下降速率完全匹配保证弧压稳定,造成弧压相对波动较大,引起电流变化,因而弧压越高电流就易波动,对闭环稳流的调节性能要求就要迅速。  另应看到,在图2中δ一定时,过高的弧压将会造成图3所示的侧弧,有可能使坩埚熔化导致严重事故,因而正确的熔炼要求是短弧熔炼,低弧压大电流熔炼,据此应保证弧长L小于图2中的δ。  (5)稳弧线圈与稳弧电流的大小,为了保证不出现图3所示的问题,炉体设计中采用稳弧线圈中以直流电流产生磁场来约束电流的方向,稳弧线圈一般绕在水套外壁使电弧不要分散,图2中同时给出了稳弧线圈与通过电流的流动方向,显见其产生的磁场方向与图中电流方向一致,所以可约束电弧的发散,自然稳弧电流越大,其对电弧的束缚力就越大,过大的稳弧电流有可能造成电极杆出现控心熔炼,即图2中的ΔL很大,造成弧长太长反而不利于电流稳定,但过小的稳弧电流有可能在δ一定时,使图2中ΔL为负值,产生图3中那样人希望的侧弧。  4.坩埚比与熔炼用直流电源电压电流稳定性的关系分析与实验  坩埚比指真空熔炼炉要熔炼金属锭子的直径与坩埚内径之比,若以d1表示锭子直径,d2表示坩埚内径,σ表示坩埚比,则坩埚比可表示为  σ=d1/d2(1)  参考图2坩埚比近似表示了σ的大小,σ越小,则δ越大。  4.1 坩埚比对电压电流稳定性的影响分析  同样稳弧电流与熔化电流条件下,坩埚比越小,则图2中的δ越大,由于坩埚外为冷却水,坩埚均由铜金属材料制成,在δ的空间内为空气,从温度场的分布来看,图2中弧区中心温度最高越靠近坩埚温度越低坩埚温度最低,所以δ越大,一则坩埚自身散热,二则由于熔化时为保持熔炼炉内的高度真空度与炉体配套的真空系统中几台泵在不停的抽真空,更加速了δ区间内的散热,由此导致了锭子靠近坩埚的外部区域温度低,而锭子中心内部温度高,引起锭子中心熔化速度快,而外壁熔化速度慢,使图2中的ΔL变的较大,导致熔化过程中形成了一个类似于下端面为倒放碗状的锭子,当有稳弧线圈时,已熔化的金属溶液沿稳弧线圈作用的磁场旋转,形成一个正放的碗状溶池。其刨面图如图4所示,间接导致电流闭环调节器调节速度快调节特性硬时,尽管可以稳定电流,但弧压大范围波动,当电流闭环调节器调节速度慢,调节特性软时,虽可使弧压在波动范围降低,但电流稳定度不够,弧压的大范围波动将使操作人员无法判断有否侧弧产生,对安全生产造成很大危害,另应看到,这种状况不论对凝壳炉还是自耗炉都会影响弧光颜色,由于此时看到的仅是从图4中两个相对扣的碗状球面缝隙中透出的很小一部分弧光,而不是真正的弧,影响操作人员对弧压的判断且无法压低弧压进行低弧压熔炼,其原因在于尽管中心弧长很长,但稍以压弧边上便短路,使弧压无法压低。  4.2 实验验证  为了验证上述分析,我们应用研制的国内首套60kA/80V凝壳炉电源,针对不同的坩埚比在500kg和150kg凝壳炉中进行了试验,该电源系统应用四台15kA的6脉波可控整流直流电源并联构成24脉波,由两套独立的12脉波电源构成,图5与图6分别给出了多次实验中通过计算机采集系统采集的最有代表性的典型电压电流波形,其中图5应用锭子外径为Φ280,坩埚内径为Φ460,坩埚比σ为0.6087,而图6应用锭子外径为Φ350,坩埚内径为Φ460,坩埚比σ为0.761,使用电流前者为30kA,而后者为30kA、35kA、40kA 3个台阶,弧压前者平均值为48V,且大范围波动,而后者平均值仅42V,波动范围小,所用模拟电压前者波动频率很高,而后者虽有波动但频率很低,电流闭环调节器的参数又完全相同,实验验证  5.结论  综上分析,我们可得下述几点结论:  1)真空熔炼用直流电源以整流变压器二次相控整流电流闭环控制的方案效果最好。  2)影响真空熔炼用直流电源输出电压与电流稳定性的因素很多,坩埚比对弧压和电流稳定性的影响很  大,国内以往的坩埚比范围数据为0.6~0.75,从节能及稳定输出角度考虑应靠近0.75来选取。  3)无论是自耗炉还是凝壳炉,锭子外沿至坩埚内壁的间距应以50~60mm为较佳值。  参考文献  [1] 李宏 浅谈我国真空熔炼用直流电源的发展(J),电源技术应用,2010,NO.  [2] 李 宏著 常用电力电子变流设备的调试与维修基础(M),北京,科学出版社,2011  [3] 马开道 稀有金属熔炼工艺及装备(M),北京,冶金工业出版社,2011  作者简介:  李宏,男,现年52岁,西安石油大学电子工程学院教授,发表论文200多篇,出版专(编)著15部,获中国人民解放军空军科技进步三等奖1项。现兼任中国电工技术学会电力电子学会理事、中国电工技术学会电气节能研究会理事、中国电源学会特种电源专业委员会常务委员、中国电工技术学会电力电子学会学术委员会委员、陕西省电源学会常务理事、主要研究方向为电力电子技术、电气传动技术、特种电源技术及专用集成电路的开发和应用技术。主持设计与电力电子有关的工程项目近110个,研制开发的电力电子成套装置380多台套,运行于国内电力、冶金、化工、石油、机械、电子、核工业、军工等行业,并已出口到东南亚,还装备了中国人民解放军空军导弹部队及陆军科研所,开发的晶闸管、GTR、IGBT专用驱动控制板累计在全国销售15000多块,主编的实用电力电子技术资料在全国28个省市销售近30000多册

    时间:2019-03-18 关键词: 稳定性 直流电源 电源技术解析

  • 直流电源系统事故和故障处理预案

      一 蓄电池故障和事故处理预案  (一) 防酸蓄电池故障及处理  1. 防酸蓄电池内部极板短路或开路,应更换蓄电池。  2. 长期处于浮充运行方式的防酸蓄电池,极板表面逐渐会产生白色的硫酸铅结晶体,通常称之为“硫化”;处理方法:将蓄电池组退出运行,先用I10电流进行恒流充电,当单体电压上升为2.5V时,停充0.5h,再用0.5 I10电流充电至冒强烈气泡后,再停0.5h再继续充电,直到电解液“沸腾”;单体电压上升到2.7~2.8V时,停止充电1~2h,然后用I10电流进行恒流放电,当任一个单体蓄电池电压下降至1.8V时,终止放电,并静置1~2h,再用上述充电程序进行充电和放电,反复数次,极板上的硫酸铅结晶体将消失,蓄电池容量将得到恢复。  3. 防酸蓄电池底部沉淀物过多,用吸管清除沉淀物,并补充配置的标准电解液。  4. 防酸蓄电池极板弯曲、龟裂、变形,若经核对性充放电容量仍然达不到80%以上,此蓄电池应更换。  5. 防酸蓄电池绝缘降低,当绝缘电阻值低于现场规定时,将会发出接地信号,且正对地或负对地均能测到电压时,应对蓄电池外壳和绝缘支架用酒精擦拭,改善蓄电池室的通风条件,降低湿度,绝缘将会提高。  (二) 阀控密封铅酸蓄电池故障及处理  1. 阀控密封铅酸蓄电池壳体变形,一般造成的原因有充电电流过大、充电电压超过了2.4V×N、内部有短路或局部放电、温升超标、安全阀动作失灵等原因造成内部压力升高。处理方法是减小充电电流,降低充电电压,检查安全阀是否堵死。  2. 运行中浮充电压正常,但一放电,电压很快下降到终止电压值,一般原因是蓄电池内部失水干涸、电解物质变质,处理方法是更换蓄电池。  (三) 镉镍蓄电池故障及处理  镉镍蓄电池容量下降,放电电压低。处理办法是更换电解液,更换无法修复的电池,用I5电流进行5h充电后,将充电电流减到0.5 I5电流,继续充电(3-4)h,停止充电(1-2)h后,用I5放电至终止电压,再进行上述方法充电和放电,反复(3-5)次,其容量将得到恢复。如果容量仍然不能恢复时,应更换蓄电池。  二 充电装置、绝缘监测装置的故障和事故处理应按照厂家的规定进行,并应在现场运行规程中明确具体处理方法。  三 直流系统故障和事故处理预案  (一) 220V直流系统两极对地电压绝对值差超过40V或绝缘降低到25KΩ以下,48V直流系统任一极对地电压有明显变化时,应视为直流系统接地。  (二) 直流系统接地后,应立即查明原因,根据接地选线装置指示或当日工作情况、天气和直流系统绝缘状况,找出接地故障点,并尽快消除。  (三) 使用拉路法查找直流接地时,至少应由两人进行,断开直流时间不得超过3S。  (四) 推拉检查应先推拉容易接地的回路,依次推拉事故照明、防误闭锁装置回路、户外合闸回路、户内合闸回路、6~10kV控制回路、其他控制回路、主控制室信号回路、主控制室控制回路、整流装置和蓄电池回路。  (五) 蓄电池组熔断器熔断后,应立即检查处理,并采取相应措施,防止直流母线失电。  (六) 直流储能装置电容器击穿或容量不足时,必须及时进行更换。  (七)当直流充电装置内部故障跳闸时,应及时启动备用充电装置代替故障充电装置运行,并及时调整好运行参数。  (八) 直流电源系统设备发生短路、交流或直流失压时,应迅速查明原因,消除故障,投入备用设备或采取其他措施尽快恢复直流系统正常运行。  (九) 蓄电池组发生爆炸、开路时,应迅速将蓄电池总熔断器或空气断路器断开,投入备用设备或采取其他措施及时消除故障,恢复正常运行方式。如无备用蓄电池组,在事故处理期间只能利用充电装置带直流系统负荷运行,且充电装置不满足断路器合闸容量要求时,应临时断开合闸回路电源,待事故处理后及时恢复其运行。  四 直流电源系统检修与故障和事故处理的安全要求  (一) 进入蓄电池室前,必须开启通风。  (二) 在直流电源设备和回路上的一切有关作业,应遵守《电业安全工作规程》的有关规定。  (三) 在整流装置发生故障时,应严格按照制造厂的要求操作,以防造成设备损坏。  (四) 查找和处理直流接地时工作人员应戴线手套、穿长袖工作服。应使用内阻大于2000Ω/V的高内阻电压表,工具应绝缘良好。防止在查找和处理过程中造成新的接地。  (五) 检查和更换蓄电池时,必须注意核对极性,防止发生直流失压、短路、接地。工作时工作人员应戴耐酸、耐碱手套、穿着必要的防护服等。

    时间:2019-03-15 关键词: 直流电源 电源技术解析 故障处理 系统事故

  • 高稳定度低纹波直流电源设计方案

    高稳定度低纹波直流电源设计方案

    线性稳压电源被广泛应用于科研、电力电子、电镀、广播电视发射、通信等领域, 是大专高等院校、实验室等进行电子电路研究不可或缺的仪器设备。但是传统线性稳压电源存在变压器转换效率低、稳压芯片压差大、滤波电路不够完善等缺点, 时常出现输出纹波大、效率低、发热量大、间接地给系统增加热噪声等问题。在历年的电子设计竞赛中, 作品在比赛场地测试正常, 但在指定测试场地测评时, 电路突然烧毁或者性能指标达不到原先水平的现象时有发生, 一个重要的原因就是测评场地提供的稳压电源电压波动大、供电电流不稳定、正负电压不匹配。因此, 高稳定性、低纹波的稳压电源是科研创新和电子设计竞赛不可或缺的保障。  1 系统总体方案设计  本设计由降压模块、整流滤波模块、线性稳压模块和低通滤波模块组成, 如图1 所示。变压器将220 V/50 Hz 交流电分别降压到±16 V、±6 V、+6 V, 通过整流桥堆整流以及大容量电容滤波后, 进入正( 负) 线性稳压模块, 再经过低通滤波模块滤除直流以外的干扰信号, 分别输出±15 V、±5 V、+5 V 的稳定电压。    图1 系统结构框图  2 主要功能模块分析  2.1 整流滤波模块  整流滤波电路主要由整流桥堆和大容量滤波电容组成, 如图2 所示。整流桥堆具有体积小巧、输出电流大、安装方便等优势, 并能代替由4 只二极管组成的传统桥式整流电路。滤波电路采用大容量电解电容滤波,增加了输出电压的稳定性。根据式(1) 可求出所需滤波电容容量。    当输出电压为5 V、电流为2 A 时,R=U/I=2.5 Ω, 此时,C= kT/2R =20 000 μF,其中,k=5 。电容耐压Umax≥√2Ui≈24.038 V.其中,Ui=17 V, 因此Umax取值为25 V.在电解电容C6 两端并联一个0.01 μF 的瓷片电容C10 可以有效抑制高频干扰。    图2 桥式整流滤波电路  2.2 线性稳压模块  LT1083/LT1033 系列正负可调稳压器的效率大大高于现有器件,可以提供7.5 A、5 A 和3 A 输出电流,并能在低至1 V 的压差条件下运行,压降在最大电流条件下保证在1.5 V 以内。负载电流减小时允许压差同时减小,可在多种电流水平条件下通过片内修整电路,提供所保证的最小压差,并能够使输出电压准确度调节至1%.其电压调整率为0.015%,负载调整率为0.01%,对电流限值也进行了修整,最大限度地减小了过载条件下稳压器和电源电路上承受的应力,具有热功耗限制保护[10].LT1083/LT1033 系列器件的引脚与老式三端稳压器兼容,与大多数稳压器设计中的10 μF 输出电容器以及PNP 稳压器多达10%的输出电流作为静态电流消耗不同,LT1083/LT1033 系列的静态电流流入负载, 大大降低了电源功耗。此芯片电压调整率小、负载调整率小的特点能够保证输出电压稳定度高。正负线性稳压模块电路如图3 所示,其中R1=R3,R2=R4.电路中的电阻参数可根据输出可调电压公式确定:    其中,Uref=1.25 V,IADJ=50 μA,R1=200 Ω。    图3 正负线性稳压模块电路  2.3 低通滤波模块  低通滤波电路采用LC 滤波电路, 滤波电容为4 700 μF电解电容和0.01 μF 瓷片电容, 能有效减少直流的纹波和高频干扰, 两个33 μH/3A 功率电感并联可以隔离交流并提高输出电流。截止频率:    其中,L=33 μH,C=4 700 μF, 图4 为低通滤波器电路图。    图4 LC 滤波电路  3 电源性能测试  测试仪器采用固纬4 位半数字万用表(GDM-8245) 、上海爱仪交流毫伏表(AS2294D) 和调压变压器(TDGC -0.5/0.5) 。负载电阻采用水泥电阻(2.5Ω/20 W、5Ω/20 W、15Ω/20 W) 。电源性能参数如表1 所示。可以看出, 负载调整率和电压调整率反映出了电源较高的稳定度, 纹波系数指标反映出低纹波特性。  表1 电源性能参数表    传统稳压电源因其电压波动大、效率低、体积庞大等缺点影响了电子产品的各项性能指标。本文设计制作的电源不仅具有高稳定性、低纹波的优点, 而且输出电压可调、电压波动小、带负载能力强、体积小巧。由于本文所设计的电源具有非常小的电压调整率, 一旦设置好电压, 即使电网波动, 电源也能保证输出电压与设置电压相同, 为微弱信号和高频信号的处理提供有力的保障, 不仅能有效地避免在电子竞赛测评时由于更换电源而导致的作品性能指标下降甚至烧毁的事件发生, 而且对于电子线路的各项研究有十分重要的意义。

    时间:2019-01-11 关键词: 直流电源 电源技术解析 低纹波 高稳定度

  • 九档可调直流电源电路设计

    九档可调直流电源电路设计

    九档可调直流电源主要是由稳压三端可调集成块(m31)为核心元件,LM317可调端接有三家管VT,可调用电位器RP及电阻R3 R10,可以满足输出所需9种不同的电源电压。  制作时,变压器T可能利用12寸黑白电视机的电视机的电源变压器。亦可自行绕组,采用GEB22828硅钢片一次线圈用 0.7MM漆包线绕组158匝,这样变压器二次输出电压为25V交流电压。  稳压部分IC采用LM317稳压集成电路,通过拨动S2,可以再输出端X3,X4得到固定的九档直流电压。如果调整电位器RP,则可以在0至24V之间任意选择。图中R3至R10之值仅供参考。  为避免使用中转换开关S2出现暂时断开或接触不良,导致输出电压过高而损坏负载,这里设置了一只三极管VT。

    时间:2019-01-10 关键词: 电路设计 直流电源 电源技术解析 九档可调

  • TL431低压差直流电源参数参考及工作点设置

    TL431低压差直流电源参数参考及工作点设置

    TL431作为一种精密稳压源,被大量应用在电子电路设计当中,由于拥有独特的动态抗阻,TL431也经常被作为稳压二极管来使用。稳压源在电路中的使用相当广泛,多数使用3个引脚构成,所以结构简单并且使用起来也比较方便。但是在只有较低电压电池供电时,稳压电源的供电需求有可能增加20%~40%的成本及体积。针对这种情况,本篇文章主要介绍了一种低压差稳压直流电源电路的设计方法,电路器件选用常规器件,成本低,并且具有很好的负载特性和电压稳定性。电路工作原理图1为低压层直流稳压电源电路原理图。该电路是由基准电压、电压放大和电流放大等3个环节组成。其中,基准电压由TL431产生,按图1中电路连接,当通过R0的电流在0.5~10 mA时可获得稳定的2.5 V基准输出。输出电压的具体数值由运算放大器UA确定,采用同相放大器的优越性在于其输入阻抗极大,可很好地将TL431输出的2.5 V电压与后级电路隔离,使其不受负载变化的影响。运放与电阻R3和R2组成比例放大环节,可对基准电压按要求进行比例放大输出,但输出电压最大不能超过运放的电源电压。电流放大采用两个三极管,UA通过驱动调整管VQ2控制调整管VQ1,组成反馈实现电流放大环节,对输出电压进行调节,从而实现稳压输出。二极管VD在运放UA低压输出时,使调整管VQ2基极一发射极电压为负,使VQ2立即进入截止状态,电流Ic2迅速降低,VQ2的VCE升高导致VQ1的基极电压升高,使 VQ1的基极电流IB减少,进而减少输出电流ICQ1(βIB),反之同理。RL是输出负载,C0和C1是滤波电容。电路主要参数设计控制环节设计控制环节回路等效图如图2和图3所示,其中图2为比例电压增益原理图,图3为电流放大原理图。按照图2和图3,可得出控制环节回路方程:式(2)中,Irg为运放UA的输出端1的输出控制电流。由式(2)可知,Irg通过控制VQ2的电流,IC2控制VQ1的基极电流,IB1、R8控制调节管VQ2,进而控制VQ1的输出电流IC1,VQ2是与 VQ1形成串联负反馈,无需进一步放大VQ1的输出电流IC1,用R8对IC1分流。电路输出电压Vcc为5 V,驱动额定负载是350 Ω,供电电源是标准7 V输出的电池。运算放大器选LM358,取R1、R2为10 kΩ,TL431电流范围是100~150 mA,选用R1=3 kΩ,符合要求。VCC=(1+R2/R1)x2.5=5 V。合理选取R8和R9的电阻值,使VQ1和VQ2均工作在线性区。电网和负载波动情况下,Ib、Ie、Ucc尽量小,以减少损耗。设置静态工作点要选择合适的驱动管VQ1和偏置电阻R8、R9。VQ1的静态工作点为:式中,Irg为运放的控制输出信号,Vin为电源电压,Vcc为5 V输出电压,RL为额定负载200Ω,VD是二极管导通电压0.7V。由式(3)和(4)可以确定VQ2的参数,然后,计算电阻R9:使用放大倍数β1、β2在30-80之间的调整管,放大倍数较大的调整管消耗功率较小,但稳定性降低,这里选取β为50,设计供电电源在5.2~9 V之间波动,为了防止电源电压高时烧毁调整管VQ2,加约1 kΩ的电阻R8以限流保护。过流保护电路的设计图3中,电阻Ri与三极管VQ3组成过流保护环节。输出电流过大时,取样电阻Ri上的电压大于0.7 V,VQ3导通,迫使调整管基极电压Vbe降低,直到关闭电源输出。R4=0.7/kIC。其中,LC为输出电流,K为最大过流系数,通常取值约1.5。 R7=(Vcc-Uce3)/Ie3≈Vrg/Ic3,限制Ic3不宜过大,以免VQ3过流损坏。试验图4为设计的一个直流稳压电源模块,输入电源为直流5~9 V的蓄电池组,分别对设计电路进行电源特性和负载特性试验,其中负载特性试验以输入的6.5 V蓄电池模拟实际使用工作环境。图5为其试验记录结果。输出纹波试验数据,当电源输入电压为5-11 V,输出纹波为5~8 mV。从实验当中能够看出,本设计的具有稳压精度高、负载特性好的一系列特点,最主要的是电路结构简单,可利用接口P0监测实际电源,此电路已投入生产,通过实践检验该电路设计性能可靠,耗电少,可很好满足单电源供电应用情况。本篇文章主要介绍了一种低压差直流稳压电源设计,这种设计克服了在电源供电电压过低时造成的不便,并且节约了成本和时间,希望大家在阅读过本篇文章之后,能对这种方法有进一步的了解。

    时间:2018-12-28 关键词: 直流电源 电源技术解析 tl431 低压差

  • 直流电源防雷电子电路设计图

    直流电源防雷电子电路设计图

      采用常规的两级设计方式,第一级用来吸收较大的浪涌,后级采用TVS来对残压进一步的吸收。第一与第二级之间采用电感进行退耦,起到延时的作用,这样可以保证MOV可以比TVS先动作。u 前级共模采用压敏与气体管相结合的方式;u 前级差模采用压敏、温度保险相结合的方式,温度保险可以消除压敏失效短路时火灾的发生。  u 元件选择:压敏电阻 MOV温度保险 TF放电管 GDT电感 L瞬态抑制二极管 TVS14D  u 前级共模采用压敏与气体管相结合的方式;  u 前级差模采用压敏、温度保险相结合的方式,温度保险可以消除压敏失效短路时火灾的发生。  u 元件选择:

    时间:2018-12-27 关键词: 直流电源 电源技术解析 防雷电子 电路设计图

  • 使用DJ803的电机正反转控制器原理与故障维修

    使用DJ803的电机正反转控制器原理与故障维修

    传统的电动机|0">电动机正反转控制电路相当复杂,而功能却相当简单。笔者最近购买的一种多功能电动机正反转控制器|0">控制器,结构非常简单,而控制功能却相当强大。因此,笔者对其实物进行了剖析,并结合产品说明书整理出此文,供读者参考。 图1是专用控制芯片的到位开关、单键控制、保护时间设定的连接电路。 D1803集成电路|0">集成电路具有8级保护时间,通过TIM0~TIM2三引脚进行设定。具体设置方法如附表所示。 图2是电机控制最基本的电路图,整个控制电路采用12V直流电源|0">直流电源供电。 一、直流电机的正反转控制图3是控制直流电机的继电器触点与电机的连接方法,适合6V~48V各种电压的直流电机。 1.正转、反转独立控制模式12V直流电源(见图2)通过IC2(78L05)稳压输出5V直流电压为控制集成电路IC1(D1803)提供工作电源。晶体三极管VT1、VT2、电阻R1~R4、继电器J1、二极管VD1等组成了电机正转输出电路,晶体三极管VT3、VT4、电阻R5~R8、继电器J2、二极管VD2等组成了电机反转输出电路。 待机状态下,IC1的⑥、⑦、圈15、圈17脚都为高电平H,继电器11、12均处于释放状态,整个控制器静态电流约2mA。 按下按钮SWl,IC1的⑥脚变为低电平L,IC1的圈17脚也随之变为低电平L,继电器J1吸合,电机正转。如果转动到规定的位置,正转到位开关ZZDW接通,IC1的②脚变为低电平,IC1的圈17脚立即跳变为高电平,继电器J1释放,电机停止转动。如果到达设定的运转时间,无论正转到位开关ZZDW是否接通,继电器J1都将释放,电机停止转动。 当按下按钮SW2,IC1的⑦脚变为低电平L,IC1的圈15脚也随之变为低电平L,继电器J2吸合,电机反转。 如果转动到规定的位置,反转到位开关FZDW接通,IC1的③脚变为低电平,IC1的圈15脚立即跳变为高电平。继电器J2释放,电机停止转动。如果到达设定的运转时间.无论反转到位开关FZDW是否接通,继电器12都将释放,电机停止转动。 2.单键控制模式如果采用单键操作。IC1的⑥脚连接的正转控制按钮SW1和⑦脚连接的反转控制按钮SW2可以不使用,而改为由IC1的圈11脚的按钮DJIN操作(见图2)。 在单键模式下,如果电机运行位置处于正转的终止位置,按下按键后将自动反转;如果电机运行位置处于反转的终止位置,按下按键后将自动正转;如果电机运行位置处于非终止位置(即两个终止点之间),按下按键后将自动正转。 单键模式下,必须设置正转到位开关ZZDW和反转到位开关FZDW,电机运行到规定的保护位置自动停机。 二、交流电机正反转控制1.单相交流电机笔者购买的控制器是用于控制直流电机的,根据其工作原理.笔者这里给出交流电机正反转控制的电路图,供读者参考。 图4是控制单相交流电动机时,继电器触点与电机的连接方法,图中采用变压器为控制器提供12V工作电源。整个控制过程与上面的直流电机控制相同,这里不再详细叙述。 2.三相交流电机图5是采用控制器控制三相交流电动机正反转的电路图。图中,首先用继电器J1、J2分别去控制三相交流接触器KM1和KM2,通过KM1、KM2来切换三相交流电的相序,达到改变电机转动方向的目的。当KM1和KM2都停止工作的时候,电机也停止转动。 三、故障维修由于这种控制器采用了专用集成电路进行控制,故障率非常低。使用时间长了之后,偶尔会出现如下故障:电机某个方向不转动;转动到某个方向的终点时不立即停止,要达到设定的保护时间才停止;所有控制失灵。 [例1]电机某个方向不转动这种故障主要是由于电机运行时的大电流流过继电器触点,长时间使用之后,导致某个继电器常开触点烧蚀,引起电机某个方向不能运转。如果正转方向不转动,则更换继电器11;如果反转方向不转动,则更换继电器12。对于三相交流电动机的控制电路,有关重点检查交流接触器,正转方向不转动时检查继电器11和交流接触器KM1;反转方向不转动时检查继电器12和交流接触器KM2,[例2]转动到某个方向的终点时不立即停止,要达到设定的保护时间才停止这种故障主要是由于到位开关(行程开关)长期使用出现接触不良,控制器无法检测到电机运行终止位置,不能在指定地点停机,由于控制器采用行程+时间的保护模式,电机直到运转到设定的时间才停止工作。根据不停机的方向,更换相应的到位开关即可。 [例]所有控制失灵为了便于对电机的控制,控制器是长时间通电的,这样就容易造成了控制器“死机”(这种故障一般发生在气温较高的夏季)。遇到这种故障,断开控制器的工作电源。等待几分钟再接通控制器的电源即可。

    时间:2018-11-21 关键词: 集成电路 控制器 电动机 直流电源 电源技术解析

  • 基于TC35i的远程直流电源监控系统

    基于TC35i的远程直流电源监控系统

    1 引言 变电站、发电厂、通信机房需要稳定可靠的直流电源|0">直流电源系统为蓄电池|0">蓄电池充电,向控制回路和合闸回路供电。直流电源管理电池充放电、监控开关状态和直流系统运行状态,以便在运行过程中确保电源和设备安全高效运行。电源监控系统在电源维护管理中的应用,标志着传统人工看守的维护管理模式向以计算机技术为基础的智能化、自动化的集中管理模式转变。电源监控系统已从简单的监控功能发展到具有三遥和报警功能,具有较完备的管理和远程监控功能的系统。利用单片机SST89E516RD实现直流电源"四遥"和报警功能,并采用TC35i实现短消息方式的信息传输。 2系统硬件设计 2.1硬件电路设计 直流电源系统需要采集多路模拟量、数字量并要求多路空节点和0 V~4 V的可调电压输出,即"四遥"功能。监控单元有两个串行口,一个用于连接智能设备,另一个用于和TC35i通信。监控单元还需要键盘和液晶显示。根据以上需求,系统需在单片机最小系统的基础上增加较多外设。采用带双串口的单片机减少外设数量,则增加系统成本,而且限制单片机本身的通用性。本文采用普通单片机外扩串口和RAM,并采用GAL16V8产生多个总线设备片选。其硬件原理图如图1所示。 2.1.1单片机 单片机采用通用的SST89E516,是基于8051内核带64 KB的Flash单片机,3个16-bit定时器/计数器,1个UART,36个GPIO,支持ISP;看门狗电路、时钟电路和掉电保存电路采用FM3104。FM3104是RAMTRON公司推出的一款高性价比的集成器件,内部集成看门狗、低压检测、定时器、时钟电路和铁电存储器。采用I2C通信。时钟电路和铁电存储器分别为两个地址,其中铁电存储器用于存储系统参数,如告警号码、遥测告警越限值等。 2.1.2 TC35i接口电路 西门子的TC35i是一个支持中文短信息的工业级GSM模块,其频段为双频GSM 900 MHz和GSM1 800 MHz,支持数据、语音、短消息和传真。系统采用16C550扩展一个串口,以TTL电平的串行口方式和TC35i通信。TC35i必须在ICT引脚设置启动电路,单片机采用中断方式接收16C550数据。 2.1.3显示、键盘电路 显示电路采用128×64液晶。液晶的接口片选由GAL16V8确定。为了简化系统设计,键盘采用集成电路ZLG7290,单片机与ZLG7290的通信采用I2C通信方式。 2.1.4模拟信号采集电路 模拟信号采集电路是由整定、隔离和转换3部分组成。不同的模拟信号整定电路部分不同,例如直流电压采用精密电阻分压法将0 V~400 V电压整定为0 V~4 V;而交流电压则采用电压互感器整定为0 V~4 V;隔离电路采用线性光耦。 整定过的模拟信号经限压处理,一并输入多路开关。然后经过压频转换(V/F)后输入CPU处理。V/F转换采用集成电路AD654。AD654是美国模拟器件公司的一款低成本、8引脚封装的电压频率(V/F)转换器,其单电源电压为4.5 V~36 V;双电源电压为5 V~18 V;输出频率范围为0 kHz~500 kHz;线性误差为0.06%(250 kHz时);输入阻抗为250 MΩ;其输入电压范围为单电源为0 V~Vs-4 V,双电源为-Vs~Vs-4 V。 2.1.5数字信号采集电路 数字信号采用TLP521隔离后送至总线驱动器74HC244。GAL16V8产生74HC244片选,单片机每隔10 ms查询采集数字信号,并加入去抖动处理。 2.1.6空接点输出电路 空接点用于实现直流模块的开关机以及其他设备的控制。采用5 V继电器输出空接点信号。5 V继电器控制也由总线控制。数据口经74HC273和MC1413驱动后控制继电器。GAL16V8产生74HC273片选,可扩展多个空接点。 2.1.7模拟电压给定 模拟信号给定采用数字DS1845电位器分压实现。数字电位器将2.5 V基准电压分压后叠加总限流电压信号,放大输出作为直流模块调节电压的基准。数字电位器DS1845是Dallas Semiconductor推出具有永久性存储器的双电位器,该产品结合了两种线性电位器和256位EEPROM,通过两线接口,为电位器输出、配置设定及电路内编程提供了永久性的存储能力。 2.2电路可靠性设计 2.2.1屏蔽,隔离和吸收 本系统设计的通信线路均采用屏蔽双绞线屏蔽外界干扰,并进行光电隔离。并将各范围内的模拟量输人信号统一转换为0 V~4 V的电压信号送至A/D转换器,为了提高系统抗干扰能力,采用差动放大器和隔离放大器。模拟量输出采用光电隔离。这样,在环境噪声较强且各测点间可能存在有较大的共模电压时,现场信号线及各路信号线之间的绝缘良好。同样,开关量输入和输出分别采用光电隔离和继电器隔离,以提高系统的可靠性。在通信的输入端,直流电压输入端和交流电压输入端均增加了TVS吸收浪涌电压。 2.2.2接地 信号接地保证同一逻辑系统的信号逻辑准确,消除同一逻辑系统的不等电位带来的干扰,保护接地保证了系统各部分的安全工作。系统机壳可靠接大地。而数字信号地和模拟信号地单点连接。信号地和大地采用3KV102电容连接。 3系统软件设计 3.1软件设计思路 采用实时操作系统,即定时器T0产生10 ms中断,利用10 ms中断计数分别产生200 ms、500 ms和1 s任务。系统软件模块框图如图2所示。 3.2短消息模块无线传输 短消息模块无线传输分为告警信息主动上传和被动召唤。告警信息是主动上传,而遥控、遥测和遥调则是通过短消息召唤或控制实现的。告警信息处理流程如图3所示。 告警分为遥信告警和遥测告警。遥信告警实现方法:定义若干位为告警位,需产生告警的遥信接至该位置上,一旦触发该位置遥信,则产生告警信息。而遥测告警是每秒钟将遥测信息与设定的遥测告警上下限相比较,当多次越限后则产生报警。反之取消告警。 告警发送方法:CPU将不同的告警存储在发送队列中。当发送队列不为空时,通过短消息模块每秒钟发送一条短消息。 短消息模块的告警信息必须以汉字发送。而每个汉字采用UNICODE编码,占两字节,如"电0x7535子0x5b50"。将汉字转换成UNICODE编码在单片机下编程比较困难。因为直流电源监控的告警信息有限,并且微软的操作系统提供该类函数,所以需将所有用到的汉字以表的方式写入代码空间。根据直流系统不同的告警代码直接查取告警信息的UNICODE编码。遥控遥调信息处理流程如图4所示。 因为每条短信息发送长度有限。所以遥控、查询测量信息采用ASCII方式。短消息传输的号码、短消息中心号码和汉字的UNICODE编码必须经PDU编码后才能发送。 遥控、查询测量信息是以TEXT方式发送。当短消息模块接收下列格式的短消息后,并且密码正确,就将召唤直流电源信息按照接收号码返回短消息或者下发遥控命令,返回控制结果。 短信内容格式:";密码;功能码(;内容1)(;内容2)(;……)"。其中,密码为6个字符/数字;功能码包含2个字符,如表1所列;内容长度不定。如:查询系统测量信息短信内容格式:";1234156;01";遥控设备开关机格式:";123456;02"。4 结束语 本系统设计实现直流电源的遥控,遥调输出和遥信、遥测输入。针对直流电源传输信息少的特点扩展了短消息模块,为直流电源监控设计了无线传输方案。基于短消息传输的电源监控系统无需构建额外的无线通信网络,而是通过现有的覆盖面广,运行稳定的网络进行专用的无线数据传输。对于覆盖面广、监测点分散、无人值守、传输数据量有限而又必须要监控的设备而言,基于短消息的电源监控系统是最佳选择方案。

    时间:2018-11-08 关键词: 远程 蓄电池 直流电源 电源技术解析 电源监控

  • 晶体管线性直流电源,可控硅直流稳压电源,开关电源原理简介

    晶体管线性直流电源,可控硅直流稳压电源,开关电源原理简介

    关于稳压电源|0">稳压电源电路结构,究竟是晶体管线性直流电源,可控硅直流稳压电源和是开关电源,要根据具体场合,合理采用。这三种电路,国际国内都大量使用,各有各的特点。可控硅直流稳压电源,以其强大的输出功率,晶体管线性直流电源和开关电源无法取代。晶体管线性直流电源以其精度高,性能优越而被广泛应用。开关电源因省去了笨重的工频变压器而使体积和重量都有不同程度的减少,减轻,也被广泛地应用在许多输出电压、输出电流较为稳定的场合。 一、可控硅直流稳压电源的电路结构如下: 可控硅是一个控制电压的器件,由于可控硅的导通角是可以用电路来控制的,固此随着输出电压Uo的大小变化,可控硅的导通角也随着变化。加在主变压器初级的电压Ui也随之变化。 也就是交流220V市电经可控硅控制后只有一部分加在主变压器的初级。当输出电压Uo较高时,可控硅导通角较大,大部分市电电压被可控硅“放过来了”(如上图所示),因而加在变压器初级的电压,即Ui较高,这当然经整流滤波后输出电压也就比较高了。 而当输出电压Uo很低时,可控硅导通角很小,绝大部分市电电压被可控硅“卡断了”(如下图所示),只让很低的电压加在变压器初级,即Ui很低,这当然经整流滤波后输出电压也就很低了。 二.晶体管线性直流电源的主电路如下: 晶体管线性直流电源实际上是在可控硅直流稳压电源的输出端再串一只大功率三极管(实际是多只并联),控制电路只要输出一个小电流到三极管的基极, 就能控制三极管的输出大电流,使得电源系统在可控硅电源的基础上又稳压一次,因而这种晶体管线性直流电源的稳压性能要优于开关电源或可控硅直流电源1-3个数量级。但功率三极管(亦称调整管)上一般要占用10伏电压,每输出1安培电流就要在电源内部多消耗10瓦功率,例如500V 5A电源在功率管上的损耗为50瓦,占输出总功率的2%,因而晶体管线性直流电源的效率要比可控硅直流稳压电源稍低。 三、开关电源的主电路如下: 由电路可以看出,市电经整流滤波后变为311V高压,经K1~K4功率开关管有序工作后,变为脉冲信号加至高频变压器的初级,脉冲的高度始终为311V。当K1,K4开通时,311V高压电流经K1正向流入主变压器初级,经K4流出,在变压器初级形成一个正向脉冲,同理,当K2,K3开通时,311V高压电流经K3反向流入主变压器初级,经K2流出,在变压器初级形成一个反向脉冲。这样,在变压器次级就形成一系列正反向脉冲,经整流滤波后形成直流电压。当输出电压Uo较高时,脉冲宽度就宽,当输出电压Uo较低时,脉冲宽度就窄,因此开关管实际上是一个控制脉冲宽窄的装置。 在没有特别体积要求的情况下,一般向用户提供晶体管线性直流电源,这主要是: 1、晶体管线性直流电源精度好(优于开关电源或可控硅电源1—3个数量级),适用多种场合,一般用户不会提出性能、精度、技术指标方面的问题。 2、便于维修,因为多数用户都有熟悉晶体管线性直流电源的维修人员,也有这方面的备件。维修工具,有一只万用表即可基本解决问题,较为细心的电工亦可动手。 3、维修后一般不留后遗症,故障能彻底排除,性能可完全恢复,只要正确使用,及时维修,一台电源使用10年是完全不成问题的。 在没有特别体积要求的情况下,不向用户特别推崇开关电源,这主要是: 1、目前制作开关电源所采用的各种PWM集成芯片,主要是从输出电压变化范围小,输出电流较为稳定的角度来设计的。 但所谓PWM芯片,是一种脉宽调制器,当输出电压较高,输出电流较大时,电源内部的开关管开通时间较长而关断时间较短: 而当输出功率较小时,脉冲宽度就较窄: 但这种脉冲宽度不是可以无限制的变窄的,脉冲宽度的变化范围,即调节范围仅是10%—90%。这一特点决定了这种PWM芯片,并不适用于一个从0电压起调的所谓连续可调的电源。例如一台500V5A的开关电源,当它输出达500V5A时,控制脉冲最宽,形如: 而当输出电压降至50V5A时,控制脉冲的宽度降到最宽脉冲的10%, 形如: 这已降到最窄了。 如果输出电压电流继续下降,要求控制脉冲继续变窄,但PWM电路已无法满足,这时电路变为间歇工作, 形如: 脉冲时有时无,一阵一阵的,电源内会发出噪音,纹波等也会变大,电性能变差,所谓“低端不稳定”,事实上已经成为不合格品。为了解决这一问题,我公司采取新的技术措施,才能较好地解决(因篇幅有限,不再详述)。 2、开关电源具有污染电网和幅射干扰。在大功率开关电源附近插上一台收音机,收音机是无法收音的,对电视信号也会有干扰。有些单位的仪器仪表出现莫明其妙的干扰,和这种电网污染不无关系。对这种干扰和幅射,国家标准中都有严格规定。 3、维修较为困难,整机报废的风险大。 开关电源由于在高频下运行,频率越高,主变压器越小,但随着频率的升高,各种分布参数负面作用也明显的显露出来。因此要求分布参数越小越好,工艺设计精湛,引线尽量短,元器件尽量靠近。由于元件密集,给维修带来一定难度。另外,由于电路与线性电源截然不同,维修人员的技术素质要求较高,万用表已无济于事,要用示波器才能观察到电路各点的工作状态。 更为重要的是,由于开关功率管处在高压下工作,一旦损坏一般都是4只,即全部坏光,发出响亮的爆炸声,而且进一步烧坏产生控制信号的脉冲变压器,因而又波及到印制板,几乎是烧了一片,只要有一如果这样,整个电源报废的风险就大了。 4、由于目前国内外市场上能够买到的用于开关电源的主要元器件,如开关管,整流二结管,磁芯变压器等,其输出功率都极其有限,一般制作电压在300伏以下,功率在2KW—3KW之间的开关电源尚能应付,否则对如开关管,整流二结管,磁芯变压器等就要采取多个并联的办法来解决,这就大大地降低了整机的可靠性。一些厂家试图生产1000A的开关电源,其结果是损坏率高得惊人。因此开关电源在特种电源的行业内并无多大的用武之地。

    时间:2018-10-29 关键词: 晶体管 开关电源 稳压电源 直流电源 电源技术解析

首页  上一页  1 2 3 4 5 6 7 8 下一页 尾页
发布文章

技术子站

更多

项目外包

设计方案推荐