当前位置:首页 > 直流稳压电源
  • 基于单片机的高性能直流稳压电源

    基于单片机的高性能直流稳压电源

    引言 众所周知,许多科学实验都离不开电,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,因此,如果实验电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,那么就省去了许多不精确的人为操作,取而代之的是精确的微机控制,而我们所要做的就是在实验开始前对一些参数进行预设。这将会给各个领域中的实验研究带来不同程度的便捷与高效。因此,直流电源今后的发展目标之一就是不仅要在性能上做到效率高、噪声低、高次谐波低、既节能又不干扰环境,还要在功能上力求实现数控化、多功能化与智能化。本文所介绍的就是一个将开关电源和线性电源有机地结合起来,兼具二者优点的高性能直流稳压电源。由于在该电源中引入了单片机控制,故该电源还具有一定的智能化,可实现定时开、关机,定时变压,显示输出电压、电流,预置输出电压值等功能。 1 电路原理与硬件实现 该电源主要分为整流、变压部分,调压、稳压部分以及控制部分。具体地说是用开关电路实现整流与初级变压,用可调三端稳压器实现调压与稳压,而用单片机控制整个电源的工作。电路原理图见图1。交流输入经整流后,送入高频开关电路。高频变压器输出端共有6路,其中3路作为辅助电源,另3路作为主功率输出的前级线圈。为提高输出电压精度并减少损耗,主功率输出采用电压分档调节的方法,由于输出电压为0~30V,故考虑分3档比较合适。其中Vc为单片机D/A变换器输出的电压值,Vc的变化将直接决定输出电压的变化。Vin由开关电路的输出端提供,Vin大小的调整是通过单片机控制继电器的开合来实现不同个数的开关电路输出端的电容的串联来实现的。因为Vin是随着输出给定Vc变化的,Vc小Vin也小,Vc大Vin也大,故当输出电压在0~30V间变化时,三端可调稳压器的输入端与输出端的压差均不会很大,这样既保证了精确调压,又减少了线性电路部分的损耗。图中A/D变换器所采集的是输出电压、电流的值,这些数据可用来实现过流保护与输出显示。因为,该电源中的开关电路需要有多路输出,故选用能方便实现多路输出的反激式开关电路,可调三端稳压器选用最大输出为3A/33V的LM350,而单片机选用ATMEL公司的AT89C51。A/D变换器选用ADC0809芯片,D/A变换器选用DAC0832芯片。   图1电源主电路原理图 2 软件设计 该电源系统控制界面由16个按键和16×2字符点阵式液晶显示器组成。液晶显示屏可显示输出电压、电流值,定时值等。这些控制功能都是由一个主程序加若干中断子程序来实现。主程序流程图如图2所示。   图2 程序流程图 开机后先初始化,将单片机的各个口复位,然后从EEPROM中读取前次关机时存入的各项数据,并按要求输出。接着单片机的CPU就开始等待键盘输入所产生的中断,中断响应后就进入相应的子程序更新输出与显示,接着等待下一次中断。 3 实验结果 该电源实现的功能如下: ——输入交流电压范围为90~240V时均可正常工作; ——输出电压0.0~29.9V可设定,调压精度为0.1V。输出电流0.0~1.5A; ——人机界面好,采用键盘设定,液晶显示,能显示输出电压、电流值和定时时间; ——可定时开机、关机,可定时变压,定时时间长度最长为99h59min59s; ——具有过流保护功能,过流值可设定,并具有三端可调稳压器本身所具有的过热保护功能。 输出电压精度的测试结果见表1,从表1可知,该电源无论是空载、轻载还是满载输出电压的精度均比较高,输出电压的误差<0.1V。而输出电压纹波的测试结果见图3及图4。从图中可知,空载时输出电压的纹波峰峰值较小,约为20mV左右;满载时输出纹波会变大一些,峰峰值约为50mV左右。但总的来说该电源的输出电压的纹波较小,输出特性良好。   图3 空载时的输出电压纹波   图4 满载时的输出电压纹波 表1 输出电压精度测试结果 电压设定值/V实测输出电压/V 空载轻载满载 00.0980.0980.098 55.024.994.94 9.99.869.849.82 1010.0810.0710.03 1515.0615.0314.96 19.919.9019.8719.82 2020.0920.0619.99 2525.0525.0224.94 29.929.8929.8729.83 4 结语 由于该电源在结合了线性电源与开关电源各自优点的基础上还加入了单片机控制,不仅小巧、轻便、输出特性良好而且还操作简单,具有控制智能化等特点,因此,十分适用于各种科学实验与小功率的电子设备中,相信会有很好的应用前景。

    时间:2019-08-27 关键词: 单片机 直流稳压电源

  • 基于AVR单片机的数控直流稳压电源的设计

    基于AVR单片机的数控直流稳压电源的设计

    摘 要: 将单片机数字控制技术有机地融入直流稳压电源的设计中,设计出一款高性价比的多功能数字化通用直流稳压电源。详细介绍PWM输出、A/D采样、单片机等。该设计除了实现对电压的数字控制外,还具有高精度、多功能、液晶显示的特点。关键词: AVR单片机;直流稳压电源;电压表;数字控制 从20世纪90年代末起,随着对系统更高效率和更低功耗的需求,电信与数据通讯设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。本文设计的直流稳压电源主要由单片机系统、键盘、数码管显示器、指示灯及报警电路、检测电路、D/A转换电路、直流稳压电路等部分组成。其中数控电源采用按键盘,可对输出电压及报警阈值以快慢两种方式进行设置,输出由单片机通过D/A控制驱动模块输出一个稳定电压。同时稳压方法采用单片机控制, 单片机通过A/D采样输出电压,与设定值进行比较,若有偏差则调整输出,越限则输出报警信号并截流。工作过程中,稳压电源的工作状态(输出电压、电流等各种工作状态)均由单片机输出驱动LCD显示,由键盘控制进行动态逻辑切换。以单片机为核心设计智能化高精度简易直流电源,电源采用数字调节,输出精度高,特别适用于各种有较高精度要求的场合。具有以下明显优点:(1)智能化程度更高,性能更完美;(2)控制灵活,系统升级方便;(3)控制系统的可靠性提高,易于标准化。1 直流稳压电源的基本原理 直流电源电路一般由电源变压器、整流滤波电路及稳压电路所组成。如图1所示。 稳压电路经常采用三端稳压器,应用电路如图2所示,只要把正输入电压U1加到LM7805的输入端,LM7805的公共端接地,其输出端便能输出芯片标称正电压U2。实际应用中,输入端和输出端与地之间除分别接大容量滤波电容外,通常还需在芯片引出脚根部接小容量电容到地。C1用于抑制自激振荡,C2用于压窄芯片的高频带宽,减小高频噪声。如图2所示。2 数控恒压源的实现方案 传统的直流稳压电源通过粗调波段开关及细调电位器来调节,并由电位表指示电压值的大小。这种稳压电源存在读数不直观、电位器易磨损、精度不高、不易调准、电位构成复杂、体积大等缺点,基于单片机控制的数控直流电源不但实现了直流稳压的功能,而且没有上述的缺点。2.1 设计要求 输出电压范围:0.0 V~9.9 V; 输出电压的调整方式:步进,步进数值为0.1 V; 显示方式:LCD1602液晶显示; 监测D/A的输出电压值。2.2 数控电源的方案 图3所示为数控电源的设计框图,其输出电压数值由键盘控制。通过键盘把需要输出的电压值以步进方式输入到单片机。这里电压采用单片机的PWM模拟电压输出。显示电路既可用来显示输出的电压值,也可用来显示键盘电路的调整过程。如果不满足输出电压的要求,将需要添加一个电压放大器。经过LM324线性转换后,得到所需电压值,另外对监测电压实际输出电压值进行采样,并将采样值通过单片机的A/D采样口送回单片机处理后显示。在该数字控制电源中,使用AVR芯片完成系统控制按键输入判断、电压数值显示以及对外部芯片的各种数字控制。3 数字控制部分 ATmega16是基于增强的AVR RISC结构的低功耗8位CMOS微控制器;数据吞吐率高达1 MIPS/MHz,从而可以缓减系统在功耗和处理速度之间的矛盾;具有4通道的PWM以及8路10 bit ADC。 本系统的D/A选择常用的DAC0832。当其与单片机相连时电路和程序简单,只需把单片机的数据线与DAC0832的输入端直接相连即可。其各个引脚的连接及外围如图4所示。

    时间:2019-03-21 关键词: 单片机 AVR 嵌入式处理器 数控 直流稳压电源

  • 直流稳压电源主要性能验收、测量方法

    直流稳压电源主要性能验收、测量方法

    本电源产品为通用直流输出稳定电源,其性能规定与测试方法符合以下规定,当要求超出本规定时,应在合同中明确说明。 主要性能测试注意事项及测试方法如下:一) 注意事项:1) 测量时应保持所有其他影响量的积累效应的量值小于被测效应规定量值的1/10。2) 负载是可变影响量,当负载为连续可调时,应在最小值、最大值两点上进行(当最小值为零时,则规定为最大值的10% 时进行)。3) 应采用四端线路,使电流端和测量端分开,以减少测量误差。4) 当电源提供测量端子时,应在测量端子上进行,数字电压表测试头需插入接线柱中心孔到底。5) 稳流电源测量时, 应采用取样电阻R M,使其上电压降与电流成正比且应小于被测效应误差极限的1/10,并在误差分析时考虑其引起的误差,同时,取样电阻R M应采用四端线路使电流端和测量端分开,以减少测量误差。6) 电压或电流稳定输出量为连续可调时,应在最小值、最大值两点上进行(当最小值为零时,则规定为最大值的10%时进行)。二) 测试方法(一) 负载效应及周期与随机偏移的测量。1 ) 负载效应的测量是仅由于负载的变化而引起电压或电流稳定输出量的变化量的测量。2 ) 周期与随机偏移的测量是电压或电流稳定输出量中无规则波动部分(以前称纹波和噪声)的测量。 测量频率范围为:10Hz~10MHz,测量时必须使用单一接地点,以免产生测量误差。3 ) 应在负载调节完成后1.5秒~11.5秒时间间隔内测量。4 ) 源电压分别置于198伏、220伏、242伏时测量。5 ) 稳压电源时测量法:仪器连接法:按图一b.计算稳压电源负载效应ΔVle       V i - V 1  ΔV le =------------- ×100%        V 1ΔV le 稳压电源负载效应V 1 负载电流为额定值时被测稳压电源输出电压值V i 负载电流改变为零或最小额定值时被测 稳压电源输出电压值RL  稳压电源负载c.从有效值电压表或示波器上读出周期与随机偏移值V PARD。6 ) 稳流电源时测量法:a.仪器连接法:按图二b. 计算稳流电源负载效应ΔA le      V i - V 1ΔA le = ----------------- ÷ RM ×100%      V 1ΔA le 稳流电源负载效应V1 负载电压为最大额定值时被测稳流电源R M 上的输出电压值Vi 负载电压改变为零或最小额定值时被测稳流电源R M 上的输出电压值RM 取样电阻C. 计算周期与随机偏移值A PARD    A PARD = V 1PARD (或V iPARD) ÷RM A PARD 稳流电源周期与随机偏移值V1PARD 负载电压为最大额定值时被测稳流电源R M 上的周期与随机偏移电压值ViPARD 负载电压改变为零或最小额定值时被测稳流电源R M 上的周期与随机偏移电压值7) 当负载效应及周期与随机偏移的测量互相有影响时,则应分别测量。二) 源效应及周期与随机偏移的测量。1) 源效应的测量是仅由于源电压的变化而引起电压或电流稳定输出量的变化量的测量。2) 源效应应在源电压调节完成后1.5秒~11.5秒时间间隔内测量。3) 源电压是可变影响量,应分别在220伏~198伏、198伏~220伏、220伏~242伏、242伏 ~220伏时测量。4) 稳压电源时测量法:a. 仪器连接法:按图一b. 计算稳压源源效应ΔVse     Vi - V1ΔVse = ------------ ×100%      V1ΔVse 稳压电源源效应V1 源电压为220伏,负载分别为最大值、最小值时被测稳压电源输出电压值Vi 源电压分别为198伏、242伏,负载分别为最大值、最小值时被测 稳压电源输出电压值RL 稳压电源负载c. 从有效值电压表或示波器上读出周期与随机偏移值VPARD。5) 稳流电源时测量法:a. 仪器连接法:见图二b. 计算稳流电源源效应ΔA se     Vi - V1 ΔA se =------------÷ RM ×100%      V1ΔA se 稳流电源源效应V1 源电压为220伏,负载分别为最大值、最小值时被测稳流电源R M 上的 输出电压值Vi 源电压分别为198伏、242伏,负载分别为最大值、最小值时被测稳流电源R M 上的输出电压值c. 计算周期与随机偏移值A PARDA PARD = V1 PARD (或Vi iPARD) ÷ RMA PARD 稳流电源周期与随机偏移值V 1PARD 源电压为220伏,负载分别为最大值、最小时被测稳流电源RM上的周期与随机偏移电值V iPARD 源电压分别为198伏、242伏, 负载分别为最大值、最小值时被测稳流电源RM 上的周期与随机偏移电压值6) 当源效应及周期与随机偏移的测量互相有影响时,则应分别测量。(三) 漂移的测量1) 漂移的测量是在电源预热、安稳(热平衡)后,电压或电流稳定输出量在规定时间内的缓慢和连续最大变化量的测量。漂移的测量包括输出扰动,频率范围从直流至20HZ。2) 漂移应在基准条件下测量。3) 负载范围:有两种方法。a. 负载加至额定最大值时测量。b. 电源工作在空载(或最小值)时测量。4) 测试仪器应对直流至20Hz的频率扰动有足够的频率响应,超过20Hz的信号应由低通滤波器滤除,其带外(大于20Hz)抑制不得小于每个倍 频 程6dB。5) 为了确保测量的准确,必要时所有监测均应放在恒温条件下。确保所有观测仪器及影响量(特别是温度)的组合效应的绝对量值所引入的误差极限值不应超过电源漂移规定量值的1/10。6) 稳压电源时测量法:a. 仪器连接法:按图三b . 计算稳压电源漂移值ΔVd=Vmax-VminΔVd 稳压电源漂移值Vmax 规定时间内被测稳压电源输出电压最大值Vmin定时间内被测稳压电源输出电压最小值7)稳流电源时测量法:仪器连接法:按图四b. 计算稳流电源漂移值ΔAd= |V max /Rm|-|V min /Rm|ΔAd 稳流电源漂移值V max 规定时间内被测稳流电源R M 上的输出电压最大值V min 规定时间内被测稳流电源R M 上的输出电压最小值一)测量规定及注意事项1)当测量仪器的误差不能忽略时,应采用下述原则。目的在于使制造厂不把超差的仪器交货,且使用方不把未超差的仪器拒收。   如果对于一个给出的性能特性,其给定的允许误差为±e,而相应的测试方法的误差是±n,那么:制造方的误差极限应为±(e-n),且使用方的误差极限应为±(e+n)。2)测量周期与随机漂移时其频率范围 为20Hz —10 MHz,当给出值为有效值(rms)时,则应采用此频率范围的有效值数字电压表或示波器。3)测量漂移时其频率范围为0—20 Hz,对超过20 Hz的信号应由低通滤波器滤除。4)被测电源预热时间规定为30分钟。30分钟后改变影响量,其后应等被测电源本身达到热平衡后,才能进行漂移的测量。

    时间:2019-01-10 关键词: 稳压电源 电源 电源技术解析 主要 直流稳压电源

  • 直流稳压电源主要性能验收及测量方法介绍

    直流稳压电源主要性能验收及测量方法介绍

    本电源产品为通用直流输出稳定电源,其性能规定与测试方法符合以下规定,当要求超出本规定时,应在合同中明确说明。 主要性能测试注意事项及测试方法如下: 一) 注意事项:1) 测量时应保持所有其他影响量的积累效应的量值小于被测效应规定量值的1/10。2) 负载是可变影响量,当负载为连续可调时,应在最小值、最大值两点上进行(当最小值为零时,则规定为最大值的10% 时进行)。3) 应采用四端线路,使电流端和测量端分开,以减少测量误差。4) 当电源提供测量端子时,应在测量端子上进行,数字电压表测试头需插入接线柱中心孔到底。5) 稳流电源测量时, 应采用取样电阻R M,使其上电压降与电流成正比且应小于被测效应误差极限的1/10,并在误差分析时考虑其引起的误差,同时,取样电阻R M应采用四端线路使电流端和测量端分开,以减少测量误差。6) 电压或电流稳定输出量为连续可调时,应在最小值、最大值两点上进行(当最小值为零时,则规定为最大值的10%时进行)。 二) 测试方法 (一) 负载效应及周期与随机偏移的测量。1 ) 负载效应的测量是仅由于负载的变化而引起电压或电流稳定输出量的变化量的测量。2 ) 周期与随机偏移的测量是电压或电流稳定输出量中无规则波动部分(以前称纹波和噪 声)的测量。 测量频率范围为:10Hz~10MHz,测量时必须使用单一接地点,以免产生测量误差。3 ) 应在负载调节完成后1.5秒~11.5秒时间间隔内测量。4 ) 源电压分别置于198伏、220伏、242伏时测量。5 ) 稳压电源时测量法:仪器连接法:按图一b.计算稳压电源负载效应ΔVle       V i - V 1  ΔV le =------------- ×100%        V 1ΔV le 稳压电源负载效应V 1 负载电流为额定值时被测稳压电源输出电压值V i 负载电流改变为零或最小额定值时被测 稳压电源输出电压值RL  稳压电源负载c.从有效值电压表或示波器上读出周期与随机偏移值V PARD。6 ) 稳流电源时测量法:a.仪器连接法:按图二b. 计算稳流电源负载效应ΔA le      V i - V 1ΔA le = ----------------- ÷ RM ×100%      V 1ΔA le 稳流电源负载效应V1 负载电压为最大额定值时被测稳流电源R M 上的输出电压值Vi 负载电压改变为零或最小额定值时被测稳流电源R M 上的输出电压值RM 取样电阻C. 计算周期与随机偏移值A PARD    A PARD = V 1PARD (或V iPARD) ÷RM A PARD 稳流电源周期与随机偏移值V1PARD 负载电压为最大额定值时被测稳流电源R M 上的周期与随机偏移电压值ViPARD 负载电压改变为零或最小额定值时被测稳流电源R M 上的周期与随机偏移电压值7) 当负载效应及周期与随机偏移的测量互相有影响时,则应分别测量。 二) 源效应及周期与随机偏移的测量。1) 源效应的测量是仅由于源电压的变化而引起电压或电流稳定输出量的变化量的测量。2) 源效应应在源电压调节完成后1.5秒~11.5秒时间间隔内测量。3) 源电压是可变影响量,应分别在220伏~198伏、198伏~220伏、220伏~242伏、242伏 ~220伏时测量。4) 稳压电源时测量法:a. 仪器连接法:按图一b. 计算稳压源源效应ΔVse     Vi - V1ΔVse = ------------ ×100%      V1ΔVse 稳压电源源效应V1 源电压为220伏,负载分别为最大值、最小值时被测稳压电源输出电压值Vi 源电压分别为198伏、242伏,负载分别为最大值、最小值时被测 稳压电源输出电压值RL 稳压电源负载c. 从有效值电压表或示波器上读出周期与随机偏移值VPARD。5) 稳流电源时测量法:a. 仪器连接法:见图二b. 计算稳流电源源效应ΔA se     Vi - V1 ΔA se =------------÷ RM ×100%      V1ΔA se 稳流电源源效应V1 源电压为220伏,负载分别为最大值、最小值时被测稳流电源R M 上的 输出电压值Vi 源电压分别为198伏、242伏,负载分别为最大值、最小值时被测稳流电源R M 上的输出电压值c. 计算周期与随机偏移值A PARDA PARD = V1 PARD (或Vi iPARD) ÷ RMA PARD 稳流电源周期与随机偏移值V 1PARD 源电压为220伏,负载分别为最大值、最小时被测稳流电源RM上的周期与随机偏移电值V iPARD 源电压分别为198伏、242伏, 负载分别为最大值、最小值时被测稳流电源RM 上的周期与随机偏移电压值6) 当源效应及周期与随机偏移的测量互相有影响时,则应分别测量。 (三) 漂移的测量1) 漂移的测量是在电源预热、安稳(热平衡)后,电压或电流稳定输出量在规定时间内的缓慢和连续最大变化量的测量。漂移的测量包括输出扰动,频率范围从直流至20HZ。2) 漂移应在基准条件下测量。3) 负载范围:有两种方法。a. 负载加至额定最大值时测量。b. 电源工作在空载(或最小值)时测量。4) 测试仪器应对直流至20Hz的频率扰动有足够的频率响应,超过20Hz的信号应由低通滤波器滤除,其带外(大于20Hz)抑制不得小于每个倍 频 程6dB。5) 为了确保测量的准确,必要时所有监测均应放在恒温条件下。确保所有观测仪器及影响量(特别是温度)的组合效应的绝对量值所引入的误差极限值不应超过电源漂移规定量值的1/10。6) 稳压电源时测量法:a. 仪器连接法:按图三b . 计算稳压电源漂移值ΔVd=Vmax-VminΔVd 稳压电源漂移值Vmax 规定时间内被测稳压电源输出电压最大值Vmin定时间内被测稳压电源输出电压最小值7)稳流电源时测量法:仪器连接法:按图四b. 计算稳流电源漂移值ΔAd= |V max /Rm|-|V min /Rm|ΔAd 稳流电源漂移值V max 规定时间内被测稳流电源R M 上的输出电压最大值V min 规定时间内被测稳流电源R M 上的输出电压最小值 一)测量规定及注意事项1)当测量仪器的误差不能忽略时,应采用下述原则。目的在于使制造厂不把超差的仪器交货,且使用方不把未超差的仪器拒收。   如果对于一个给出的性能特性,其给定的允许误差为±e,而相应的测试方法的误差是±n,那么:制造方的误差极限应为±(e-n),且使用方的误差极限应为±(e+n)。2)测量周期与随机漂移时其频率范围 为20Hz —10 MHz,当给出值为有效值(rms)时,则应采用此频率范围的有效值数字电压表或示波器。3)测量漂移时其频率范围为0—20 Hz,对超过20 Hz的信号应由低通滤波器滤除。4)被测电源预热时间规定为30分钟。30分钟后改变影响量,其后应等被测电源本身达到热平衡后,才能进行漂移的测量。

    时间:2019-01-09 关键词: 稳压电源 电源 电源技术解析 主要 直流稳压电源

  • 一种高精度数控直流稳压电源的设计

    一种高精度数控直流稳压电源的设计

    摘要:本文介绍了一种以常用电子元器件构成的高精度数控直流稳压电源,该电源具有调整方便、步进精度高等特点,可作为电子仪器直流标准电压源。0 引言在厂矿企业和大中专院校的实验室中,直流稳压电源作为一种必备的电子设备得到了广泛的应用。而目前常见的直流稳压电源,大都采用串联反馈式稳压原理,通过调整输出端取样电阻支路中的电位器来调整输出电压。由于电位器阻值变化的非线性和调整范围窄(约300 ),使普通直流稳压电源难以实现输出电压的精确调整。本文给出一种输出电压在0~15V 之间并以3.6621mV 为步进值进行电压精确调整的数控直流稳压电源电路,其最大输出电流可达3A.1 系统工作原理及各单元电路的组成系统工作原理为:计数器产生的可增加或减少的二进制数字量通过D/A 转换把数字量转换为模拟电压,经功率放大后输出并显示。1.1 系统电源单元由市电AC 220V 经降压、整流、滤波后得到±21V 直流电压作为功率放大部分的电源电压该电压,再经三端稳压器7815 、7915、 7805、 7905 稳压后输出±15V 、±5V 电压,作为系统数字控制及模拟放大部分的电源电压。电路如图1 所示。图1 系统电源原理图全文PDF下载:一种高精度数控直流稳压电源的设计.rar4次

    时间:2018-09-21 关键词: 电源技术解析 数控 直流稳压电源

  • 基于VUSB的数控直流稳压电源的设计

    基于VUSB的数控直流稳压电源的设计

    摘 要:介绍了一种调节精度高,操作简便的数控直流稳压电源。采用AVR系列单片机Atmega8作为主控单元,通过不同的数字量输入设置D/A转换芯片MAX522的输出电压。DAC输出电压则经过μA741组成的两级运放电路及射极输出器ZTX453进行电压电流放大。其中DAC输入的5.12V参考电压是由LM366集成稳压器产生的。上位机通过基于AVR单片机特有的VUSB技术与下位机进行通讯,同时介绍了Windows平台下USB设备驱动程序的实现。此电压源实现了电压值读取与设置的可见与可控性,可作为部分测试设备的嵌入式电源模块使用。0 引 言数控直流稳压电源是电子技术中常用的设备之一,目前所使用的大多是通过旋钮开关调节电压值,调节精度不高,而且经常出现跳变,使用起来极不方便。本数控直流稳压电源通过上位机设置输入到DAC的数字量,输出步进可调的电压。上位机与下位机通过软件模拟的USB进行通信。传统的单片机与计算机进行USB通信,需要使用专用的接口芯片进行USB 协议转换,如CP2101、FT232、CH342、PDIUSBD12、SL811等。像CP2101、FT232这样的芯片使用起来虽然简单,但是功能比较单一;而PDIUSBD12、SL811功能较强,但是使用复杂。并且这些专用芯片的价格都相对较高,增加了系统的成本。而VUSB简单易用,成本低廉,只需要一个普通的低成本AVR单片机以及很少的几个外部元件,就可以组成一个USB系统。1 系统硬件设计系统组成框架如图1所示,主要由8路串行输入DACMAX522、稳压输出电路、VUSB接口电路、信号调理电路、单片机Atmega8及其他外围元件组成,可以输出0~12V的电压,步进精度为0.1V,电流可达2A.同时可以通过上位机设置输出的电压值。图1 数控直流稳压源组成1.1 模数转换。D/A 转换主要是利用MAX522 芯片来实现的。MAX522芯片内有2路8位电压缓冲输出D/A 转换器(DAC A和DAC B),8脚节省封装和DIP封装,DAC A端缓冲器工作电流可达5mA,DAC B端缓冲器工作电流可达500μA,MAX522工作在单向电压+2.7V~+5.5V.MAX522具有3线串行接口,可直接与SPITM、QSPITM,MicrowireTM 兼容。它有一个16位输入移位寄存器,包含8位DAC输入数据和8位DAC选择和关断控制。在/CS的正边沿数据能够存入到DAC寄存器。模数转换模块电路如图2所示。单片机的PB0端口接串行数据输入口DIN、PB1接片选信号、PB2端口接时钟信号SCLK.选择DAC A作为输出,输出和参考电压输入端分别接上一个0.1μF的电容,提高电路输出稳定性。芯片的VDD与参考电压端均由5.12V稳压电路提供。图2 模数转换及稳压电路LM336集成电路是精密的5V稳压器,其工作相当于一个低温度系数的、动态电阻为0.2Ω的5V齐纳二极管,其中微调端(G)可以使基准电压和温度系数得到微调。通过调节可调电阻调节LM336的输出电压为5.12V.所以MAX522输出电压的分辨率为5.12/256=0.02V,也就是说MAX522数字输入量每增加1,电压就增加0.02V.由于电源输出电压范围为0~12V,步进精度为0.1V,则最大输入数据为120(二进制值为11110000),此时MAX522输出值为2.4V.即MAX522的输出电压在0~2.4V变化。1.2 电压电流放大由于MAX522输出的电压范围为0~2.4V,而要求的电压输出范围为0~12V,所以需要将MAX522输出放大5倍。同时,为了提高电源的驱动能力,在放大电路后面加入了一个射极输出器。电压电流放大电路如图3所示。主要包括2个μA741高增益运算放大器组成的放大部分及三极管ZTX453组成的射极输出部分。第一级μA741AN 为负反馈缓冲电路,用以减小输出电阻并使放大频率频宽增大。第二级μA741ANA构成电压正向比例放大电路。放大后的电压信号接入射极输出器ZTX453,放大输出信号的电流。注意,此部分电路发热量比较大,需要再扩接散热片进行散热。图3 电压电流放大电路。1.3 VUSB接口VUSB是用普通的通用AVR单片机,配以较高频率的晶振(12MHz或16MHz),模拟产生USB所需信号,从而模拟出标准的USB HID设备(鼠标、键盘、简单通信)的解决方案,构成一个低成本的USB设备。USB共有4根线,2根5V电源,两根差分信号线D+、D-.由于是低速设备,D-必须要有1.5kΩ的上拉电阻。VUSB接口电路如图4所示,单片机的PD1和PD2通过68Ω的限流电阻分别接入标准USB接口的D-、D+.需要注意的是D+必须接上单片机的外部中断0管脚,在此为了简化连接直接将PD2(INT0)接入作为其中的一根信号线使用。由于USB信号线的电压最大为3.6V,所以在D-和D+上分别并接了一个3.6V的稳压二极管。图4 VUSB接口电路。2 系统软件设计软件设计包括下位机和上位机2部分。下位机主要负责接收上位机的设置电压值,并经过转换后输入到MAX522,从而输出设置电压。上位机则通过VUSB与下位机连接,并通过模拟的USB协议向下位机写入数据。2.1 下位机软件下位机软件流程图如图5所示。其中设备初始化包括单片机端口初始化、DAC初始化及VUSB端口初始化。在初始化之后,程序进入主循环,在其中加入了USB轮询函数usbPoll(),用来侦测USB事件。一旦侦测到上位机有USB通信请求时,usbdrv就会调用usbFunctionSetup()函数来处理请求。在此请求函数中接收上位机传来的数据并将此数据转换后写入MAX522数据端口,启动DAC输出电压。图5 下位机软件流程。设计中需注意以下几点:1)单片机方面的VUSB 底层驱动函数使用AVRUSB,最新版本的AVR-USB为C语言编写并有详细的注释。开发平台为WinAVR.GCC项目文件夹中需包含驱动文件(usbdrv文件夹),并对usbconfig.h中的部分宏定义做一些修改。#define USB_CFG_IOPORTNAME D//这个接口连接USB总线。当配置为"D"时,寄存器PORTD,PIND and DDRD将有效。#define USB_CFG_DMINUS_BIT 1//位配置,是在USB_CFG_IOPORT 中连接USB D-的线。可以配置为接口的任何位。#define USB_CFG_DPLUS_BIT 2//位配置,是在USB_CFG_IOPORT 中连接USB D+的线。也可以连接到任意口,但是注意D+一定要连接都中断口INT02)单片机在接收到读取数据命令时会自动调用usbFunctionSetup(uchar data[8]),在函数内把全局指针*usbMsgPtr指向所要发送的数据首地址,然后返回(函数返回值)所发送数据的长度就可以了。由于采用的是命令包方式传输数据,每次只能接收4个字节的有效数据,存储在data[2]~data[4]中。3)初始化时需要将MAX522的输出置为关闭状态。写入MAX522时首先写入8位控制字,然后写入8位DAC数据。2.2 上位机软件上位机用C# 语言进行编写,驱动采用一款名为LibUsbDotNet的开源USB上位机驱动库文件。此驱动库文件还提供了供。NET平台调用的USB接口函数。使用时需包含相应的动态链接库文件。上位机软件主要包括显示设备连接状态、写入电压值及读取当前电压值等功能。上位机软件流程图如图6所示。图6 上位机软件流程。只有在总线请求为用户自定义类型(Vendor)时单片机才会调用usbFunctionSetup(uchar data[8])这个函数,所以传输数据是通过发送用户自定义类型的Setup数据包来实现的。读数据时设置此数据包为IN,同时写入需要读取的字节数。写入数据时设置数据包为OUT,4字节的有效数据则包含在所建立的8字节Setup数据包的data[2]~data[4]之中。3 实验验证与分析本数控直流稳压电源在使用之前需进行校零。在初始状态下,调节集成运放μA741的外接调零电阻使集成运放输出为0,调节射极输出器偏置电阻R13使输出电压为0.在输出最大的情况下,调节输出集成运放的比例放大电阻R14,使得输出电压为12V.校零之后将上位机设置电压值与实际输出电压进行对比实验,实验数据如表1所示。表1 电压输出对比实验结果所设计电压源实际输出值与设定值偏差较小,能够满足0~12V连续可调输出,步进值为0.1V的使用要求。4 结 论设计了一种以单片机为主,基于VUSB技术进行数据传输控制的数控直流稳压电源。输出电压值由单片机控制,步进调节方便,输出稳定。既可以作为单独的电源使用,也可以嵌入到其他需要步进电压模块的测试系统之中。参考文献:[1].Atmega8datasheethttp://www.dzsc.com/datasheet/Atmega8_144542.html.[2].MAX522datasheethttp://www.dzsc.com/datasheet/MAX522_859564.html.[3].ZTX453datasheethttp://www.dzsc.com/datasheet/ZTX453_739231.html.[4].CP2101datasheethttp://www.dzsc.com/datasheet/CP2101_230346.html.[5].PDIUSBD12datasheethttp://www.dzsc.com/datasheet/PDIUSBD12_544412.html.[6].PB1datasheethttp://www.dzsc.com/datasheet/PB1_1148989.html.[7].PB2datasheethttp://www.dzsc.com/datasheet/PB2_1202177.html.[8].LM336datasheethttp://www.dzsc.com/datasheet/LM336_843284.html.1次

    时间:2018-09-19 关键词: 电源技术解析 数控 直流稳压电源 vusb

  • 基于单片机的可编程直流稳压电源设计

    基于单片机的可编程直流稳压电源设计

    摘要:随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。目前,市场上各种直流电源的基本环节大致相同,都包括交流电源、交流变压器、整流电路、滤波稳压电路等。文章介绍了将单片机控制系统应用于直流稳压电源的方法和原理,实现了稳压电源的数控调节,在宽输出电压下实现了0.1v步进调节,并分析了稳压工作原理和电压调节方法。该电源具有电压调整简便、电压输出稳定、便于智能化管理等特点。随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。其良好的性价比更能为人们所接受,因此,具有一定的设计价值。一、系统设计(一) 方框图设计。该电路采用单片机(AT89C51)作为主控电路,由三端集成稳压器(LM317)作为稳压输出部分。另外,电路还增加参考电压电路、D/A转换电路、电压放大电路、显示电路等部分电路。其方框图如图1所示:图1 用单片机制作的直流稳压可调电源框图整个电路的运行需要模拟电压源提供+5V,±15V的模拟电压,以便使电路中的集成数字芯片能够正常工作。电路运行时,首先由单片机设置初始电压值,并送显示电路显示。然后将电压值送D/A转换电路进行数模转换,再经放大电路进行电压放大,最终反馈到三端集成稳压器(LM317)输出模拟电压。(二) 硬件设计。本电路的硬件组成部分主要由单片机(AT89C51)、变压器、整流电路、滤波电路、稳压器(LM317)、参考电压电路、D/A转换电路(DA0832)、放大电路、显示电路等组成。硬件电路如图2所示,整个电路通过单片机(AT89C51)控制,P0口和DAC0832的数据口直接相连,DA的CS和WR1连接后接P26,WR2和XFER接地,让DA工作在单缓冲方式下。DA的11脚接参考电压,通过调节可调电阻使LM336的输出电压为5.12V,所以在DAC的8脚输出电压的分辨率为5.12V/256=0.02V,也就是说DA输入数据端每增加1,电压增加0.02V。图2 单片机控制直流电压输出电路图 DA的电压输出端接放大器OP07的输入端,放大器的放大倍数为(R8+R9) /R8=(1K+4K) /1K=5,输出到电压模块LM317的电压分辨率为0.02V×5=0.1V.所以,当MCU输出数据增加1的时候,最终输出电压增加0.1V,当调节电压的时候,可以以每次0.1V的梯度增加或者降低电压。本电路设计两个按键,S1为电压增键,S2为电压减键,按一下S1,当前电压增加0.1v,按一下S2,当前电压减小0.1V.显示部分由三位共阳数码管和74LS164串入并出模块组成,电路如图3所示,可以显示三位数,一位显示十位,一位显示个位,另外还有一个小数位,比如可以显示12.5v,采用动态扫描驱动方式。本主电路的原理就是通过MCU控制DA的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是稳压模块LM317输出。图3 显示部分(三) 软件设计。在本电路中由于CPU的工作任务是单一的,因此,源程序的工作过程为:系统上电复位后,默认输出9V电压,然后扫描S1,S2键,当S1或S2键有按下时,程序跳转至相应的按键处理子程序,经按键子程序处理后,再嵌套调用显示子程序,完成显示与输出操作后返回主程序,继续扫描此两键,程序运行原理如下:程序设计需要考虑的主要问题有两个方面:一方面要找出数字量Dn与输出电压的关系,这是程序设计的依据;另一方面要建立显示值与输出电压值的对应关系,这是程序设计是否成功的标志。因为在本系统中,显示的输出电压值不是之前从输出电路中通过检测得到的,因此显示与输出并不存在直接联系。但为了使显示值与实际输出值相一致,在程序编写时,必须人为地为两者建立某种关系。采用的方法是:在程序存储器中建立TAB1和TAB2两张表格,TAB1放101个Dn值,数值从小到大顺序排列,其值分别对应输出电压0~10v,TAB2存放数码显示器0~9字符所对应的数据。TAB1表格的数据指针存放在内存RAM中23H单元,内存20H, 21H和22H三个单元分别存放数码显示器小数点一位,个位和十位的字符数据指针。在主程序中初始化后之后首先给23H赋予40的偏移量,这个偏移量指向TAB表中的Dn为145,此值对应的输出电压为9V,由于这个原因,必然要求显示器显示的字符为"05.0",为此,须分别给20H, 21H和22H赋予0,5和0的偏移量,这三个偏移量分别指向TAB2中0,5和输出两者之间就建立了初步的对应关系。为了使两者保持这种对应的关系,在K1和K2按键处理子程序中,必须使23H, 20H, 21H和22H四个数据指针保持"同步"地变化,即为当K有键时, 23H单元增加1指向下一Dn时, 20H单元也相应增加1指向下一字符,并且20H单元(小数点一位指针)、21H单元(个位指针)和22H元(十位指针)应遵循十进制加法的原则,有进位时相应各位应作出相应地变化;当K2有键时,23H单元减1指向前一Dn时, 20H单元也相应减1指向前一字符,并且20H, 21H, 22H三个单元的数据指针应遵循十进制减法原则,有借位时相应的各位须作出相应地变化。按照这一算法只要控制TAB1表格数据指针不超出表格的长度就能使显示值与输出值保持一一对应的关系,即显示器能准确地显示出电源输出电压值的大小,达到电路设计的目的。由于理论计算与实际情况还存在着一定的差异,为了使显示值更加接近实际输出值,本电路需要对输出电压进行校正。二、调试与分析调试仪器:数字万用表、电烙铁、斜口钳、尖嘴钳、吸锡器、镊子。硬件调试:首先检查整个电路,电路连接完好,没有明显的错接,漏连。接上电源,电源指示类亮,数码管显示初始电压值+5V,用万用表的两只表笔测试LM317的输出电压为4.96V。当按下S1键一次,数码显示电压值变为4.9V,万用表读数变为4.85V.再按下S2键一次,数码显示电压值变为5.0V,万用表读数再次变为4.96V.通过改变显示电压值,用万用表测得几组输出电压数据见表1:表1 电压调试所测数据对比分析表单位:V系统平均误差Δd=0.41V.误差原因分析:(1)工作电源不够稳定,不能为数字集成块提供精确工作电压;(2)电路参数设定不够精确;(3)提供给D/A转换的参考电压不够精确,使得转换过程存在误差;(4)单片机的P0口传输给D/A转换的数据不够准确,使得输出出现误差;(5)系统缺少电压电流采样电路。三、结语在本文中,实现了以单片机为核心的直流稳压电源的智能控制,达到了预期的目的和要求。参考文献:[1].AT89C51datasheethttp://www.dzsc.com/datasheet/AT89C51_810155.html.[2].LM317datasheethttp://www.dzsc.com/datasheet/LM317_999428.html.[3].DAC0832datasheethttp://www.dzsc.com/datasheet/DAC0832_253651.html.[4].LM336datasheethttp://www.dzsc.com/datasheet/LM336_843284.html.[5].OP07datasheethttp://www.dzsc.com/datasheet/OP07_950754.html.[6].74LS164datasheethttp://www.dzsc.com/datasheet/74LS164_1054394.html.14次

    时间:2018-09-19 关键词: 单片机 可编程 电源技术解析 直流稳压电源

  • 直流稳压电源使用攻略

    直流稳压电源使用攻略

    直流稳压电源是一种可控电压输出的仪器,其主要作用是交流/直流的转换和电压的转换以及电流的控制。常见的直流稳压电源通常是将220V的交流市电转换成用电器所需要的低压直流电。在一些特殊的应用中,也有升压作用的高压输出稳压电源,不过在业余电台相关应用中非常罕见。根据不同的应用需要,按照电源的功能和特性,通常分为固定输出电压型的系统供电电源、可调稳压电压、可编程电源、恒流源、电压校准参考源等。随着科技的发展,电源的结构形式和控制电路不断更新,高频开关电路和智能化数控成为电源的方向发展。形形色色的直流稳压电源根据应用需求的不同,直流稳压电源分为各类特性不同的电源产品。系统直流电源主要针对低压用电器供电设计,通常功能简单,输出功率大,输出电流比较大(从几安培到几十安培),能为多个用电器供电,满足较大功耗的用电负荷。能长期连续工作、工作稳定是这类电源设计的重点,输出电压的漂移和电压调节精细度则不是重点。对于一些专用的基础型系统电源往往是固定电压型的,在电源操作面板上并不提供电压调节功能,甚至有的专用系统电源不提供监控输出电压的电表,业余电台爱好者使用最多的电台电源就属于此类电源。有的产品为了迎合用户的口味,都在基础型电源上添加了电压表和电流表,使得电源看上去更高科技一些,同时也方便监视电源输出状况。对于一些高端的系统电源,使用了单片机控制和液晶状态显示,设置电压可以通过键盘数字化输入,有些功能和指标几乎赶上可编程电源了。 固定电压直流稳压电源 输出电压可调是可调直流稳压电源最大的特点。由于电压可调,适用的范围就更广了,广泛应用在实验室和维修场合,所以也被称为“维修电源”、“实验电源”。实际中,用于实验室和维修应用的产品会增加更多附加实用功能,如可调限流功能、跟踪功能等。限流功能比较实用,它可以设定稳压电源输出的最大电流,当电流输出超过设定值时,电压会下跌,但电流不会继续增加,类似进入恒流模式。有的电源提供过流保护功能,一旦电流超过预定值就进入保护状态,切断输出,需要重新启动电源才能恢复输出。在实验和维修中,由于误操作或者电路故障,导致短路时有发生,利用限流功能既保护了电源自身的安全,也保护了电路上的元器件,使它们不会受到大电流的冲击。一般市场上常见的可调直流稳压电源的电流都不大,输出电流在1~3A,可以满足普通数码产品和移动电话类通信产品的维修和实验需要。 可调直流稳压电源 多路可调直流稳压电源是可调稳压电源的一种,其特点是一台电源提供两路甚至三四路可以独立设定电压的输出,基本上可以看成几台单路输出的电源合并使用,适用于需要多种电压供电的场合。高级一点的多路电源还具有电压跟踪功能,使几路输出能联动调节。 多路直流稳压电源 精密可调直流稳压电源是可调稳压电源的一种,其特点是电压电流调节分辨率高,电压设定精度优于0.01V。为了精确显示电压,目前主流的精密电源都采用多位数字表指示。电压和限流精密调节机构的解决方案不同,低成本的解决方案采用粗调和细调两个电位器,标准解决方案则采用多圈电位器,高档电源则采用单片机控制的数字化设定。采用单片机控制的稳压电源也被称为数控电源,通过数控方式更容易实现精密调节与设定。精密稳压电源内部线路也比较先进,电压稳定性也比较好自身电压漂移小,通常适用于精密实验场合。精密直流稳压电源是国内的称呼国外进口电源基本没有标称精密电源,只有高分辨率电源和可编程电源。 高分辨率数控电源 可编程电源是用单片机以数字化形式控制的可调稳压电源,其设定的参数可以存储起来供日后调用。可编程电源设定的参数比较多,包括基本的电压设定、功率限制设定、过流设定以及扩展的过压设定等信息。通常可编程电源具有较高的设定分辨率,电压和电流参数的设定都可以通过数字键盘输入。中高档的可编程电源自身电压漂移也很小,多用于科研场合。 可编程电源 标准电压参考源是一种特殊的稳压电源,其作用和内部线路与普通的供电型稳压电源不同,用于提供作为参考标准的电压信号,以校准各类电压测量仪器(电压表、万用表),本身带负载能力很低,但电压准确度很高,漂移极小。 电压校准源 5次

    时间:2018-09-17 关键词: 电源技术解析 直流稳压电源 攻略

  • 可视化直流稳压电源的设计

    可视化直流稳压电源的设计

    几乎所有的电子电路都需要稳定的直流电源,特别是在检定检修指示仪表时,除了要有合适的标准仪器外,还必须要有合适的直流电源及调节装置。传统的直流稳压电源已经具备了上述功能,且在稳压方面已经达到了很高的标准,能满足各种场合的需求。在实际的产品开发设过程中,为了检测产品的相关功能参数,通常需要了解电流的变化情况,而传统的电源不能提供实时电流参数,此时必须使用万用表等仪器来测量电流值,其过程繁琐,影响工程进度。因此,迫切需要一种具备传统稳压电源的功能,同时能显示电压、电流参数的电源设备。本文将以此为出发点介绍一种可以观察电压、电流值实时变化的稳压电源。本文介绍一种可视化直流稳压电源系统,系统以STC89C52RC单片机监测电压值,采用输出端压降方式计算电源输出电流,并将电源电压、电流值通过LCD液晶显示器实时显示。电源部分采用开关型稳压电路和线性稳压电路相结合的方法设计。设计要求可视化直流稳压电源主要给实验室等小功率电子设备提供工作电压,在输入电压220V、50Hz、电压变化范围+15%~-20%条件下应具备以下功能:①输出电压可调范围为5V~12V;②最大输出电流为1.5A;③电压调整率≤0.2%;④负载调整率≤0.1%;⑤效率≥40%;⑥具有过流及短路保护功能;⑦实时显示电压、电流值。可视化直流稳压电源设计的关键在于稳压以及电流、电压的精确显示。设计方案本系统以STC89C52RC为显示模块,主电路采用DC/DC变换器与线性调节器相结合的结构,既减小了输出纹波电流,又降低了系统的功耗。系统采用双积分A/D转换器ICL7135实现输出显示,单片机系统通过对输出电压的检测来读取显示电压和电流值,并通过用LCD液晶显示输出电压电流值。硬件主电路系统的结构如图1所示。220V、50Hz电压通过变压器降压及整流滤波后得到所需直流电压,该电压通过开关电源电路实现电压调节。电子滤波器进一步降低开关电源的输出纹波。从电子滤波出来的电压经过精密电阻后即是输出电压。在精密电阻前后分别进行两次电压采样,经过A/D转换后送入单片机。单片机将输出采样电压作为系统的输出电压送入LCD上显示。同时单片机还将输出采样电压与比较采样电压进行减法运算,将压降值通过精密电阻转换为电流值也送入LCD显示。图1 硬件主电路系统结构图硬件系统1电源主电路设计主电路采用开关电源(DC/DC变换器)和线性调整晶体管相结合的结构,电路原理如图2所示。开关电源部分使用的是L4960芯片。该芯片最大输出电流为2.5A,输出电压范围为5.1~40V,具有较高的开关频率(典型应用为100kHz),效率可达90%,芯片内部具有过热保护、过流保护的功能,只需很少的外部元件就可构成大电流输出的开关电源。芯片的技术性能可以满足设计要求。 图2 电源主电路图220V、50Hz的电经变压器降压及整流滤波后得到大约24的直流电压,该电压加到开关电源的输入端。L4960的输出电压由下式计算:Uo=UREF(1+R4/R3)=5.1×(1+R4/R3) (1)系统要求输出电压能达到12V,考虑到线性调节部分的压降,该电路的最高输出电压设计在15V左右。反馈引脚(2脚)引入到电子滤波器(线性调节器)回路,根据输出电流和负载电阻的大小,自动降低输出电压来减小线性调节器的功耗。R4采用10K电位器调节,由式(1)不难算出,当R3=1K时,U0 = 5.1~15V.图2中的电子滤波器(即线性调节器)由R6、C7和VT1组成。仅由R4和C7组成的RC低通滤波器虽然能减小U0输出的纹波电压,但其带负载能力很差。为此增加了一级射随器VT1,它采用电流放大系数的达林顿晶体管TIP122,来提高低通滤波器带负载的能力。图2中C7的大小对滤波效果影响显着,该值为100μF时纹波电流很小,但小电流输出时的动态响应较慢,故本设计中的C7取值为10μF.需要指出,利用晶体管电子滤波器(亦称有源滤波器),可在同样滤波性能下使用较小的滤波的滤波电容C7,获得采用大电容的滤波效果。其等效电容约为β·C7,β为达林顿管VT1的电流放大系数。该电子滤波器引入了对开关电源电压的控制功能,当负载电阻很小时需要较低的输出电压(如5V),如果U0保持15V不变,当输出电流很大时(如2000mA),VT1的功耗会达到24W,必须为VT1安装很大的散热片。加入VT2和R5后,当调整管VT1的C-E结压差过大(大约3个PN结压降之和,即 2.1V)时,会使VT2导通,产生附加的控制电流进入FB端,使U0自动下降,这时VT1的功耗将下降到大约4W,大大提高了电源的效率。在系统的输出端设计了一个精密电阻,系统在精密电阻两端都对电压进行了采样,用于检测输出电压和电流。当然,系统对精密电阻的精度、功率、阻值温度系数和分布参数各项指标都比较高,否则电流检测准确度就会受到很大的影响。目前,金属箔精密电阻的精度可达10-6,温度系数可达±0.3×10-6/℃,分布电容可低于0.5pF,分布电感可低于0.1μH,已经可以满足设计需要。2 显示部分电路设计本设计的控制核心使用AT89C51单片机,由于外部设备大多采用串行接口,单片机的外围电路就十分简单,只要外接晶体振荡器和复位电路即可。显示电路的设计如图3所示,用89C52的P2口作为数据线,用P0.1、 P0.2、P0.3分别作为LCD的E、R/W、RS.其中E是下降沿触发的片选信号,R/W是读写信号,RS是寄存器选择信号本模块设计要点如下:显示模块初始化,首先清屏,再设置接口数据位为8位,显示行数为1行,字型为5×7点阵,然后设置为整体显示,取消光标和字体闪烁,最后设置为正向增量方式且不移位。向LCD的显示缓冲区中送字符,程序中采用2个字符数组,一个显示字符,另一个显示电压数据,要显示的字符或数据被送到相应的数组中,完成后再统一显示。首先取一个要显示的字符或数据送到LCD的显示缓冲区,程序延时2.5ms,判断是否够显示的个数,不够则地址加一取下一个要显示的字符或数据。图3 LCD与89C52的接口3 通信电路模块89C52内部已集成通信接口URT,只需扩展一片MAX232芯片将输出信号转换成RS-232协议规定的电平标准即可。MAX232是一种双组驱动器/接收器,如图4所示,每个接收器将EIA/TIA-232-E电平输入转换为5V的TTL/CMOS电平。每个驱动器将TTL/CMOS输入电平转换为EIA/TIA-232-E电平。EIA接口把5V转换为 -8~-15V电位,0V转换为8~15V,再经RXD输出,接收时由RXD输入,把 -8~-15V电位转换为5V,8~15V转换为0V.图4 MAX232引脚功能图软件系统系统主程序如下图5所示。系统初始化端口,扫描电源输出电压(即输出采样电压和比较采样电压),然后计算压降进而计算出电源输出电流,再将电压、电流输出到端口,调用显示子程序,显示电压、电流值。图5 主程序流程图显示子程序如下图6所示。显示子程序是针对ICL7135A/D与单片机接口电路设计的软件。程序开始后设计显示器,对LCDM1602B进行一次清屏,使其各个指令、数据寄存器的值进行清空,屏幕不显示任何字符。然后进行第一行位置的设置,显示对应的“电流”、“电压”等字符,再进行第二行位置设置,显示电压、电流值。图6 显示子程序流程图结束语可视化直流电稳压源除了具备传统的稳压电源的功能之外更是增加了电压、电流的可视化功能,在使用过程中省去了检测电流的繁琐过程,简单、方便、快捷。本电源可以广泛地应用于各类电子实验室,尤其是企业研发部门的实验室,对于缩短产品研发周期有很积极的意义。

    时间:2018-09-14 关键词: 电源技术解析 直流稳压电源

  • 基于单片机数控直流稳压电源的设计与实现

    基于单片机数控直流稳压电源的设计与实现

    1 引言直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多 功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普 通直流稳压电源品种很多.但均存在以下问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时(如 1.02~1.03V),困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。常常通过硬件对过载进行限流或截流型保护,电路构成复杂,稳压精度也 不高。本文设计了一种以单片机为核心的智能化高精度简易直流电源,克服了传统直流电压 源的缺点,具有很高的应用价值。2 系统硬件设计2.1 系统总体结构本系统是以AT89S51 单片机为核心控制器,具有电压可预置、可步进调整、输出的电 压信号和预置的电压信号可同时显示的数控直流电源,其硬件原理方框图如图1 所示。系统 由AT889S51 控制电路、键盘电路、电源电路、D/A 电路、功放电路、短路保护及报警电路、 稳压输出电路、LED 显示电路八部分组成。系统通过“开关”、“+”、“-”三个按键来控制预置电压的升降,并通过数码管显示。AT89S51 单片机送出相应的数字信号,在D/A 转换之 后输出电流,经集成运放LM358 转换、三极管放大、RC 网络滤波,最终稳定。同时由LED 数码管显示输出电压;由数字电压表测量实测值。2.2 数控部分主要由AT89S51 最小系统控制,它要完成键盘控制、预置电压显示控制、短路保护控制 及报警控制等功能。AT89S51 最小系统如图2 所示。2.2.1 键盘接口电路键盘接口电路如图3 所示。键盘设计由三个按键控制即:“开关”键、“+”键、“-”键, 并外接三个上拉电阻控制键盘去抖。此三键分别连接到单片机的P1.0、P1.1、P1.2 接口进行控制。2.2.2 预置电压显示电路预置电压显示电路如图4 所示。本设计选用译码驱动器74F244,用来驱动LED 数码管 显示预置电压,分别由单片机P2.0~P2.7 接口控制。LED 共阴极控制端由P1.4~P1.6 接口 控制,并用三极管8050 来控制LED 的显示。

    时间:2018-06-20 关键词: 单片机 嵌入式处理器 直流稳压电源 at89s51

  • 基于LM317可调直流稳压电源的制作

    基于LM317可调直流稳压电源的制作

    直流稳压电源是各种电子产品中不可缺少的一部分,它的质量直接关系到仪器的质量,为设备的稳定工作提供能量。因此掌握稳压电源的安装与调试方法,对稳压电源起着非常至关重要的作用。本文主要介绍LM317稳压电源的电路结构、组装步骤以及调试方法。引言随着集成电路工艺的迅速发展,稳压电路也迅速实现了集成化,成为模拟集成电路的重要组成部分。目前在小功率稳压电源中应用最普通的是LM317可调直流稳压电源,它是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。LM317是三端可调节正电压稳压器,输出电压范围1.25V~37V,负载电流最大为1.5A,此稳压器非常易于使用。1.LM317电路图与工作原理LM317构成的可调式稳压电源电路如图1,220V市电经变压器降压、二极管桥式整流、电容C1滤波后,送入LM317第3脚(输入端),第2脚输出稳定的直流电压,第1脚为调整端,调整端与输出端为1.25V基准电压。通过两个外接电阻来调节输出电压,即只要调节RW的阻值就可以达到改变输出电压U0的目的,输出电压计算公式为U0=1.25&mes;(1+RW/R1)。C1:滤波左右,C2:抑制自激振荡;C3:滤波,用以减小输出电压的纹波电压(即输出电压中的交变电压分量);C4:滤波作用,使U0中的波动减小。D5、D6主要是对LM317是保护作用,用来防止输入端或输出端短路时电容C3、C4向集成块内部放电而损坏芯片;R2、LED为工作指示电路作用。2.组装步骤(1)安装①对照LM317可调直流稳压电源原理图2和材料清单,检查元器件是否完整,质量是否合格,对不合格的元件应及时更换;②识别与检测二极管、电容器、变压器、电阻器、电位器、LM317是否与原理图一致以及好坏和性能。③元器件的标志方向应按照图纸规定要求,安装后能看清元件上的标志。若装配图上没有指明方向,则应使标记向外。易于辨认,并按照从左到右、从下到上的顺序读出。④安装有极性的元器件时如变压器、二极管、电容,注意极性不要装错。⑤安装高度应符合规定要求,同一规格的元器件(R、C、D)应尽量安装在同—高度上。⑥安装顺序一般为先低后高,先轻后重,先小后大,先里后外,先易后难,先一般元器件后特殊元器件。比如应先安装电阻、二极管、电位器,接着安装电容,后安装稳压器,最后安装变压器。⑦元器件在印刷板上的分布应尽量均匀,排列整齐美观,不允许斜排、立体交叉和重叠排列。元器件外壳和引线不得相碰,要保证1mm左右的安全间隙,必要时应套绝缘套管。⑧一些特殊元器件的安装处理,如LM317稳压器发热元件要与电路板保持一定的距离并加装散热片,散热面积一般不应小于10mm2;较大元器件的安装如变压器应采取固定措施(绑扎、粘、支架固定等),以减振缓冲。(2)焊接①电烙铁要接地,以防止在焊接时由于漏电而击穿元器件。因此推荐使用白光的可调电烙铁,一般温度调节在350度左右为宜,焊接时间少于2秒;②焊接时要保持焊点饱满,有光泽度,焊锡不应过多。③焊接时应保证所有插装好的器件不移动位置。各焊点加热时间及用锡量要适当,对耐热性差的元器件应使用工具辅助散热。防止虚焊、错焊,避免因拖锡而造成短路;④焊后处理:剪去多余引脚线,检查所有焊点,对缺陷进行修补。注意:①要正确连接好取样电阻R1、RW。在焊接电路时,应让R1尽可能靠近稳压器的调整端与输出端之间,否则,当输出端流过大电流时,将会在电路上产生附加的电压降,使输出电压不稳定。RW的接地点应该和负载电流返回的接地点相同。所以R1、RW的连接是否正确会直接影响稳压性能。②应特别注意4个整流二极管和电容C1的极性不能接反。二极管接错可能会烧毁集成稳压器甚至烧毁电源变压器;电容C1的极性如果接反可能会使电容爆裂。③变压器的输入级和输出级不能接错,可用万用表测电阻,电阻大的为输入级,电阻小的为输出级;一般变压器的红色线为输入级;3.调试方法对照电路图,仔细核对元器件的位置是否正确,极性是否正确,有无漏焊、虚焊、错焊和搭锡或短路。在上述各点都检查正确后,进行下一步的检查与调试。(1)散热器安装可靠后才能调试,调试前应检查稳压器输入、输出端和接地端连接是否正确。输入端及输出端与地之间电容的装接是否牢靠后,检查无误后即可进行调试。(2)接通电源,通电指示灯LED亮;(3)用电压表测试LW317稳压器输入端电压和输出端电压,输入电压应高于输出电压。输入电压约为40V,说明LW317工作正常,就可进行性能参数测试了。当RW调至0Ω时,输出电压为1.25V,当RW调至最大时,输出电压为37V左右。(4)若输出电压为0,变压器又无异常发热现象,则说明电源变压器一次或二次绕组已经断开或未接妥,也可能是电源与桥式整流未接妥。(5)测试时一定要遵守安全操作规程,安装或更换元器件时要关断电源,发现打火、冒烟、有异味等不正常现象也要及时关断电源,然后再查找原因。4.结束语LM317是固定集成稳压器芯片,经过对外围电路的改进制作,可以达到大范围的输出电压调整,不仅满足了一般小功率设备对直流电源的需要,同时也满足教学上各种综合实验的需要,是各类高校理工类电子技术及相关专业开展综合整机线路制作的理想器件之一。1次

    时间:2018-06-12 关键词: 电源技术解析 可调 直流稳压电源

  • 直流稳压电源组成介绍

    直流稳压电源组成介绍

    直流稳压电源简介能为负载提供稳定直流电源的电子装置。直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。 直流稳压电源随着电子设备向高精度、高稳定性和高可靠性的方向发展,对电子设备的供电电源提出了高的要求。由于电子技术的特性,电子设备对电源电路的要求就是能够提供持续稳定、满足负载要求的电能,而且通常情况下都要求提供稳定的直流电能。提供这种稳定的直流电能的电源就是直流稳压电源。直流稳压电源在电源技术中占有十分重要的地位。另外,很多电子爱好者初学阶段首先遇到的就是要解决电源问题,否则电路无法工作、电子制作无法进行,学习就无从谈起。直流稳压电源分类1.线性线性稳定电源有一个共同的特点就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。由于调整管静态损耗大,需要安装一个很大的散热器给它散热。而且由于变压器工作在工频(50Hz)上,所以重量较大。该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品。缺点是体积大、较笨重、效率相对较低。这类稳定电源又有很多种,从输出性质可分为稳压电源和稳流电源及集稳压、稳流于一身的稳压稳流(双稳)电源。从输出值来看可分定点输出电源、波段开关调整式和电位器连续可调式几种。从输出指示上可分指针指示型和数字显示式型等等。2.开关型与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹。功能管不是工作在饱和及截止区即开关状态;开关电源因此而得名。开关电源的优点是体积小,重量轻,稳定可靠;缺点相对于线性电源来说纹波较大(一般≤1%VO(P-P),好的可做到十几mV(P-P)或更小)。它的功率可自几瓦-几千瓦均有产品。直流稳压电源基本功能1.输出电压值能够在额定输出电压值以下任意设定和正常工作。2.输出电流的稳流值能在额定输出电流值以下任意设定和正常工作。3.直流稳压电源的稳压与稳流状态能够自动转换并有相应的状态指示。4.对于输出的电压值和电流值要求精确的显示和识别。5.对于输出电压值和电流值有精准要求的直流稳压电源,一般要用多圈电位器和电压电流微调电位器,或者直接数字输入。6.要有完善的保护电路。直流稳压电源在输出端发生短路及异常工作状态时不应损坏,在异常情况消除后能立即正常工作。直流稳压电源组成介绍直流稳压电源主要由四部分组成:电源变压器、整流电路、滤波电路和稳压电路。1.电源变压器电源变压器是一种软磁电磁元件,功能是功率传送、电压变换和绝缘隔离,在电源技术中和电力电子技术中得到广泛的应用。2.整流电路“整流电路”(recTIfying circuit)是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。习惯上称单向脉动性直流电压。3.滤波电路滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。4.稳压电路稳压电路是指在输入电压、负载、环境温度、电路参数等发生变化时仍能保持输出电压恒定的电路。这种电路能提供稳定的直流电源,广为各种电子设备所采用。直流稳压电源技术指标直流稳压电源的技术指标可以分为两大类:一类是特性指标,反映直流稳压电源的固有特性,如输入电压、输出电压、输出电流、输出电压调节范围;另一类是质量指标,反映直流稳压电源的优劣,包括稳定度、等效内阻(输出电阻)、纹波电压及温度系数等。1、特性指标(1)输出电压范围符合直流稳压电源工作条件情况下,能够正常工作的输出电压范围。该指标的上限是由最大输入电压和最小输入-输出电压差所规定,而其下限由直流稳压电源内部的基准电压值决定。(2)最大输入输出电压差该指标表征在保证直流稳压电源正常工作条件下,所允许的最大输入-输出之间的电压差值,其值主要取决于直流稳压电源内部调整晶体管的耐压指标。(3)最小输入输出电压差该指标表征在保证直流电源正常工作条件下,所需的最小输入-输出之间的电压差值。(4)输出负载电流范围输出负载电流范围又称为输出电流范围,在这一电流范围内,直流稳压电源应能保证符合指标规范所给出的指标。2、质量指标(1)电压调整率SV电压调整率是表征直流稳压电源稳压性能的优劣的重要指标,又称为稳压系数或稳定系数,它表征当输入电压VI变化时直流稳压电源输出电压VO稳定的程度,通常以单位输出电压下的输入和输出电压的相对变化的百分比表示。电压调整率公式见图2-2-1。(2)电流调整率SI电流调整率是反映直流稳压电源负载能力的一项主要自指标,又称为电流稳定系数。它表征当输入电压不变时,直流稳压电源对由于负载电流(输出电流)变化而引起的输出电压的波动的抑制能力,在规定的负载电流变化的条件下,通常以单位输出电压下的输出电压变化值的百分比来表示直流稳压电源的电流调整率。电流调整率公式见图2-2-2。(3)纹波抑制比SR纹波抑制比反映了直流稳压电源对输入端引入的市电电压的抑制能力,当直流稳压电源输入和输出条件保持不变时,纹波抑制比常以输入纹波电压峰-峰值与输出纹波电压峰-峰值之比表示,一般用分贝数表示,但是有时也可以用百分数表示,或直接用两者的比值表示。(4)温度稳定性K集成直流稳压电源的温度稳定性是以在所规定的直流稳压电源工作温度TI最大变化范围内(Tmin≤TI≤Tmax)直流稳压电源输出电压的相对变化的百分比值。温度稳定性公式见图2-2-3。3、极限指标(1)最大输入电压是保证直流稳压电源安全工作的最大输入电压。(2)最大输出电流是保证稳压器安全工作所允许的最大输出电流。1次

    时间:2018-06-12 关键词: 电源技术解析 直流稳压电源

  • 线性直流稳压电源详解

    线性直流稳压电源详解

    线性直流电源线性模式,是指调整管工作在线性状态下(就是工作在放大区啊)的直流稳压电源。就比如三极管,有放大、饱和、截止三种工作状态一样,调整管工作在线性状态下,可这么来理解:RW是连续可变的,亦即是线性的。而在开关电源中则不一样,开关管是工作只有开、关两种状态:开——电阻接近很小;关——电阻很大接近于无穷大。工作在开关状态下的管子显然不是线性状态。所以直流稳压电源,会分为线性模式直流电源和开关模式直流电源。线性直流电源(Linearpowersupply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。稳压过程 稳压过程,是稳压电源的一个核心,所以对这里大致说明一下。细细的讲的话会很复杂,不过只要我们知道一个规律,分析起来就很方便了。稳压过程如输出电压↑→误差放大管基极电压↑→误差放大管基极电流↑→误差放大管集电极电流↑→调整管基极电流↓(减小的那部分基极电流哪去了?被误差放大管集电极分流了,调整管等效电阻↑→输出电压↓,完成了调整的目的。反之也一样,↑变↓,掌握了这个规律,对于理解这个概念会很有帮助。由于调整管相当于一个电阻,电流流过电阻时会发热,所以工作在线性状态下的调整管,一般会产生大量的热,导致效率不高。这是线性稳压电源的一个最主要的缺点。但线性稳压电源的优点也是开关电源不可比的:调整速度快、纹波小、干扰小,正是这些优点,使得线性稳压电路在数字电路、CPU供电(家电中的)、信号处理等对电源质量要求较高的电路中得到了广泛应用。基本工作原理线性直流电源主回路的工作过程是输入电源先经预稳压电路进行初步交流稳压后,通过主工作变压器隔离整流变换成直流电源,再经过控制电路和单片微处理控制器的智能控制下对线性调整元件进行精细调节,使之输出高精度的直流电压源,线性直流电源产品可广泛应用于科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等。线性直流稳压电源设计电路图分析1、直流稳压电源的总体方框图2、稳压电源模块电路的设计2.1、电源变压器电源变压器是一个降压变压器,它将电网220V/Hz的交流电压变换成符合需要的低交流电压,并送给整流电路。变压器的变压比是初级电压与次级电压的比值,由变压器的副边输出来电压确定。变压器的主要参数有:①变压比:变压器的变压比是初级电压与次级电压的比值。②额定功率:是变压器在指定频率和电压下能连续工作而不超过规定温升的输出功率。③效率:是输出功率与输入功率之比,它反映了变压器的自身损耗。 ④空载电流:变压器在工作电压下次级空载时(次级电流为零),初级线圈流过的电流称为空载电流。空载电流大的变压器损耗大、效率低。⑤绝缘电阻和抗电强度:绝缘电阻是指变压器线圈之间、线圈与铁心之间及引线之间的电阻。抗电强度是在规定的时间内变压器可承受的电压,它是变压器特别是电源变压器安全工作的重要参数。电源变压器Tr的作用是将电网220V的交流电压变换成整流滤波电路所需要的2.2、整流电路整流电路将交流电压变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压。常用的整流滤波电路有单相半波整流滤波、桥式整流滤波等。半波整流:利用了二极管的单向导电性,只输出交流成分中的正电压部分,电路非常的简单易行,所用的二极管的数量也很少。但是,由于它利用了交流电压的半个周期,所以输出电压较低,交流分量大,效率低。故这种电路仅仅适用于整流电流较小,对脉动要求也不是很高的场所。单相桥式整流电路:由四个二极管组成,其构成原则就是,保证在变压器副边电压的整个周期内,负载上的电压和电流的方向始终不发生变化。它实现了全波整流电路,将副边输出电压的负半周期也充分利用了起来,所以在变压器副边电压有效值相同的情况下,输出电压平均值是半波整流电路的两倍。因此,综合考虑,本电路设计采用单相桥式整流电路。当变压器“1”端为正、“2”端为负时,二极管VD2和VD4承受正向电压而导通,VD1和VD3承受反向电压而截止。此时,变压器“1”端通过VD4流经RL,再经过VD2返回至“2”端。当“1”端为负、“2”端为正时,二极管VD1和VD3导通,VD2和VD4截止,电流则由“2”端通过VD3流经RL,再经过VD1返回至“1”端。2.3、滤波电路滤波电路可以滤除整流电路输出电压中的大部分的交流成分,既而得到比较平滑的直流电压。本电路为满足其要求而选用电容滤波电路。各个滤波电容C均需满足2/)5~3(*TCRL?,其中T为输入交流信号的周期,RL为整流滤波电路的等效负载电阻。2.4、稳压电路稳压电路的功能是用以确保其输出的直流电压是稳定的,不随着交流电网电压和负载的变化而发生变化。它利用调节流过稳压管自身的电流大小来满足负载电流的改变,并与限流电阻配合将电流的变化转换成电压的变化以适应电网电压的波动。常用的集成稳压器有固定式三端稳压器和可调式三端稳压器两种。本电路要求输出±5V/1A,±12V /1A和±15V/1A。故选用固定式三端稳压器LM7805CT,LM7905CT,LM7812CT,LM7912CT和LM7815CT,LM7915CT,电路的设计非常简单,最简的电路外接元件只需一个固定电阻和一只电位器即可,工作稳定,其芯片内有过渡、过热和安全工作区保护,最大输出电流也满足要求。3、电路参数计算(2)确定电源变压器副边电压、电流及功率。输出电流小于0.5A,输出电压小于12V,由上分析,可选购副边电压为16V,功率为8W的变压器。选整流二极管及滤波电容。(3)因电路形式为桥式整流电容滤波,通过每个整流二极管的反峰电压和工作电流求出滤波电容值。(4)电阻的选择

    时间:2018-06-12 关键词: 详解 电源技术解析 线性 直流稳压电源

  • 详解直流稳压电源及注意事项

      直流电源有正、负两个电极,正极的电位高,负极的电位低,当两个电极与电路连通后,能够使电路两端之间维持恒定的电位差,从而在外电路中形成由正极到负极的电流。直流电源是一种能量转换装置,它把其他形式的能量转换为电能供给电路,以维持电流的稳恒流动。 一、直流稳压电源的基本功能直流稳压电源一般具有多路输出: 比如提供一路固定输出为5V、2A;提供二路(A路、B路)可调输出为0~24V、0~1A。可调输出一般都具有稳压、稳流两种工作方式,这两种工作方式随负载变化而进行自动转换,并由仪器前面板上的发光二极管显示出CV、CC方式,一般绿灯表示CV(稳压)、红灯表示CC(稳流)。有些稳压电源还同时提供A路和B路串联工作和主从跟踪工作方式。若A路是主路,B路是从路,在跟踪工作方式时,从路的输出电压随主路而变化,这对于需要对称双极性电源的场合较为适用。若A、B二路串联工作时可输出0~48V、0~1A直流电源;在串联跟踪工作方式时,可输出0~±24V、0~1A直流电源。 二、使用注意事项 1、根据所需要的电压,先调整“粗调”旋纽,再逐渐调整“细调”旋纽,要做到正确配合。例如需要输出12V电压时,需将“粗调”旋纽置在15V档,再调整“细调”旋纽调置12V,而“粗调”旋纽不应置在10V档。否则,最大输出电压达不到12V。2、调整到所需要的电压后,再接入负载。3、在使用过程中,如果需要变换“粗调”档时,应先断开负载,待输出电压调到所需要的值后,再接入负载。4、在使用过程中,因负载短路或过载引起保护时,应首先断开负载,然后按动“复原”按钮,也可重新开启电源,电压即可恢复正常工作,待排除故障后再接入负载。5、将额定电流不等的各路电源串联使用时,输出电流为其中额定值最小一路的额定值。6、每路电源有一个表头,在A/V不同状态时,分别指示本路的输出电流或者输出电压。通常放在电压指示状态。7、每路都有红、黑两个输出端子,红端子表示“+”,黑端子表示“-”,面板中间带有接“大地”符号的黑端子,表示该端子接机壳,与每一路输出没有电气联系,仅作为安全线使用。经常有人想当然的认为“大地”符号表示接地,“+”“-”表示正负两路电源输出去给双电源运放供电。8、两路电压可以串联使用。绝对不允许并联使用。电源是一种供给量仪器,因此不允许将输出端长期短路。 三、为什么在使用直流稳压电源时,电流调不上去或者电压调不上去? 现象1:输出有电压而无电流、或者有电流而无电压无论是上述那一种情况,电源都巳正常工作,操作者应检查自己的负载是否接触良好,负载是否被短路或开路、负载是否符合规范等等。从极端情况来讲,如果电源有电压输出(恒压状态),而负载线又断了,自然输出电流就等于零了。同样如果电源有电流输出(恒流状态),而负载又短路了,自然输出电压就等于零了。现象2:在调解电压时,发现空载电压调不上去。有些操作者喜欢把“电流调节”电位器左旋到头,至使电源空载电压也调不起来。这说明他对“电流调节”缺乏实质性的理解。因为电源即使处于空载也要消耗一点点电流,而你把“电流调节”关到零,连一点点小电流都不放出来,当然空载电压也升不起来了。所以“电流调节”一般不要调到零(向右调到四分之一圈左右就不会发生以上情况了)。一般操作方法:作稳压源输出电压时,应将电流调节旋钮顺时针旋到底,并保持。调节电压调节旋钮控制输出的直流电压值。作稳流源输出电流时,应将电压调节旋钮顺时针旋到底,并保持。调节电流调节旋钮控制输出的直流电流值。现象3:电源有电压输出也有电流输出,但是再调电压,电压就调不上去了。或者电源有电压输出也有电流输出,再想把电流调大点,电流就调不大了。这是由于操作者对“恒压”、“恒流”的概念不甚清楚的原因。如果“恒压”灯亮,说明电源工作在恒压状态(可以认为电压占主动地位),这时的输出电流大小,是由负载决定的,而不是由操作者调出来的(可以说电流是占被动地位),如果这时去右旋“电流调节”旋钮,电流是不会增大的。但这时去右旋“电压调节”旋钮,输出电压是会升高,输出电流也会随之升高的。(电压是主,电流是从)。同理,如果“恒流”灯亮,说明电源工作在恒流状态,这时的输出电压也不是“调”出来的,而是由负载决定的。只有去调节“电流调节”旋钮,输出电流才会改变,输出电压也随之变化。(这里电流是主,电压是从)总之,要弄清主从关系。电源处于“恒流”状态时去调电流,处于“恒压”状态时去调电压,才能改变负载上的电压和电流。

    时间:2017-06-07 关键词: 稳压电源 直流电源 电源技术解析 直流稳压电源

  • 可调直流稳压电源的工作原理

    可调直流稳压电源的工作原理

    参数稳压器在输入交流电压150V-260V时,输出稳压在220V效果效好。低于和高于这个范围,其效率要下降。采用单片微机进行第一步控制,使310V以下和90V以上的输入电压,调整控制在190V—250V范围,再用参数稳压器进行稳压效果很好。 由市电输入的交流电压变化波动很大,经过过压吸收滤波电路将高频脉冲等干扰电压滤去后,送入直流开关稳压电源、交流取样电路和控制执行电路。 直流开关稳压电源的功率小,但能把60-320V的交流电压娈换成+5V,+12V,-12V的直流电压。+5V电压供给单片微机使用,±12V电压供给控制电路的大功率开关模块使用。 单片微机把取样电路采集到的输入电压数据,分析判断并发出控制信号送到触发电路,控制调节输出电压。 控制执行电路由SSR过零开关大功率模块和带抽头的自耦变压器组成。SSR之间采用RC吸收电路吸收过电压和过电流,使SSR在开关时不会损坏。控制执行电路把 90-310V的输入电压控制在190V-240V范围,再送到参数稳压器进行精确稳压。 参数稳压器由电感和电容组成LC振荡器,振荡频率50HZ。无论市电怎么变化,其振荡频率不会改变,因此输出电压不会变化,稳压精度高。即使输入电压波形失真很大,经参数稳压器振荡输出后却是标准的正弦波,因此稳压电源有强的抗干扰能力和净化能力。 保护告警电路:当有危害设备安全情况时,只发出声光告警,提示操作人员注意采取措施,而不用切断输出电压。在无输出电压,控制箱的温度过高,市电输入高过300V,市电输入低于130V时都会声光告警。当输入电流过大时,输入(输出)空气自动开关自动跳开。

    时间:2017-05-10 关键词: 电源技术解析 直流稳压电源

  • 可调直流稳压电源电路模块设计

    可调直流稳压电源电路模块设计

    本电路通过简单的电路结构能够实现可调的直流稳压电源,并且具电压指示,输出直流电压范围为0~30V。 电路工作原理:本电路通过变压器T把220V的交流电压加在一次侧W1后,在二次侧W2和W3分别得到35V和6V的交流电压,二次侧W2端通过二极管VD1~VD4整流、电容器C1、C2滤波后输入到IC三端集成稳压电路的输入端,通过由IC稳压集成电路、电阻器R1和电容器 C4输出35V的直流电压。二次侧的W3线圈输出的6V的交流电压通过二极管VD5、电容器C3、电阻器R2和稳压二极管VS输出一个-1.25V的负电压作为辅助电源。变阻器RP加在IC集成电路的控制端,通过调节变阻器RP能够使输出端输出0~30V的直流电源。IC选用LM317三端稳压集成电路;R1、R选用1/2W型金属膜电阻器;C1、C3选用耐压分别为50V和10V的铝电解电容器,C2、C4选用CD11—16V电解电容器;VD1~VD5选用IN4007硅型整流二极管;VS选用IN4106或2CW60硅稳压二极管;RP可用WSW型有机实心微调可变电阻器;T选用10W、二次侧电压为35V和6V的电源变压器。  

    时间:2017-05-10 关键词: 电源电路 直流稳压电源 电源稳压电源

  • 自制直流稳压电源

    作案动机: 以后可能会更多去做一个电子类的DIY,但不同电器件要求电压不一样,总不能每次都买相应转压芯片,所以索性做一个直流稳压电源。 主角们: 全铜线双 12V 单24V 30W 2.1功放板专用电源变压器 (净重 850克) 一个 已废电源机(内含风扇,散热片,电线若干) 一个 D25BX60整流桥 一个 50V 10000uF电解电容 一个 LM317T稳压集成电路 一个 5~10K欧姆可调电阻(3296型)一个 100欧电阻 两个 1N4007整流二极管 一个 类海绵宝宝体 一只 原来如此图: 拆废弃电源机箱: 原本只是想要一个金属盒子打扮变压器,但校园的GG都不让卖,无奈只好把整个废弃的机箱(当时还没问什么机箱呃)买回来。 令人高兴的是,原来里面有两散热片,几捆电线,还有小风扇,HOHOO~(之前没看过,见笑了) 百合图: 接下来就是按原理图焊接了。本来焊功就不好,还要在没电路板的情况下焊,所以它的卖相也就好不到哪去了。(物似主人形?!) 左上角的固体物理可忽略,因为第一次对220V操作,心里总担心电容接反短路神马的轰一声毁容了,所以调试时都会用书在前面挡一挡。 说说过程中碰见的问题吧,起初用的滑动变阻器是50K带定位棘轮变阻器,但因为可调最小单位是1K,调至很小时,也会产生很大的输出,长居30V以上不下,无奈只好换3296. 第二个问题就是输入电源了,因为变压器是双端输出,有24V12V. 起初自己是用24V. 可能是因为与稳压芯片所需最小的电压间的压差过大,使得稳压芯片没过几秒就发热,摸着就有放鸡蛋煮的冲动,所以后来才改为12V。即使是12V,输出的电压也能达20多伏,这让我很是开心,因为之前用过的转压芯片输出电压都比输入电压低。 真相图: 很喜欢这风扇,提前解决了夏天的锅炉生活。 不是PS: 其实自己也觉得这件东西没什么可炫耀处,Fu-80 微笑的鸭子之前早已做过,并且比我做得都好。但做出来,总想和大家分享一下, 毕竟DIY本身就是一件让人投入又愉悦的事情。

    时间:2017-02-17 关键词: 直流稳压电源

  • 直流稳压电源应用领域

    直流稳压电源应用于计算机及其周边装置、医疗电子仪器、通讯广播设备、工业电子设备、自动生产线等现代高科技产品的稳压和保护。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 (1) 直流稳压电源可用于各种电子设备老化,如PCB板老化,家电老化,各类IT产品老化,CCFL老化,灯管老化 (2) 直流稳压电源适用于需要自动定时通、断电,自动记周期数的电子元件的老化、测试 (3)电解电容器脉冲老练 (4)电阻器,继电器,马达等测试老练 (5)整机老练;电子元器件性能测试,例行试验。 直流稳压电源产品规格: 5V15A;5V30A;5V35A;5V50A;5V80A;5V100A;5V120A;5V150A;5V200A;5V300A;5V500A;5V1000A;5V2000A; 24V15A;24V30A;24V35A;24V50A;24V80A;24V100A; 36V15A;36V30A;36V35A;36V50A;36V80A;36V100A; 48V25A;48V30A;48V35A;48V40A;48V50A;48V60A;48V70A;48V80A;48V100A;48V150A;48V200A; 60V15A;60V25A;60V30A;60V40A;60V50A;60V60A;60V80A;60V100A;60V120A;60V150A;60V200A; 72V25A;72V30A;72V40A;72V50A;72V60A;72V70A;72V80A;72V100A;72V120A; 80V25A;80V30A;80V40A;80V50A;80V60A;80V70A;80V80A;80V100A;80V120A; 96V25A;96V30A;96V40A;96V50A;96V60A;96V80A;96V100A;96V120A; 110V10A;110V20A;110V30A;110V40A;110V50A;110V60A;110V80A;110V100A;110V150A;110V200A; 120V25A;120V30A;120V35A;120V40A;120V50A;120V60A;120V80A;120V100A; 144V25A;144V30A;144V60A;144V100A; 150V25A;150V30A;150V60A;150V100A; 220V10A;220V20A;220V30A;220V40A;220V50A;220V60A;220V80A;220V100A;220V150A;220V200A; 270V10A;270V20A;270V30A;270V40A;270V50A;270V60A;270V80A;270V100A;270V150A;270V200A; 280V25A;280V30A;280V60A;280V100A; 288V25A;288V30A;288V60A;288V100A; 330V10A;330V20A;330V30A;330V40A;330V50A;330V60A;330V80A;330V100A;330V150A;330V200A; 350V10A;350V20A;350V30A;350V40A;350V50A;350V60A;350V80A;350V100A;350V150A;350V200A; 360V25A;360V30A;360V60A;360V100A; 365V10A;365V20A;365V30A;365V40A;365V50A;365V60A;365V80A;365V100A;365V150A;365V200A; 384V10A;384V20A;384V30A;384V40A;384V50A;384V60A;384V80A;384V100A;384V150A;384V200A; 400V10A;400V20A;400V30A;400V40A;400V50A;400V60A;400V80A;400V100A;400V150A;400V200A; 432V10A;432V20A;432V30A;432V40A;432V50A;432V60A;432V80A;432V100A;432V150A;432V200A; 450V10A;450V20A;450V30A;450V40A;450V50A;450V60A;450V80A;450V100A;450V150A;450V200A; 480V10A;480V20A;480V30A;480V40A;480V50A;480V60A;480V80A;480V100A;480V150A;480V200A; 500V10A;500V20A;500V30A;500V40A;500V50A;500V60A;500V80A;500V100A;500V150A;500V200A; 600V10A;600V20A;600V30A;600V40A;600V50A;600V60A;600V80A;600V100A;600V150A;600V200A;600V250A;600V500A; 650V10A;650V20A;650V30A;650V40A;650V50A;650V60A;650V80A;650V100A;650V120A;650V150A;650V200A;650V250A; 657V10A; 657V20A; 657V30A; 657V50A;657V60A;657V80A; 657V100A; 657V120A;657V150A;657V200A;657V250A;657V300A;657V500A; 700V10A; 700V20A; 700V25A; 700V30A;700V35A;700V40A; 700V45A; 700V50A;700V60A;700V65A;700V70A;700V80A;700V90A;700V100A;700V120A;700V150A;700V200A;700V250A;700V300A;700V500A; 750V10A; 750V20A; 750V30A; 750V50A;750V60A;750V80A; 750V100A; 750V120A;750V150A;750V180A;750V200A; 750V250A; 750V300A; 750V350A 800V10A;800V20A;800V30A;800V40A;800V50A;800V60A;800V80A;800V100A;800V150A;800V200A; 3KW 4KW 5KW 6KW 7KW 8KW 9KW 10KW 12KW 13KW 15KW 18KW 20KW 25KW 30KW 35KW

    时间:2017-01-17 关键词: 直流电源 直流稳压电源 产品规格

  • 直流稳压电源之二:滤波电路

    滤波(要滤的波是交流)的基本概念:滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。经过滤波电路后,既可保留直流分量,又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (1)电容滤波,所示在负载电阻上并联了一个滤波电容C。电容是隔直通交,电压不能突变。所以只能并联在电路中,直流电从负载过,交流电就从电容过,从而达到滤波的目的。由于电容的储能作用,使得输出波形比较平滑。电容放电的时间τ=RLC越大,放电过程越慢,输出电压中脉动(纹波:是主电流信号附带的杂讯成分,小幅度交流电,无法完全隔绝,一般要求在主电压的1%内即可,如供电12V,那么要求电源的纹波不能大于120毫伏)成分越少,滤波效果越好。(电压平滑) (2)电感滤波,利用储能元件电感器L的电流不能突变的性质,把电感L与整流电路的负载RL相串联,也可以起到滤波的作用。电感是隔交通直,所以说要串联。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,所以电感L有平波作用。(电流平滑) 缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。

    时间:2016-06-16 关键词: 滤波电路 直流稳压电源

  • 小功率可调直流稳压电源设计分享之主电路

    小功率可调直流稳压电源设计分享之主电路

    在稳压电源设计的过程中,很多时候往往会要求工程师所设计的直流稳压电源能够为电机驱动电路提供1个能从0V开始连续可调的直流电源,并且要求这一方案中具有保护功能。这种稳压电源设计要求看似困难,实际上只是要求设计人员为稳压电源电路中加入一个具有足够调压范围和带负载能力的直流稳压电源电路。在今明两天的方案分享中,我们将会为大家分享一个小功率可调的直流稳压电源设计方案,下面我们先来看一下这一方案的主电路系统是怎么设计的吧。 主电路系统 在本方案中,这一小功率可调直流稳压电源设计方案,其可调范围是0-24V范围内可调,这一电路的设计关键在于稳压电路的设计,所选器件和电路必须达到在较宽范围内输出电压可调,其输出电压应能够适应所带负载的启动性能。此外,电路还必须简单可靠,能够输出足够大的电流。符合上述要求的电源电路的设计方法有很多种,比较简单的有2种,一种是晶体管串联式直流稳压电路,一种是三端集成稳压器电路。下面我们分别进行分析。 首先我们来看一下晶体管串联式直流稳压电路,这一电路设计的基础框图如下图图1所示,可以看到在该电路中输出电压经取样电路取样后得到取样电压,取样电压与基准电压进行比较得到误差电压,该误差电压对调整管的工作状态进行调整,从而使输出电压发生变化,该变化与由于供电电压U。发生变化引起的输出电压的变化正好相反,从而保证输出电压U。为稳压值。因输出电压要求从0V起实现连续可调,因此要在基准电压处设计辅助电源,用于控制输出电压能够从0V开始调节。     图1 串联式稳压电源电路 然而,在实际的稳压电源设计和应用过程中,尽管这种单纯的串联式直流稳压电源电路很简单,但在增加辅助电源后在进行设计,需要处理的电路系统就比较复杂了,而且由于都采用分立元件,这一电路的可靠性难以保证。 接下来我们来看一下三端集成稳压器电路在稳压电源设计中的应用情况,这一电路的结构框图如图2所示。可以看到,三端集成稳压器电路主要采用输出电压可调且内部有过载保护的三端集成稳压器,输出电压调整范围较宽,设计一电压补偿电路可实现输出电压从0V起连续可调,因要求电路具有很强的带负载能力,需设计一软启动电路以适应所带负载的启动性能。该电路所用器件较少,成本低且组装方便、可靠性高。因此本方案选用三端集成稳压器电路来进行主电路系统的设计。     图2 三端集成稳压器电路结构框图 在我们这一0-24V可调稳压电源设计方案中,我们所设计的电源主电路系统,采用三端集成稳压器电路方案,其电路原理图如下图图3所示。在图3中,IC为三端集成稳压器。晶体管T,阻R3,和电容器C组成软启动电路。电阻R4和二极管D组成电压补偿电路。电容C2为输出滤波电容。     图3 输出电压可调的直流稳压电源电路原理图 三端集成稳压器LM317及其调压原理 在图3所展示的直流稳压电源的主电路原理图中,我们所选择的IC采用了LM317系列三端集成稳压器,其输出电压调节范围可达1.25~37V,输出电流可达1.5A,内部带有过载保护电路,具有稳压精度高、工作可靠等特点。这一三端集成稳压器的输出电压的调节原理如图5所示。由于LM317的2、3脚之间的电压U32为一稳定的基准电压,其数值为1.25V,故有公式为:     在该公式中,R1为固定电阻,因此调节R2可以调节输出电压Uo,并且Uo的最小值为1.25V。这也就是三端集成稳压器的调压原理所在了。 以上就是本文针对一种0-24V可调稳压电源设计方案的主电路系统,所进行的简要分析和分享,在明天的文章中我们将会继续就该方案的驱动电路情况进行分享,欢迎大家继续关注。

    时间:2016-01-04 关键词: 电源技术解析 设计 直流稳压电源 主电路

首页  上一页  1 2 下一页 尾页
发布文章

技术子站

更多

项目外包