当前位置:首页 > 直流系统
  • 【世说设计】专家技术文章《能量监测在直流系统中的作用》

    简介 电池供电类设备存在已久。然而自手机问世以来,由可充电电池供电的设备数量在过去二十年呈现出指数级增长。截至2018年,成千上万种型号的手机、平板电脑、笔记本电脑和许多其他小型电器都在使用锂电池。 对于所有便携式设备而言,功耗都是一个至关重要的因素。硬件开发人员越来越注重在增加功能、减小尺寸、降低成本的同时,实现低功耗方案。软件开发人员也以旧算法为切入点,针对操作系统领域(即通过能量监测调度)和新兴领域(例如机器学习),研发新的功率监测方法,力求降低功耗。功率是指瞬时消耗的能量。如公式1所示,在电学中,功率等于瞬时电压与电流之积。功率单位为瓦特(W),表示“焦耳每秒”。 公式1 - 功率公式 能量等于功率与时间的乘积。电路消耗能量,电池则存储能量。功率管理通常是指管理瞬时电流和电压,以满足功率传输能力和负载条件。能量监测通常会提供有关能耗的信息,从而帮助开发人员进行电池管理和总体功率基准测试。通过专门设计的软件(可根据特定负荷采取相应操作)监视能量时,即开始了主动能量管理。 主动能量管理可以基于预定义的设置自动进行,也可以在软件启动时手动进行,其作用是为用户提供特定的建议。例如,大多数笔记本电脑在使用电池而不是交流电源运行时,处理器性能会自动降低,并且改用低功耗、低性能的集成图形处理器,而不使用专用处理器。可以关闭笔记本电脑的一些外设,以延长电池供电时间,而用户也可能收到降低屏幕亮度或调暗键盘背光的通知。大多数智能手机都提供各种节能选项,当电池电量降至特定水平时,主动能量管理便会提出使用节能选项的建议,包括关闭一些现有的互联网连接、降低屏幕亮度等。 但类似情况并不限于电池供电设备。服务器会仔细监测功耗和负荷水平,以确定是否可以完全停止或暂停某些服务。在虚拟服务器中,可根据电流总用量和基于统计信息预测的用量增加和缩减应用。对于这类服务器,可以使用虚拟机管理程序完全关闭某些虚拟机。进行调试时,也可以使用主动能量管理。能量监测可提供非常有效的信息,用以确定整个系统或部分系统是否在界定范围内运行。 用于测量直流功率和能量的电路 如前文所述,电功率是电压与电流的乘积。要精确测量功率,需要对电压和电流进行精准测量。在一定时段内测量功率并将结果累加,即得到能量。功耗在大多数情况下都不是恒定值,因此,必须使用一个选定测量带宽,在此范围内对电压和电流进行测量。直流电压测量电路的一个典型示例是图1左侧所示的简单分压器和右侧图1所示的缓冲分压器。这两个电路都可以通过适当的校准提供高精度测量结果,尽管带缓冲的分压器比不带缓冲的分压器价格昂贵,但前者通常功耗更低,尤其适合测量极低的直流信号。 图1 - 分压器电路 虽然借助霍尔效应也可以测量电流(包括直流电流),但本文侧重于使用分流电阻测量直流电流,因为后者更常用而且费用更低。分流电阻是一个低阻值电阻,与电路串联。电流流经分流电阻时,分流电阻两端会产生一个小的压差。该压差与电流成正比,如公式2所示,并且通常使用运算放大器进行放大。 公式2 - 分流电阻两端的压差 由于分流电阻与电路的其余部分串联,因此可以连接在任意一侧:上桥臂(分流电阻的一个端子直接连接总线电压),或者下桥臂(分流电阻的一个端子接地),如图2所示。在这两种情况下,分流电阻都会出现一个小的压差,电路的总电压会降低。但是,分流电阻的连接位置会有一些影响: - 如果分流电阻放在下桥臂(图2右侧),其两端的电压将直接接地。由于分流电阻通常很小,其两端的压差也很小,因此电流测量电路使用便宜的低压运算放大器即可非常方便地放大压差。这对于缩减成本很有帮助。但下桥臂分流有一个明显的不足,即整个电路不再直接接地,而是连接高于接地端电压的位置。分流电阻两端的压差通常以毫伏计。 - 如果将分流电阻连接在上桥臂(图2左侧),则电路直接接地,可消除地弹反射效应。如果要对电路进行精确测量或必须提供精确的输出,则应选用此连接方法。此方法的唯一缺点是需要使用电压更高的差分运算放大器电路,并且视运算放大器的带宽而定,费用也可能会增加。 图2 - 电流测量电路 尽管电压、电流甚至功率本身都可以通过模拟电路轻松测量,而且成本很低,但能量测量却需要使用更复杂的电路来实现。然而,传统的能量测量方法是使用模拟电路测量电压和电流,然后使用模数转换器(ADC)将模拟信号转换为数字信号,将数据输出到单片机。单片机的作用是对信号随时间累加的功率进行采样,从而实现能量测量。测量能量的典型电路如图3所示。在测量电路中增加单片机既有优点也有缺点。一方面,在算法计算、监视不同行为和进行更详细的报告方面具有很大的灵活性,例如每小时、每天等。此外,单片机的作用不仅限于能量测量,还可以触发事件、运行自定义状态机或满足工程师的任何需求。而如果系统原本就需要使用单片机,则成本和物料清单(BOM)的增加并不是问题。另一方面,使用单片机监测能量的缺点则是测量系统的总功耗、令人讨厌的代码开发工作和开销成本都会增加,而且视精度要求而定,有时可能还需要外部ADC。 图3 - 典型的能量测量电路 多年来,随着业界对直流能量监测功能的需求不断增长,多种面向此类应用的集成电路相继问世。例如Microchip的PAC1934集成电路。此类集成电路只需使用分流电阻作为外部元件,即可轻松地同时对多达4个通道进行采样。基本电路图如图4所示。电路中集成了运算放大器、ADC、算术运算逻辑、存储器和用于连接系统的标准接口(通常为I2C或SPI)。与传统方法相比,使用集成电路的优势在成本方面尤为明显,这是因为在一个集成电路中集成了能量测量所需的一切,使BOM和PCB尺寸显著降低。 图4 - Microchip PAC1934框图 (可同时测量4个通道) 主动能量检测的优势 凭借适合大多数用例的灵活配置,专用集成电路能够以极低的功耗在长时段内累加功率。通常,功率采样率最低为每秒8次采样,最高可达1 KSPS。例如,PAC1934以8 SPS运行时,可以累加超过36小时的功率,并且电流小于16 mA,同时4个通道全部有效且以16位的分辨率运行,无需软件干预。此方法允许采样率动态变化,从而可以扩大应用范围。例如在标准笔记本电脑中使用集成电路监测电源轨。当笔记本电脑处于运行和活动状态时,能够以1024 SPS的采样率进行监测,而当笔记本电脑处于挂起状态时,监测速度可能降到8 SPS,因为在挂起状态下,功耗不会有太大的波动。此外,降低采样率可以减少能量监测的功耗,而不会影响性能。 主动能量监测最常见的一个用例是电池电量计量。专用集成电路可监测电池的电压和电流,随时获知当前电池电量。更先进的电池电量计还可以检测到电池遇到了特定问题,例如电量计可以跟踪电池的电压与电量的关系,如果二者之间不再有对应关系,则意味着电池的总容量因老化或其他因素而缩减。主动能量监测也是标准电池管理系统(BMS)的核心。BMS是多节电池组所使用的电路,负责对电池组进行安全充电和放电,并主动测量其电压和电流,确保每节电池的参数都相同。BMS的功能还包括检测故障电池,或在电压过高或过低时断开电池组。 主动能量监测的另一个常见应用是与智能手机和平板电脑上的操作系统以及笔记本电脑、计算机和服务器上的Linux®或Microsoft Windows®搭配使用。对于智能手机和平板电脑,操作系统通过各种方法监测不同服务和应用程序所消耗的电量。在早期阶段,系统不直接测量能量,而是使用表格数据获取各个工作点的功耗,基于CPU、GPU和屏幕使用情况估算能量。估算出的能耗数据以统计数据的形式报告,便于用户决定如何进一步操作设备。自Windows 8起,Microsoft在笔记本电脑和个人计算机中引入了能量估计引擎(Energy Estimation Engine,E3)。E3早期阶段的工作原理与智能手机中的估算算法类似,能够根据各种资源的使用情况(处理器、图形、磁盘、存储器、网络和显示器等)来估算每项任务的功耗,从而实现功耗跟踪。E3还引入了能量计量接口(EMI),系统制造商可以通过该接口为系统添加实际可用的能量测量传感器,并进行相应声明。如果加入了此类传感器,E3会利用这些传感器准确地测量功率和能量,而不是只进行估算。某些笔记本电脑制造商已在其产品中实现了这些功能。此外,过去还存在一些其他的方法(例如Sony在Vaio笔记本中实现的能量监测),但没有支持这些方法的操作系统,只有专有应用程序才能访问相关数据。Linux尚未提供与Microsoft E3相当的工具,但据报道称,他们已着手进行相关工作。工业I/O子系统支持在操作系统中加入各种传感器,为用户空间的应用程序提供非常简单且功能强大的接口(基于文件的接口)。然而,在本文撰写之时,工业I/O子系统仍是内核的扩展,而不是默认Linux架构的组成部分。Linux还支持能量监测调度和智能功率分配,这是一种用于嵌入式Linux领域的算法,可帮助系统决定如何调度不同的任务,同时对热问题予以考量(能耗导致CPU/GPU发热)。 能量测量集成电路的另一个值得关注的应用,是对USB功率和能量(出于各种原因)以及在服务器应用程序中的使用情况进行监测,如本文第一部分所述。由于服务器采用不间断运行的设计,因此监测能耗有很多好处,例如可通过主动服务控制提高总体电源效率,能满足越来越高的能效标准,允许系统管理员在服务器的某些部分出现功耗异常(表示未来可能发生故障)时执行预测性维护。 总结 就能量监测的需求以及系统需要执行的其他功能而论,某些方法可能比其他方法更适用。如果嵌入式系统是根据自身用途专门构建,并且需要了解自身功耗或估算能耗,则传统方法更适用。我们还建议在单片机中加入内部ADC,以便最大限度缩减能量监测功能的成本。采用这种方法,只需要使用进行电压和电流检测的外部模拟电路。如果需要非常高的测量精度而不计BOM成本和功耗,则传统方法比集成电路更适用。 但在很多情况下,更适合采用集成电路方法。例如,如果想要在操作系统中集成能量测量,就适合采用集成电路方法,因为集成解决方案就是为解决这一问题而构建,通过适当的驱动程序,系统能自动识别出能量测量并知道如何操作。能量测量集成电路通常可以测量多个通道(从而监测多条总线),因此,在需要监测大量总线时,集成解决方案具备明显优势。此外,同一条通信总线上可以使用多个集成电路(例如I2C或SPI)。另一个更适合采用集成解决方案的情形是,在系统处于功耗极低的睡眠模式或完全关闭的情况下,在较长的一段时间内测量能量。集成的能量监测芯片仅消耗极少的功率,并能在特定时段内自行累加能量,无需任何系统干预,而这正是实现集成解决方案的基础。 对于有较高尺寸要求的高度集成化和密集型PCB(例如手机、平板电脑或笔记本电脑的主板),与等效的分立元件相比,集成电路占用的空间显然更小。例如,在WLCSP(晶圆级芯片封装)尺寸的芯片(大小为2.225 x 2.17 mm)中,包含一个能同时监测四个通道的能量测量集成电路。 原文转自

    时间:2021-03-25 关键词: 能源监测 直流系统

  • 能量监测在直流系统中的作用

    能量监测在直流系统中的作用

    简介 电池供电类设备存在已久。然而自手机问世以来,由可充电电池供电的设备数量在过去二十年呈现出指数级增长。截至2018年,成千上万种型号的手机、平板电脑、笔记本电脑和许多其他小型电器都在使用锂电池。 对于所有便携式设备而言,功耗都是一个至关重要的因素。硬件开发人员越来越注重在增加功能、减小尺寸、降低成本的同时,实现低功耗方案。软件开发人员也以旧算法为切入点,针对操作系统领域(即通过能量监测调度)和新兴领域(例如机器学习),研发新的功率监测方法,力求降低功耗。功率是指瞬时消耗的能量。如公式1所示,在电学中,功率等于瞬时电压与电流之积。功率单位为瓦特(W),表示“焦耳每秒”。 公式1 - 功率公式 能量等于功率与时间的乘积。电路消耗能量,电池则存储能量。功率管理通常是指管理瞬时电流和电压,以满足功率传输能力和负载条件。能量监测通常会提供有关能耗的信息,从而帮助开发人员进行电池管理和总体功率基准测试。通过专门设计的软件(可根据特定负荷采取相应操作)监视能量时,即开始了主动能量管理。 主动能量管理可以基于预定义的设置自动进行,也可以在软件启动时手动进行,其作用是为用户提供特定的建议。例如,大多数笔记本电脑在使用电池而不是交流电源运行时,处理器性能会自动降低,并且改用低功耗、低性能的集成图形处理器,而不使用专用处理器。可以关闭笔记本电脑的一些外设,以延长电池供电时间,而用户也可能收到降低屏幕亮度或调暗键盘背光的通知。大多数智能手机都提供各种节能选项,当电池电量降至特定水平时,主动能量管理便会提出使用节能选项的建议,包括关闭一些现有的互联网连接、降低屏幕亮度等。 但类似情况并不限于电池供电设备。服务器会仔细监测功耗和负荷水平,以确定是否可以完全停止或暂停某些服务。在虚拟服务器中,可根据电流总用量和基于统计信息预测的用量增加和缩减应用。对于这类服务器,可以使用虚拟机管理程序完全关闭某些虚拟机。进行调试时,也可以使用主动能量管理。能量监测可提供非常有效的信息,用以确定整个系统或部分系统是否在界定范围内运行。 用于测量直流功率和能量的电路 如前文所述,电功率是电压与电流的乘积。要精确测量功率,需要对电压和电流进行精准测量。在一定时段内测量功率并将结果累加,即得到能量。功耗在大多数情况下都不是恒定值,因此,必须使用一个选定测量带宽,在此范围内对电压和电流进行测量。直流电压测量电路的一个典型示例是图1左侧所示的简单分压器和右侧图1所示的缓冲分压器。这两个电路都可以通过适当的校准提供高精度测量结果,尽管带缓冲的分压器比不带缓冲的分压器价格昂贵,但前者通常功耗更低,尤其适合测量极低的直流信号。 图1 - 分压器电路 虽然借助霍尔效应也可以测量电流(包括直流电流),但本文侧重于使用分流电阻测量直流电流,因为后者更常用而且费用更低。分流电阻是一个低阻值电阻,与电路串联。电流流经分流电阻时,分流电阻两端会产生一个小的压差。该压差与电流成正比,如公式2所示,并且通常使用运算放大器进行放大。 公式2 - 分流电阻两端的压差 由于分流电阻与电路的其余部分串联,因此可以连接在任意一侧:上桥臂(分流电阻的一个端子直接连接总线电压),或者下桥臂(分流电阻的一个端子接地),如图2所示。在这两种情况下,分流电阻都会出现一个小的压差,电路的总电压会降低。但是,分流电阻的连接位置会有一些影响: - 如果分流电阻放在下桥臂(图2右侧),其两端的电压将直接接地。由于分流电阻通常很小,其两端的压差也很小,因此电流测量电路使用便宜的低压运算放大器即可非常方便地放大压差。这对于缩减成本很有帮助。但下桥臂分流有一个明显的不足,即整个电路不再直接接地,而是连接高于接地端电压的位置。分流电阻两端的压差通常以毫伏计。 - 如果将分流电阻连接在上桥臂(图2左侧),则电路直接接地,可消除地弹反射效应。如果要对电路进行精确测量或必须提供精确的输出,则应选用此连接方法。此方法的唯一缺点是需要使用电压更高的差分运算放大器电路,并且视运算放大器的带宽而定,费用也可能会增加。 图2 - 电流测量电路 尽管电压、电流甚至功率本身都可以通过模拟电路轻松测量,而且成本很低,但能量测量却需要使用更复杂的电路来实现。然而,传统的能量测量方法是使用模拟电路测量电压和电流,然后使用模数转换器(ADC)将模拟信号转换为数字信号,将数据输出到单片机。单片机的作用是对信号随时间累加的功率进行采样,从而实现能量测量。测量能量的典型电路如图3所示。在测量电路中增加单片机既有优点也有缺点。一方面,在算法计算、监视不同行为和进行更详细的报告方面具有很大的灵活性,例如每小时、每天等。此外,单片机的作用不仅限于能量测量,还可以触发事件、运行自定义状态机或满足工程师的任何需求。而如果系统原本就需要使用单片机,则成本和物料清单(BOM)的增加并不是问题。另一方面,使用单片机监测能量的缺点则是测量系统的总功耗、令人讨厌的代码开发工作和开销成本都会增加,而且视精度要求而定,有时可能还需要外部ADC。 图3 - 典型的能量测量电路 多年来,随着业界对直流能量监测功能的需求不断增长,多种面向此类应用的集成电路相继问世。例如Microchip的PAC1934集成电路。此类集成电路只需使用分流电阻作为外部元件,即可轻松地同时对多达4个通道进行采样。基本电路图如图4所示。电路中集成了运算放大器、ADC、算术运算逻辑、存储器和用于连接系统的标准接口(通常为I2C或SPI)。与传统方法相比,使用集成电路的优势在成本方面尤为明显,这是因为在一个集成电路中集成了能量测量所需的一切,使BOM和PCB尺寸显著降低。 图4 - Microchip PAC1934框图(可同时测量4个通道) 主动能量监测的优势 凭借适合大多数用例的灵活配置,专用集成电路能够以极低的功耗在长时段内累加功率。通常,功率采样率最低为每秒8次采样,最高可达1 KSPS。例如,PAC1934以8 SPS运行时,可以累加超过36小时的功率,并且电流小于16 mA,同时4个通道全部有效且以16位的分辨率运行,无需软件干预。此方法允许采样率动态变化,从而可以扩大应用范围。例如在标准笔记本电脑中使用集成电路监测电源轨。当笔记本电脑处于运行和活动状态时,能够以1024 SPS的采样率进行监测,而当笔记本电脑处于挂起状态时,监测速度可能降到8 SPS,因为在挂起状态下,功耗不会有太大的波动。此外,降低采样率可以减少能量监测的功耗,而不会影响性能。 主动能量监测最常见的一个用例是电池电量计量。专用集成电路可监测电池的电压和电流,随时获知当前电池电量。更先进的电池电量计还可以检测到电池遇到了特定问题,例如电量计可以跟踪电池的电压与电量的关系,如果二者之间不再有对应关系,则意味着电池的总容量因老化或其他因素而缩减。主动能量监测也是标准电池管理系统(BMS)的核心。BMS是多节电池组所使用的电路,负责对电池组进行安全充电和放电,并主动测量其电压和电流,确保每节电池的参数都相同。BMS的功能还包括检测故障电池,或在电压过高或过低时断开电池组。 主动能量监测的另一个常见应用是与智能手机和平板电脑上的操作系统以及笔记本电脑、计算机和服务器上的Linux®或Microsoft Windows®搭配使用。对于智能手机和平板电脑,操作系统通过各种方法监测不同服务和应用程序所消耗的电量。在早期阶段,系统不直接测量能量,而是使用表格数据获取各个工作点的功耗,基于CPU、GPU和屏幕使用情况估算能量。估算出的能耗数据以统计数据的形式报告,便于用户决定如何进一步操作设备。自Windows 8起,Microsoft在笔记本电脑和个人计算机中引入了能量估计引擎(Energy Estimation Engine,E3)。E3早期阶段的工作原理与智能手机中的估算算法类似,能够根据各种资源的使用情况(处理器、图形、磁盘、存储器、网络和显示器等)来估算每项任务的功耗,从而实现功耗跟踪。E3还引入了能量计量接口(EMI),系统制造商可以通过该接口为系统添加实际可用的能量测量传感器,并进行相应声明。如果加入了此类传感器,E3会利用这些传感器准确地测量功率和能量,而不是只进行估算。某些笔记本电脑制造商已在其产品中实现了这些功能。此外,过去还存在一些其他的方法(例如Sony在Vaio笔记本中实现的能量监测),但没有支持这些方法的操作系统,只有专有应用程序才能访问相关数据。Linux尚未提供与Microsoft E3相当的工具,但据报道称,他们已着手进行相关工作。工业I/O子系统支持在操作系统中加入各种传感器,为用户空间的应用程序提供非常简单且功能强大的接口(基于文件的接口)。然而,在本文撰写之时,工业I/O子系统仍是内核的扩展,而不是默认Linux架构的组成部分。Linux还支持能量监测调度和智能功率分配,这是一种用于嵌入式Linux领域的算法,可帮助系统决定如何调度不同的任务,同时对热问题予以考量(能耗导致CPU/GPU发热)。 能量测量集成电路的另一个值得关注的应用,是对USB功率和能量(出于各种原因)以及在服务器应用程序中的使用情况进行监测,如本文第一部分所述。由于服务器采用不间断运行的设计,因此监测能耗有很多好处,例如可通过主动服务控制提高总体电源效率,能满足越来越高的能效标准,允许系统管理员在服务器的某些部分出现功耗异常(表示未来可能发生故障)时执行预测性维护。 总结 就能量监测的需求以及系统需要执行的其他功能而论,某些方法可能比其他方法更适用。如果嵌入式系统是根据自身用途专门构建,并且需要了解自身功耗或估算能耗,则传统方法更适用。我们还建议在单片机中加入内部ADC,以便最大限度缩减能量监测功能的成本。采用这种方法,只需要使用进行电压和电流检测的外部模拟电路。如果需要非常高的测量精度而不计BOM成本和功耗,则传统方法比集成电路更适用。 但在很多情况下,更适合采用集成电路方法。例如,如果想要在操作系统中集成能量测量,就适合采用集成电路方法,因为集成解决方案就是为解决这一问题而构建,通过适当的驱动程序,系统能自动识别出能量测量并知道如何操作。能量测量集成电路通常可以测量多个通道(从而监测多条总线),因此,在需要监测大量总线时,集成解决方案具备明显优势。此外,同一条通信总线上可以使用多个集成电路(例如I2C或SPI)。另一个更适合采用集成解决方案的情形是,在系统处于功耗极低的睡眠模式或完全关闭的情况下,在较长的一段时间内测量能量。集成的能量监测芯片仅消耗极少的功率,并能在特定时段内自行累加能量,无需任何系统干预,而这正是实现集成解决方案的基础。 对于有较高尺寸要求的高度集成化和密集型PCB(例如手机、平板电脑或笔记本电脑的主板),与等效的分立元件相比,集成电路占用的空间显然更小。例如,在WLCSP(晶圆级芯片封装)尺寸的芯片(大小为2.225 x 2.17 mm)中,包含一个能同时监测四个通道的能量测量集成电路。

    时间:2021-03-09 关键词: 电池 能量监测 直流系统

  • 直流系统智能高频开关电源系统原理及维护

      对于350MW超临界供热机组的直流电源由高频开关电源模块、蓄电池等设备组成,智能高频开关电源系统具有体积小、重量轻、效率高、纹波系数小、动态响应快、控制精度高、模块可叠加输出、N+1冗余等特点,而在发电厂、变电站逐步取代了传统的硅整流型直流操作电源得到了广泛的使用。但调试期间,我厂#2机组的直流电源模块两次发生了充电电流波动的缺陷,原因为#2机组高频开关电源模块近邻热风口,温度高引起调节特性变化。直流系统设备维护的好坏,不仅关系到智能高频开关电源系统的可靠性和寿命,而且直接涉及到机组的控制和保护系统能否正常运行。可见,维护和使用好智能高频开关电源系统是非常重要的。  2 高频开关电源的结构和工作原理:  2.1高频开关电源的结构  2.1.1主电路  2.1.1.1输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。  2.1.1.2整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。  2.1.1.3逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。  2.1.1.4输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。  2.1.2控制电路  控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。  2.1.3检测电路  除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。  2.1.4辅助电源  提供所有单一电路的不同要求电源。  2.2开关控制稳压原理  开关控制电路如图2,开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开  关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示:  EAB=TON/T*E  式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。  由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。  我厂采用脉冲宽度调制(Pulse Width Modulation,缩写为PWM)的方式即开关周期恒定,通过改变脉冲宽度来改变占空比的方式。  我厂350MW机组高频电源共有11个模块,设有9个工作模块,2个备用模块。并联运行的高频电源模块具有均流功能及均流接口,在并机应用时使用,并联工作的整流模块采用硬件低差自主均流技术,使整流模块的输出实现负荷均担,具有很高的均流精度。完全支持热插拔的结构设计,使整流模块在不需要切断电源的情况下,可以自由插拔更换,维护更换特别方便。而且采用统一的高频开关整流模块,具有良好的可互换性。  3 高频开关直流设备的基本要求及注意事项  由高频开关电源的控制原理可知,智能高频开关电源系统设备,其智能化程度高,电池采用免维护蓄电池,虽然给我们带来了许多便利,但在使用过程中要注意以下几个方面,以确保使用安全。  高频开关电源系统在环境温度-5~+40℃能正常工作,温度超过规定值,电子元件的特性将发生变化,因此冬季不得开启空调运行。局部温度升高,将导致调节特性变化。表现为充电电流晃动。  高频开关要求室内清洁、少尘,否则,灰尘加上潮湿会引起主机工作紊乱。因此应做好直流开关室的封堵工作,保持室内清洁。  蓄电池对温度要求较高,标准使用温度为25℃,建议温度范围+15~+30℃。若温度太低,会使蓄电池容量下降,温度每下降1℃,其容量下降1%;蓄电池放电容量会随温度升高而增加,使用寿命降低,如果在高温下长期使用,温度每增高10℃,电池寿命约降低一半。  高频开关电源系统中设置的参数必须控制在规定指标内,在使用中不能随意改变。  蓄电池不论是在浮充工作状态还是在放电测试状态,应保证电压、电流符合规定要求。电压或电流过高可能会造成电池的热失控或失水,电压或电流过小会造成电池亏电,这都会影响电池的使用寿命,尤其是前者的影响更大。  在任何情况下都应防止电池短路或深度放电,因为电池的循环寿命和放电深度有关。放电深度越深循环寿命越短。在容量试验或放电检修中,通常放电达到容量的30%~50%就可以了。  蓄电池应避免大电流充放电,否则会造成电池极板膨胀变形,使得极板活性物质脱落,电池内阻增大并且温度升高,严重时将造成容量下降,寿命提前终止。  4维护管理  当智能高频开关电源系统出现故障时,应先查明原因,分清是负载部分还是电源系统,是主机还是电池组。虽说开关电源系统主机有故障自检功能,但它对面而不对点,更换配件很方便,但要维修故障点,仍须做大量的分析、检测工作。如果自检部分发生故障,显示的故障内容也可能有误。  4.1高频开关电源部分  高频开关电源在正常使用情况下,主机的维护工作量很少,主要是防尘和定期除尘。我厂直流小室近邻磨煤机附近,空气中的灰粒较多,灰尘将在机内(主要在整流模块内)沉积,当遇空气潮湿时会引起主机控制紊乱造成主机工作失常,并发生不准确告警,另外大量灰尘也会造成器件散热不好。一般每季度都应彻底清洁一次,同时在除尘时检查各连接件和插接件有无松动和接触不良的情况。  定期核实智能高频开关电源系统的参数有无变化,防止人为或无意中改变所设置的参数。  每半年应对智能高频开关电源系统的运行方式进行实验检查,以防止均充状态与浮充状态不能及时转换而造成对蓄电池的损坏。  检查主机设备是否正常,保证直流母线经常保持合格的电压和电池的放电容量;  对主机出现击穿、熔断保险或烧毁器件的故障,一定要查明原因并排除故障后才能重新启动,否则会造成更严重的故障。  4.2免维护蓄电池部分  因整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。蓄电池除有存储直流电能的功能外,其等效容量的大小与蓄电池容量大小成正比。因此,维护检修蓄电池的工作是非常重要的,虽说蓄电池组目前都采用了免维护电池,但这只是免除了以往的测比重、配制电解液、添加蒸馏水的工作。  蓄电池工作在浮充状态,至少每年进行一次放电。放电前应先对电池组进行均衡充电,以达到整组蓄电池性能的均衡。放电过程中如有一只达到放电终止电压时,应停止放电,继续放电须先排除落后电池后再放。  核对性放电不是追求放出容量的多少,目的是发现和处理落后电池,通过对落后电池的处理再作核对性放电试验,这样可防止出现反极性蓄电池。  蓄电池日常维护还需经常检查的项目有:清洁并检测端电压、温度;连接处有无松动腐蚀现象,检测连接条压降;外观是否完好,有无鼓肚变形和渗漏现象;极柱、安全阀周围是否有酸雾逸出;当发现电压反极性、压降大、压差大和酸雾泄漏的电池时,应及时处理,对不能恢复的蓄电池要及时更换;不能把不同容量、不同性能、不同厂家的电池联在一起,否则可能会对整组蓄电池带来不利影响。对寿命已到的电池组要及时更换,以免影响到电源系统和设备主机。  5结束语  再好的设备都有寿命期,也会出现各类故障,但维护工作做得好可以延长寿命并减少故障的发生,不能因为高智能、免维护而忽略了本应进行的正常维护工作,预防在任何时候都是安全运行的重要保障。

    时间:2019-02-27 关键词: 智能 高频 开关电源 电源技术解析 直流系统

  • 蓄电池直流系统的异常运行现象分析及处理措施

    1.直流母线电压过高或过低 (1)故障现象:中央音响信号“警铃”响;直流母线故障”光字牌亮;直流母线电压指示偏离允许值。 (2)故障处理: 1)检查电压监察装置的电压继电器动作是否正确。 2)观察充电器装置输出电压和直流母线绝缘监视仪表显示,或用万用表测量母线电压,综合判断直流母线电压是否异常。 3)调整充电器魄输出使直流母线电压和浮充电流恢复正常。 4)若直流母线电压异常,系充电器装置故障引起,则应停用该充电器,倒换为备用充电器运行。 2.直流系统接地 (1)故障现象:中央音响信号“警铃”响;“直流母线故障”光字牌亮;直流系统绝缘监视装置的“绝缘降低”指示灯亮;测量直流母线正、负极对地电压,极不平衡。 (2)故障处理:为防止一点接地后又出现另一点接地,引起保护误动或拒动,或造成两极接地短路,烧坏蓄电池,故必须迅速消除直流系统一点接地故障。寻找接地点的方法、 原则和顺序如下: 1)寻找接地点的方法。采用瞬时停电法寻找接地点,即瞬时拉开某直流馈线的开关,又迅速合上(切断时间不超过3s)。拉开时,若接地信号消失,且各极对地电压指示正常,则接地点在该回路电。 2)寻找接地点的原则。①对于双母线的直流系统,应先判明哪一母线发生接地;②按先次要负荷后重要负荷、先室外后室内顺序检查各直流馈线,然后检查蓄电池、充电设备、直流母线;③对次要的直流馈线(如事故照明、信号装置、合闸电源)采用瞬停法寻找,对不允许短时停电的重要馈线(如跳闸电源),应先将其负荷转移,然后再用瞬停法寻找接地点。 (3)寻找接地点按以下顺序进行:、 1)判明接地极性和接地程度。利用直流绝缘监察装置测量正、负极对地电压。绝缘良好时,正、负极对地电压相等或均为零;若正极对地电压升高或等于母线电压,负极电压降低或等于零,则为负极绝缘降低或接地;反之,为正极绝缘降低或接地。 2)检查检修设备或刚送电设备的直流馈线回路是否接地。 3)检查直流照明和动力回路是否接地。 4)检查闪光装置、直流绝缘监察装置回路是否接地。 5)检查控制、信号回路是否接地(先停用有关保护)。 6)检查充电装置和蓄电池是否接地。 7)经上述检查未找出接地点,则为母线接地。 3.充电器装置故障 充电器的常见故障有: (1)装置输出发生过电压与过电流。当装置输出发生过电压与过电流时,装置能够自动保护并发出声光报警信号。此时,应将电压、电流调节旋钮旋转到零位,按动两次报警、保护复归按钮,再重新调节电压、电流调节旋钮,使电压或电流达到实际使用值。 (2)交流输入故障。当输入交流出现故障时,装置能够自动保护并发出声光报警信号。 此时,应拉开装置输人的电源开关,解除装置的警铃声响,待输入交流故障排除后,再合上电源开关,按正常操作程序重新起动装置。 (3)熔断器熔断。当装置整流变压器T的一次保护熔断器(或二次保护熔断器)熔断时,装置能够自动保护,并发出声光报警信号。此时,应拉开交流输入电源开关,查找熔断器熔断原因。排除故障后,更换与原熔断器容量相同的熔体,按正常操作程序重新起动装置。 (4)装置达不到额定标称电压。当装置达不到标称额定电压时,第一步检查装置三相交流输入的相序是否与装置要求相符;第二步检查整流变压器二次电压是否满足要求(即U=1.35Uz。其中(,为直流输出电压,U2为整流变压器输出电压,1.35为三相整流系数);第三步检查6路脉冲波形是否正常;第四步检查整流主电路6只晶闸管有无损坏。

    时间:2015-05-21 关键词: 充电器 蓄电池 电源技术解析 直流系统

  • 变电站直流系统接地检测装置的改造

    1.直流系统接地的危害 电力系统中直流操作系统采用对地绝缘运行方式,当发生一点接地时,并不引起任何危害,但必须及时处理,否则,当发生另一点接地时,有可能使继电保护发生误动、拒动。运行实践中发现,直流接地不仅会造成继电保护误动、拒动,甚至会造成采用直流控制的设备误动、拒动,以至损坏设备,造成大面积停电、系统瓦解等严重后果。因此,对于直流接地问题,不能仅从一个变电站、一个电厂角度分析问题,要从整个电网高度去考虑。如某110KV变电站,站内发生了直流接地。#2主变开关在运行中自动分闸,无任何信号。经查找分析,#2主变控制箱渗水受潮,确认为因直流两点接地,造成该开关误分。 2.直流绝缘检测监测系统的现状 2.1绝缘监察装置存在的问题 对于生产现场而言,电厂、变电站多年运行后,电缆绝缘普遍下降,各种端子箱、机构箱、刀闸辅助接点箱等生锈损坏,密封性下降,遇雨、雪、湿雾天气,易发生接地;而且,往往为非金属性接地(对地阻值高)、多点接地、正负极均有接地以及正、负极绝缘电阻之差较小,形成对称性接地故障接地性质。而目前各种直流绝缘监察装置(含常规型、微机型)对于直流系统接地的监察报警均采用电桥平衡原理,对上述高阻对称性接地无法有效检测。因受电桥平衡原理的限制,装置只能监测非对称性直流接地故障,在正、负极绝缘电阻均等下降或其值相接近时,装置不能反应。现有各类装置的对地直流绝缘监测装置的灵敏度均在两极绝缘电阻之比为2:1至10:1的范围。而且,若两极绝缘电阻相差较大,而实际上任一级的绝缘水平并未低于允许值的情况下,也可能报警,使检测人员误认为绝缘水平下降。 按照国电公司新下发的反事故技术措施“防止电力生产重大事故的25项重点要求”,枢纽变电站直流系统广泛采用双组蓄电池、单母线分段接线方式。两段直流的母线在并列运行方式下(如单组蓄电池容量试验时),要求及时停运某一段母线的直流绝缘监察装置,以保证直流系统对地绝缘电阻不降低,否则可能造成在直流一点接地时继电器误动;在两段直流母线分列运行方式下,要求及时投运两段母线的绝缘监察装置,否则会造成一段直流母线失去绝缘监视。以常规直流绝缘监察装置为例:两段直流母线分列运行时,是两个独立的直流系统,每段母线均投运一套监察装置。为了测量对地电位,每个绝缘监察装置设有一个人为的接地点。为防止在直流网络中其它任何地方再发生一点接地时而引起继电器误动,要求绝缘监察继电器的线圈具有足够大的电阻值。(对220V直流系统该线圈的电阻值为30kΩ,其起动电流为1.4mA。系统中其它继电器的起动电流都应选择大于1.4mA)。在并列运行时,相当于一条直流母线一个直流系统,必须在并列前停运一段母线的绝缘监察装置,否则会造成两个30kΩ电阻并列,对地绝缘电阻变为15kΩ,造成一点接地(220kV直流系统对地绝缘报警值为20kΩ)。此时如再有另一点接地,其接地电流足以造成某些继电器误动。同理,在两段母线由并列运行转分列运行后,应及时将已停运的一段母线绝缘监察装置投入,否则会造成该段母线及其系统失去对地绝缘监察。现有的各类直流绝缘装置均不能自动适应两段直流母线的分、并列运行方式,一般采用在二次接线上利用手动开关或母线联络开关辅助接点切换停运一套装置的接地方式。有的厂家产品甚至不设手动开关,通过断开一套装置的接于直流母线的熔断器而停运装置。 2.2支路检测原理存在的问题 随着微机保护大量抗干扰电容的安装使用,直流系统开环辐射供电运行方式的采用使直流系统的对地电容电流增大。现国内广泛使用向系统注入信号方式的微机型绝缘支路选线装置,实际上已无法实现对接地支路的有效查找。当电容电流大于检测装置对绝缘电阻泄漏电流的整定值时,将造成误发信号,影响装置的正确判断。 2.3接地支路的查找无有效手段 目前,随着继电保护反事故措施的落实,直流系统中保护、控制熔断器越分越细,数量越来越多,造成直流屏馈出支路下的分支支路数量越来越多。现有的微机支路检测装置采用的加装检测互感器的方法从技术上、成本上已难以满足要求。有的厂家推出了便携式定点查点设备,原理仍为注入信号式,其缺点前面已述。特别需要指出的是,此型装置的电流传感器必须为卡钳式,有气隙检测分散性大。 3.技术对策 为解决绝缘监察装置存在的问题,根据现场运行要求,对微机直流接地选线监测装置的技术原理进行改进,以使微机直流接地选线监测装置能较好地满足现场运行需要。 3.1工作原理 采用平衡电桥与不平衡电桥相结合,可有效地检测正、负极同时接地或延续发展正、负极接地,对地绝缘电阻不受正、负极接地电阻是否相同或接近的影响。 3.2对直流系统运行方式的影响 采用将电桥改为分别投入两段母线的方法,使直流系统的Ⅰ、Ⅱ段母线是否并列运行不影响本装置的检测,不影响系统对地绝缘电阻,自动满足直流系统运行方式变化的要求。采用将电桥改为分别投入两段母线,这样在同一时刻,两段母线上只有一段的平衡电阻,另一段没有,采集数据根据投入的电桥在哪一段上就记录哪一段的办法。这样,系统两段母线是否并列运行就不会影响到对绝缘的监测,不会降低直流系统对地绝缘电阻,从而实现了自动满足直流系统运行方式变化的要求。 3.3高灵敏度的直流传感器的应用 采用高灵敏度的直流传感器(精度达0.1mA),结合不平衡电桥可以测出多支路同时接地或同时平衡接地的情况,并可直接显示接地漏电流数值。不需注入信号。并通过多次实验,将直流传感器的抗过载能力提高,过载恢复后能即刻恢复其检测性能。利用系统在绝缘良好的时候,每月进行一次零点扫描,将传感器的零点误差消除。 3.4定检方式 在装置中设置定检方式,通过传感器对报警支路的漏电流的高速检测与监视,直接显示在装置的液晶屏幕上,配合拉合报警支路的分支路熔断器,有助于查找具体的接地支路,特别是对于多路、多点接地的情况。 3.5防误技术 对支路电流的采集,因信号小、易受环境的影响,我们采用采集母线对地电压的办法。因电压量是比较强的信号量,且检测不易受到外界的影响,用母线电压计算出的阻抗如果正常,则支路就不可能有报警发生。我们在软件上封锁支路报警的输出,但同时计算支路的信号电压值与零点值的误差。如果误差过大,则给出支路检测元件故障的告警信息,显示在屏幕上,以便及时排除。 4.现场运行情况 首台机于2003年1月安装于某110kV变电站,在该站发生几次直流接地,该装置均准确判别报警。并准确判断出该接地支路,并显示接地电流;经实际拉路查找,接地点在所显示回路,证实装置检测准确。 运行实践证明,该装置能够同时监视两段直流母线的电压及正、负级对地绝缘阻抗,不受两段母线分、并列运行影响。对接地支路的检测准确,有利于现场值班员、检修人员快速准确地处理直流接地故障,对确保电网运行安全起到了重要的作用。达到了研制工作预期的目的。

    时间:2012-11-12 关键词: 装置 通信网络 变电站 接地检测 直流系统

  • 变电站直流系统

    摘要提出了一种可对无人值班变电站内直流设备进行远方监控的系统,它利用了站内的电话通道,可以实现:直流设备远方监控、直流设备运行历史查询和设备运行异常的情况上报等功能。 电力系统中的直流电源部分由蓄电池组、充电设备、直流屏等设备组成。它的作用是:正常时为变电站内的断路器提供合闸直流电源;故障时,当厂、站用电中断的情况下为继电保护及自动装置、断路器跳闸与合闸、载波通信、发电厂直流电动机拖动的厂用机械提供工作直流电源。它的正常与否直接影响电力系统的安全可靠运行。 过去,电力系统的各个变电站都有人值守,可以对直流设备的运行状态进行定期检查,因而可以及时发现并处理其出现的异常现象,保证变电站的安全稳定运行。目前,电力系统推广无人值班变电站,虽然调度中心可以通过远动通道获取变电站运行情况的实时信息,但是对于直流部分只能得到少量的重要信息(包括:遥信量——充电机交流电源故障,充电机故障,直流绝缘接地,直流电源电压异常;遥测量——控母电压)。它不能反映直流系统运行的详细信息,特别是它不能发现系统刚刚开始出现异常运行的情况,直到长期的异常运行发展为故障时才上发调度,此时,事故已经扩大。如果能在异常现象刚出现时就及时发现并及时处理,就可以避免异常情况扩大。所以需要设备维护人员对其进行定期检查。此外,对直流设备运行的控制也是由维护人员进行现场操作的。变电站多,维护人员少,显然无法保证按期按量完成。在这种情况下,直流监控系统应运而生。它的主要作用就是把各变电站的直流设备信息上送到监控中心,供其查询,同时监控中心也可以向各站发送控制命令。这样,维护人员不但可以在监控中心对直流设备进行远方监控,还可以及时发现设备运行的不正常状态,及时处理,而不等其发展演变成事故。所以,直流监控系统的建立,可以节省人力物力,提高工作效率。 1通道选择 目前,变电站上送调度中心的各种信息,如遥测、遥信、遥控、主要设备状态和报警信息等,都是通过远动通道传输的,这些信息对实时性的要求很高,不希望其它信息占用而使通道拥挤,影响调度的正常工作。所以直流设备的运行信息必须从另一个通道进行远方传送。目前,变电站中除远动通道之外,还有一个电话通道,这个通道一般是作为工作人员现场工作时使用,以及其它辅助系统如安全报警系统必要时使用。通常此通道是处于闲置状态,但又是必设的,所以可以用它作为直流监控系统的信息通道。 直流监控系统的数据信息量少,发送时占用通道时间短。这样,可以在工作时拨通,占用通道,结束后挂掉,和其它系统分时地使用通道,从而保证各个系统的正常运行。 2系统构成 监控中心计算机通过 modem 连入电话网。而监控器也通过 modem 与电话网相连。双方 modem 都可以相互呼叫对方,通过双方 modem 和电话网建立通信链路,互传信息。这样,监控中心计算机可以通过这个通信链路,采取各站监控器的信息,发送控制命令,各站监控器也可把每日定时运行数据和异常情况信息上报中心。系统包括3部分:监控器是前置机系统,负责设备数据的采集、运行状态的控制和信息的上送;监控中心是后台机系统,是基于 PC 机上运行的,它负责对所有变电站的监控器发送命令,接收其运行数据以及对数据进行处理和分析;两者之间的数据通信依靠 modem 和电话网建立。监控中心和监控器是一对多系统。 3监控器设计 3.1监控器原理 监控器是安装在各变电站的一套系统,它采集各直流设备的运行状态信息,对其进行控制,把各数据信息上送监控中心和其它监控单元。 监控器用工控机设计,其 I/O 端口作输入和输出使用,它可直接从直流设备上采得测量量、状态量以及蓄电池绝缘状态等信息,也可以对直流设备进行控制和调节,如充电机的开关机动作、均充浮充改变、均浮充电压的改变以及馈线的合断等。另一方面,微机控制器通过 RS232 或 modem 方式把四遥信号上送到 RTU 或调度中心,把所有直流设备的运行信息通过 modem 经电话网送到设备维护人员所在的监控中心。 3.2监控器软件设计 监控器软件由4个模块组成:通信模块,数据收发模块,I/O 模块和数据处理模块。 通信模块的作用是为数据的传输作好通信的准备,包括打开、关闭 modem 以及自动拨号的功能。软件设置定时打开和关闭 modem,这使得本系统可以和其它如报警系统分时使用电话通道。自动拨号是在直流设备发生异常事件时,自动拨通监控中心的 modem,向其发送相应报警信息。 数据收发模块主要负责通信链路建立后的数据收发事务。发送的数据包括:各直流设备当时的运行信息;本监控器存贮的24 h内固定时间历史数据;24 h内所有报警信息。接收的数据包括监控中心的控制和调节命令等。 I/O模块功能包括:提供监控器的人机输入界面,监控器对各直流设备量的采集以及对其进行的控制。 数据处理模块是监控器的核心模块,它一方面把 I/O 模块取得的数据进行处理,根据设定的时间间隔把每日的数据存入库中,以待数据收发模块上送监控中心。这些数据每日更新。另一方面,它把由收发模块接收到的调控命令进行分析后,提供控制信息给 I/O 模块使用。 4监控中心设计 监控中心是一台微机,其上运行监控中心后台软件。 监控中心软件主要包括4个要提出了一种可对无人值班变电站内直流设备进行远方监控的系统,它利用了站内的电话通道,可以实现:直流设备远方监控、直流设备运行历史查询和设备运行异常的情况上报等功能。电力系统中的直流电源部分由蓄电池组、充电设备、直流屏等设备组成。它的作用是:正常时为变电站内的断路器提供合闸直流电源;故障时,当厂、站部分:通信模块,数据库形成模块,主控模块以及报表打印模块。 通信模块的作用和监控器的通信模块功能相同,作用为拨通变电站的监控器 modem,建立通信链路,向下发送控制命令信息,此外它也可以被对方叫通,接收其上传的信息。此模块用 Visual Basic 5.0 开发,它仅仅根据通信的要求,拨通 modem,建立通信的链路即可。可送具体数据则与其无关,由主控软件部分负责处理。 数据处理模块两个作用;一是形成各站的直流设备的信息库;二是把每日采集来的各站的日数据整理入库,形成所有变电站直流设备的历史数据库。用户可以根据实际情况,灵活地建立各个变电站及站内所有直流设备的数据库,灵活地维护所有站内信息,维护后此系统自动存库,灵活性强并且操作简单方便。此外,各变电站监控器每日定时把日数据上送监控中心,后者在接收后根据各站名存入各自数据库中,形成历史库,供报表打印系统查询时使用。 主控软件提供人机界面,是基于 Windows 95 操作系统的操作界面,用鼠标和键盘对屏幕上的图形进行操作。只要用鼠标点取设备元件所对应的图元,就可以查询和控制此设备,也可以用键盘输入设备的参数达到对设备运行参数远方调节的目的。维护人员对运行站内设备的查询和控制可以通过鼠标和键盘实现。当通信模块建立通信链路后,它可以打开远方送来的数据信息,显示在屏幕上,并把这些数据交数据处理模块处理。另外它也把操作者的控制命令以数据包的形式向远方发送。它是本系统的核心。 报表打印模块根据工作的需要,对数据处理模块保存的历史数据库进行查询,制作日报表、月报表和其它报表以及作出相应的数据曲线,供分析和查询使用。 5结束语 直流监控系统由深圳供电局和深圳奥特讯公司合作开发,目前已投入运行。通过此系统,直流设备维护人员就可以在监控中心对各变电站直流设备运行状态进行远方监控,免去了对各个变电站的现场定检,特别是在直流设备发生运行异常时,运行维护人员能及时收到报警信号,及时处理。总之,直流监控系统的运行,减少了工作量,提高了工作效率,达到减员增效的目的。

    时间:2012-10-31 关键词: 通信网络 变电站 直流系统

  • 蓄电池直流系统的异常运行现象分析及处理措施

    1.直流母线电压过高或过低 (1)故障现象:中央音响信号“警铃”响;直流母线故障”光字牌亮;直流母线电压指示偏离允许值。 (2)故障处理: 1)检查电压监察装置的电压继电器动作是否正确。 2)观察充电器装置输出电压和直流母线绝缘监视仪表显示,或用万用表测量母线电压,综合判断直流母线电压是否异常。 3)调整充电器魄输出使直流母线电压和浮充电流恢复正常。 4)若直流母线电压异常,系充电器装置故障引起,则应停用该充电器,倒换为备用充电器运行。 2.直流系统接地 (1)故障现象:中央音响信号“警铃”响;“直流母线故障”光字牌亮;直流系统绝缘监视装置的“绝缘降低”指示灯亮;测量直流母线正、负极对地电压,极不平衡。 (2)故障处理:为防止一点接地后又出现另一点接地,引起保护误动或拒动,或造成两极接地短路,烧坏蓄电池,故必须迅速消除直流系统一点接地故障。寻找接地点的方法、 原则和顺序如下: 1)寻找接地点的方法。采用瞬时停电法寻找接地点,即瞬时拉开某直流馈线的开关,又迅速合上(切断时间不超过3s)。拉开时,若接地信号消失,且各极对地电压指示正常,则接地点在该回路电。 2)寻找接地点的原则。①对于双母线的直流系统,应先判明哪一母线发生接地;②按先次要负荷后重要负荷、先室外后室内顺序检查各直流馈线,然后检查蓄电池、充电设备、直流母线;③对次要的直流馈线(如事故照明、信号装置、合闸电源)采用瞬停法寻找,对不允许短时停电的重要馈线(如跳闸电源),应先将其负荷转移,然后再用瞬停法寻找接地点。 (3)寻找接地点按以下顺序进行:、 1)判明接地极性和接地程度。利用直流绝缘监察装置测量正、负极对地电压。绝缘良好时,正、负极对地电压相等或均为零;若正极对地电压升高或等于母线电压,负极电压降低或等于零,则为负极绝缘降低或接地;反之,为正极绝缘降低或接地。 2)检查检修设备或刚送电设备的直流馈线回路是否接地。 3)检查直流照明和动力回路是否接地。 4)检查闪光装置、直流绝缘监察装置回路是否接地。 5)检查控制、信号回路是否接地(先停用有关保护)。 6)检查充电装置和蓄电池是否接地。 7)经上述检查未找出接地点,则为母线接地。 3.充电器装置故障 充电器的常见故障有: (1)装置输出发生过电压与过电流。当装置输出发生过电压与过电流时,装置能够自动保护并发出声光报警信号。此时,应将电压、电流调节旋钮旋转到零位,按动两次报警、保护复归按钮,再重新调节电压、电流调节旋钮,使电压或电流达到实际使用值。 (2)交流输入故障。当输入交流出现故障时,装置能够自动保护并发出声光报警信号。 此时,应拉开装置输人的电源开关,解除装置的警铃声响,待输入交流故障排除后,再合上电源开关,按正常操作程序重新起动装置。 (3)熔断器熔断。当装置整流变压器T的一次保护熔断器(或二次保护熔断器)熔断时,装置能够自动保护,并发出声光报警信号。此时,应拉开交流输入电源开关,查找熔断器熔断原因。排除故障后,更换与原熔断器容量相同的熔体,按正常操作程序重新起动装置。 (4)装置达不到额定标称电压。当装置达不到标称额定电压时,第一步检查装置三相交流输入的相序是否与装置要求相符;第二步检查整流变压器二次电压是否满足要求(即U=1.35Uz。其中(,为直流输出电压,U2为整流变压器输出电压,1.35为三相整流系数);第三步检查6路脉冲波形是否正常;第四步检查整流主电路6只晶闸管有无损坏。 更多好文:21ic智能电网

    时间:2012-08-08 关键词: 运行 通信网络 蓄电池 现象分析 直流系统

  • 直流系统绝缘监测技术研究与应用

    摘要:针对目前常用绝缘检测装置采用的检测原理存在的不足,提出一种改进的绝缘检测方法。检测电路由主回路和支路2个部分组成。利用MSP430单片机采集、处理霍尔电流传感器信号,判断电路的绝缘情况并计算绝缘电阻大小。检测结果表明该方法有效、实用。 关键词:绝缘监测;接地故障;故障定位;单片机应用     电力系统中,直流电源系统是为变电站中的保护、监控、监视、记录等自动化装置提供电源的多分支网络。它的安全运行,对整个电力系统的安全运行起着至关重要的作用。直流接地是直流操作系统常见故障之一,一般情况下,单点接地并不影响直流系统的运行,但如果不能迅速找到故障点并修复而发生另一点接地故障时,就可能引起重大故障。     目前,绝缘检测装置采用的检测原理主要有电桥平衡原理和变频探测原理,两种检测原理的装置都能在一定程度上解决直流接地问题,但也存在着不足,基于电桥平衡原理的绝缘检测装置无法检测正、负母线绝缘同等下降的情况,也不能区分多支路故障。而后者则易受直流系统对地分布电容的影响,并且注入的低频交流信号增大了直流系统的电压纹波系数,影响电源的质量。文中旨在介绍一种在线绝缘检测方法,并基于msp430单片机予以实现。 1 原理介绍     原理图如图1所示。图中CM+、CM-为正负母线。U+、U-为正、负母线电压。Jk1、Jk2为继电开关,R为精密电阻。R+、R-为正、负母线发生绝缘故障时的对地电阻。Dt1、Dt2为高精度霍尔电流传感器,其输出电压与通过环孔的电流差成正比,并且成线性关系。所以,利用采样电流传感器输出的电压,经过换算成电流,再利用欧姆定律获得正、负母线电压U+、U-,则电源电压U=U+ - U-。     在直流系统正常工作情况下,电子继电开关Jk1、Jk2保持闭合。R+、R- 一般趋近无穷大,此时,U+=-U-。当发生绝缘接地故障时,则R+或R-为有限值,此时U+≠-U-,当R+≤R-时,则有U+≤-U-,反之亦然。如果发生R+=R-都为有限值时,即正负母线绝缘电阻同等下降,此时U+=-U-,则需要进一步进行检测,检测步骤如下:     1)断开继电开关Jk2,保持Jk1闭合,测得正、负母线电压对地分别记为:U+1,U-1;     2)断开继电开关Jk1,保持Jk2闭合,测得正、负母线电压对地分别记为:U+2,U-2;             这里需要说明下,这里用到的霍尔电流传感器的电流量程为0~10 mA,所以对于一般直流220 V电源,结合电流传感器的精度,精密电阻R一般的选择为20~100 kΩ。 2 硬件实现 2.1 绝缘主回路     具体实现电路图如图2所示。     对电子继电器AQW214的用法作简单说明:当AQW214的1、2脚导通时,7、8脚也导通,并且导通的内阻很小;同理3、4脚导通时,5、6脚也导通。AQW214的耐压值可以达到400 V,即当7、8脚或5、6脚步导通时其两端可承受400 V的电压,所以可以通过单片机的P10和P11引脚来控制电子继电器的导通与否从而达到控制Jk1和Jk2的通断。具体控制和实现过程在前文中已做过阐述,这里不再赘述。     需要说明的是,图中所标定的数值只适用于一定的电源电压范围(24~300 V),电源电压过低则易受霍尔电流传感器的精度的影响而测量不准确,过高则会超越霍尔传感器的电流量程以及电子继电器的耐压值,所以可以根据实际情况,更换适当的器件以达到要求。 2.2 绝缘支路     由式(1)通过计算得知直流系统是否发生了绝缘降低故障,但还需要确定是配电母线还是某个或者某些馈电支路发生了接地故障。     如图3所示,当支路没有发生接地故障时,支路馈线电流I0=I1,通过电流传感器的电流差为0,其输出电压也为0;当发生接地故障时,I3=I0-I1不为0,电流传感器输出电压不为0。设此时正、负母线电压为U+、U-。则第n条支路的对地         对于多支路,可以采用多路开关如CD4051进行选通控制,如图4所示,当发生支路绝缘接地故障,检测系统启动支路绝缘电阻巡检程序,通过单片机向CD4051芯片的A、B、C引脚发送信号,依次选通支路,查看发生故障的支路数并进行接地电阻的计算。(图中COM端连接一模拟电路接入单片机AD采样端口,此处略去)。 3 结束语     文中介绍的绝缘检测方法在实际应用中取得了不错的效果,不仅能够解决正负母线同等下降的问题,而且不影响电源质量,达到了初始设计的要求。但经过长时间的实践也发现了不足,比较突出的是电流传感器在使用较长时间,并且受到周围环境电磁影响下,易发生漏电流零点漂移的情况。需要在软件中加以矫正或者进行支路断电后的零点校准,否则,易出现漏报或误报的情况。但考虑两者在实际应用中都存在着一定的弊端,笔者在做进一步研究,以期得到改善。

    时间:2012-07-24 关键词: 技术研究 绝缘监测 直流系统

  • 直流系统微机绝缘监测装置的应用与接地故障点检测探讨

    介绍了WZJ-1型直流系统微机绝缘监测装置的特点和在现场调试应用情况,通过五年来对直流系统发生的接地故障点查找实例和分析判别的运行经验,提出运用综合分析判别的方法快速对故障点进行定位隔离,并对微机监测装置的实用性进行了探讨,以提高水电站直流系统的运行可靠性。   关键词:直流系统 绝缘监测 接地 微机 Application of microprocessor insulation monitoring device in DC system and Study on detecting of fault grounding point Zhou Erbao (Chencun Hydropower Station of Datang Corporation,242500,Anhui,China)   Abstract:This paper presents characteristics and debug application on site type of WZJ-1 insulation monitoring and detecting of microprocessor device in DC system. Through five years finding example and analysis distinguish operation experiences at occur fault grounding point in DC system. Propose method of exercise analysis by synthesis take align and insulation quick on fault point. Study on applicability of microprocessor insulation monitoring device. Advance operation reliability in DC system of Hydropower Station.   keywords:DC system;insulation monitoring and detecting;grounding;microprocessor 1 引言    水电站因厂房环境潮湿导致直流系统对地绝缘情况不太好,直流回路电缆分布广,元器件多,故障点很难查找。当直流系统绝缘下降后,将影响机组控制系统的安全运行。对此我们进行了直流系统微机绝缘监测装置的应用研究,目的在于快速查出故障点,及时消除隐患,提高直流系统的运行可靠性。   陈村水电站是目前安徽省最大的水电站,其中陈村站有3×50 MW机组,纪村站有2×17 MW机组。1998年和1999年分别在纪村站和陈村站各安装了一台WZJ-1型微机直流绝缘监测装置,两台装置经人工模拟接地试验和各项技术参数实测正确后投入运行。装置在发生直流绝缘故障时能正确反应和检测故障点,在生产现场发挥了重要的作用。   造成直流系统发生接地的主要原因是:电缆或设备元器件的绝缘老化、受潮、破损以及装置电源板发生损坏的故障。直流系统多点接地的危害:可能造成继电保护和自动装置误动、拒动、烧坏继电器接点和熔断保险。   传统查找直流接地采用拉路寻找分段处理的方法,人工解线找出故障点。在短时拉回路电源时可能因直流失电引起保护装置或自动装置由于抗干扰性能或故障判据的问题造成误动跳闸,采用拉合直流支路法检测故障点所带来的危害是严重的。因此国电公司发输电综函[2001]238号《水电厂无人值班的若干规定》7.6.1条中指出:严禁在设备运行中采取切直流负荷的方法,查找和处理直流接地故障。在用500V摇表测试绝缘时,要将弱电回路全部退出,以防损坏。这种方法不能对故障点进行精确定位,使现场人员在查找直流接地时感到无从下手,困难重重。另外老式绝缘监测装置采用电桥平衡原理的缺点是不能真正反映直流母线的绝缘,只能反映正、负母线绝缘电阻的不平衡情况,在接地检测回路中的接地监测继电器使母线的绝缘电阻限制在30kΩ的水平。而采用WZJ-1装置可克服以上不足。   通过调研目前国内的微机直流绝缘监测装置各有利弊,检测原理和精度受直流系统本身特点的影响只能采用间接的方法测量,要提高检测精度会带来装置的结构复杂化,对直流系统带来不利的影响及安装维护困难(如加装大量的支路电流传感器及二次接线)等,因此对微机直流绝缘监测装置在满足现场检测精度要求的实用化和对故障点的综合分析判断处理就显得尤其重要。本文就这方面的问题作出一些分析和探讨。 2 装置特点与现场应用 2.1 装置原理简介及特点   WZJ-1装置主机实现在线检测直流系统电压及正、负母线绝缘电阻和故障判断;当直流系统发生一点接地时投入低频小信号振荡器,利用便携式直流接地点探测卡钳表,在不拉开直流电源的情况下进行接地故障点具体位置的查找。   装置利用单片机分别向直流系统正、负极自动投入一个检测电阻,实时计算直流系统对地的绝缘电阻并显示,异常时报警;可提高检测灵敏度,克服绝缘监测装置的检测死区。为避免直流系统电缆对地分布电容较大对检测接地电阻测量精度的影响,在原理上采用了综合判据对分布电容的影响进行修正,使判断接地故障准确率达100%,解决了误判接地的问题。采用信号注入法(经电容耦合)可以准确查出故障点位置。装置实时显示便于及时了解直流系统的绝缘状况,给现场运行人员提供了很大方便。   WZJ-1装置主要技术指标:装置内阻大于200kΩ,接地电阻检测灵敏度可达20kΩ,装置不影响直流系统的可靠运行。 2.2 装置现场应用技术参数实测   在110kV旁母#410保护屏后模拟直流负极经4kΩ电阻接地,WZJ-1装置显示:R+= 72kΩ(正常时R+=100kΩ);R-=3kΩ (正常时R-= 98kΩ)。此时装置上接地信号灯亮,并发出直流绝缘下降GP信号,将装置上低频小信号开关投入,正极灯亮,负极灯不亮,表示直流负极有接地故障。用便携式探测接受器上的卡钳表准确查出了接地支路和故障点。通过人工模拟直流系统接地故障,装置反应正确,用卡钳表可准确找出故障点位置。   在实际运行中若发生直流一点接地(≦20 kΩ)时,合上低频小信号开关,检查正极、负极自检灯,灯灭为故障母线,由现场人员用卡钳表即可查找接地支路的故障点位置。 3.直流接地故障点的检测查找实例和分析判别 3.1 WZJ-1装置在现场检测故障情况统计    WZJ-1装置在现场投运五年来检测的故障情况统计表如下: 3.2 WZJ-1装置在现场检测故障实例   2000年6月5日纪村站110kV#402开关控制回路绝缘下降检测示意图如图1所示,开关处于分闸状态,用卡钳表实现了对接地故障点的精确定位,发现电容C的一端引出头绝缘破损,更换C后正常。可见装置对故障点查找比较方便快捷。 3.3 WZJ-1装置提供实时信息及时发现重大设备隐患   2002年4月5日陈村站运行人员监盘发现“110kV#487线路开关异常”光字牌GP微亮,WZJ-1显示R+ 24kΩ。经检查发现系#487线路SF6开关的密度计因渗进雨水引起接点间的绝缘下降和直流系统绝缘下降。根据故障现象进行综合分析快速查出了故障点,GP微亮说明密度计的接点绝缘已被水短路,若不及时发现危害很大。2002年4月16日暴雨时,WZJ-1显示R+=25kΩ;R-=100kΩ,雨停几小时后,R+=50kΩ。综合分析为天气下雨使设备受潮引起,比原来能更清楚地观察和反映设备的运行状态,可以及时采取防范措施,杜绝隐患的扩大。   随后检查发现陈村站九台110kVSF6开关(型号FXT-11型)密度计均存在接点引出电缆连接部分易受雨水侵入的隐患。SF6气压降低有两对阀值接点,第一阀值报警,第二阀值禁止开关跳合闸。由于该密度计与电缆连接的接插件正上方防雨罩有缝隙,导致两对接点易进水,引起绝缘下降,第一阀值使中控室误发报警信号,第二阀值将闭锁开关操作回路,在雷雨天气线路发生故障时,会造成开关拒动,扩大事故。对此重大设备隐患及时采取了室外设备防雨水侵入的改进措施。 3.4 运用综合分析方法快速对故障点检测定位和隔离   统计表明目前直流系统绝缘下降的故障率比以前减少,而以往仅水轮机层的电缆回路、主令控制器、端子箱等绝缘受潮薄弱的地方绝缘下降故障频繁,处理故障点很困难。通过以前现场故障的处理情况来看:接线工艺质量问题和电缆、设备老化问题较多,以前的电缆绝缘材料是橡胶,长期运行后老化严重,绝缘性能下降,特别是水电站的事故照明回路电缆老化严重。老厂要加快技术改造步伐,以提高直流系统的整体绝缘水平。   目前机组设备技改后采用的自动化元器件质量较好(合资或进口产品),元器件的可靠性有很大提高,密封性好,受潮及绝缘下降的情况较少发生,而以前这是最薄弱环节。新型开关设备重视了户外端子箱的防潮设计(如ABB开关、ALSTHOM开关机构箱的防潮性能很好)使室外电气设备绝缘受潮情况大为减少。同时将户外端子箱的胶木端子更换为新型材料的端子后,提高了户外环境下的电气绝缘性能。特别是控制电缆更换后,直流系统绝缘水平有了很大提高。   从目前现场运行情况看:机组励磁回路、调速回路的设备故障;开关操作回路跳、合闸线圈烧坏;装置开关电源板故障等易引发直流接地故障。近几年发生的直流接地故障主要是户外高压开关的控制回路、事故照明回路、新设备投运时因设计问题或接线问题造成的直流接地故障。为此必须有重点的做好现场技术管理工作,对薄弱环节采取防范措施。   通过我站近5-6年的技术改造实践分析,新技术新材料的应用使直流系统本身的绝缘水平有了很大提高,全厂控制电缆更换为抗干扰性能好的屏蔽电缆并在二端接地后,直流系统的分布电容量也大大下降,因此直流系统的绝缘下降故障特征与以前有很大不同,主要表现为突发性的绝缘突然下降故障,而以前经常发生的直流系统绝缘多处不好或下降的情况现在很少发生。因此采用WZJ-1装置的监测技术原理在新形势下仍有较高的精度和实用价值,并且不至于使检测回路过于复杂化,查找故障简单快捷,物理概念清晰,便于现场人员掌握。通过WZJ-1装置的实时显示可看出现场设备绝缘电阻的一些变化规律,若引入到上位机进行综合分析,有利于掌握现场设备的绝缘状况。 4 装置应用中有关问题探讨   我站在2000年和2003年分别对陈村站、纪村站的直流系统及蓄电池进行了全部更新的技术改造,但在直流绝缘监测装置这一块仍保留了WZJ-1装置,满足了现场运行要求,节省了设备投资,但在设备接口处理上需注意以下问题。   陈村站因新电池屏上有直流绝缘监测回路与WZJ-1的监测回路相并联后,导致WZJ-1显示对地绝缘电阻为5kΩ,并发报警信号。改进办法是将新电池屏上的直流绝缘监测装置的对地电阻回路解除,仅使WZJ-1装置的监测回路投入运行。纪村站新GZDW智能直流柜自带平衡电桥继电器式绝缘监测报警装置,解除其监测回路不用,仅用WZJ-1装置。   装置有待改进的方面:装置采用了AC220V电源,在倒换厂用电后须对装置进行手动复位恢复运行,在现场采用DC220V供电比较好。建议采用高可靠性的电子开关代替进口微型继电器切换电阻的方案来实测直流系统的对地绝缘电阻。将LED显示器采用有源液晶显示,可显示更多的信息。对整定值的输入采用EEPROM存储,增加装置故障诊断功能,具有故障报告存储功能和与上位机通讯的功能。按规程要求:在直流系统绝缘下降到15-20kΩ时,装置应能动作并报警,应将整定值由5kΩ提高到15-20kΩ较为合适。因采用切换电阻的方案来实测直流系统的对地绝缘电阻,R+、R-因并联100kΩ后,实际的绝缘电阻大于100kΩ时也只能显示到100kΩ。   由于在正常情况下低频振荡器不投入运行,而每年发生接地故障的次数一般不超过5次,每次的检测时间按1小时统计,可见信号幅值较小的低频振荡器对直流系统的影响实际上是微不足道的。   我站在现场大量采用了南瑞保护公司的LFP-900型和RCS-9000型微机保护装置,其在硬件结构上的抗干扰电容量很小。根据1994年10月IEEE文献介绍:微机保护抗干扰电容采用0.05μf已足够,既达到了抗干扰的目的,又不会使直流系统对地电容过大。同时控制电缆屏蔽层的二端接地也减小了直流系统的对地电容。这对现场运行的微机直流绝缘监测装置来说可减少检测误差。 自从微机保护推广应用后,现场人员对二次回路的绝缘检测担心试验中高压串入保护装置损坏电子元器件,因而研究试行二次回路的绝缘在线监测,也是势在必行。长期运行表明WZJ-1的实时检测功能在现场比较实用。   现场运行表明:WZJ-1装置在检测精度、抗干扰能力、和对直流系统影响等方面可以满足中型水电站直流系统的运行要求。 5 应用体会   WZJ-1型微机直流绝缘监测装置在我站投运两台,装置在现场连续运行五年未发生故障,运行稳定,在直流系统发生接地故障时反应正确,可准确找出故障点位置。装置安装在中控室的控制屏上,可便于运行人员随时了解直流系统对地的绝缘情况,自投运以来受到了现场人员的欢迎。   对老电站直流系统绝缘监测的改进不宜采用对每个支路增加辅助磁环的检测方式,采用WZJ-1装置检测较为合适。现场对所取得的效果比较满意。在直流系统对地电容不是很大的电厂,此方案的检测精度较高,可以满足现场的需要。   有必要提出的是:由于直流系统本身的特殊性,要求绝缘监测装置的功能首先要能正确检测到系统绝缘下降故障,但对故障点或支路的自动并准确定点判别报警功能的技术实现远未达到交流系统中继电保护正确动作切除故障的技术性能,在技术原理和技术实现方法上仍有待于进一步突破。在现场为保证直流系统安全运行的行之有效的方法是:对机组控制回路绝缘老化的电缆、老旧元器件、密封性能不好的端子箱及SF6密度计、事故照明回路等进行技术更新改造;同时在设备检修时要加强绝缘检查工作,特别是开关机构箱内的跳、合闸线圈及其回路的绝缘情况,由于是可动部件,其故障率相对较高。通过技改使直流系统绝缘水平提高后,在发生绝缘下降的故障时反而好查故障点了,采用信号注入和卡钳表检测的灵敏度也会有较大提高。以前全厂绝缘水平很低,查绝缘下降故障反而无从下手,采用信号注入和卡钳表检测的灵敏度也较低。通过总结现场的运行经验和采用技术先进的微机监测装置二者相结合将会进一步提高直流系统的安全运行水平。   WZJ-1在现场对故障点的检测结果全部正确,从没有发生误报警的现象。但磁环支路型据了解存在误报警的问题,在原理判据上可能仍存在不足之处,有待于进一步完善改进。对于公用-XM的音响小母线信号回路,若发生信号回路绝缘下降,必须每个支路、回路逐一检查,即使采用磁环支路报警也不能解决。因此微机直流绝缘监测装置配合便携式探测卡钳表是目前在现场查找直流系统接地故障点的最有效的检测设备。

    时间:2011-02-11 关键词: 微机 接地故障 绝缘监测 直流系统

  • 基于ARM的直流系统接地故障检测应用程序设计

    摘要:本文提出了基于S3C44BOX的直流系统接地故障检测装置的设计方案,并在此装置上实现了基于小波变换的检测方法,并重点阐述了应用程序的设计。 关键词:直流系统;嵌入式系统;小波变换;程序设计 0 引言     发电厂、变电站的直流供电系统是控制和信号系统、继电保护及自动装置的工作电源,对保障电力系统安全运行是十分重要的,这就要求直流系统及其网络必须具有高可靠性。当直流系统发生一点接地时,应能及时找出和处理。目前,国内外基于单片机的绝缘监测装置大多是基于传统的平衡电桥法、低频信号注入法等研制的,但要解决直流系统大电容接地和环网影响等问题,则需要采用更为先进的处理方法,如基于小波变换的检测方法,而单片机有限的资源限制了这类方法的使用。     本文通过基于ARM的嵌入式系统进行直流系统接地故障检测装置的设计,并在该装置中实现基于小波变换的检测方法解决直流系统大电容接地和环网影响等问题,并重点阐述了基于该系统的应用程序的设计。 1 ARM微处理器S3C44BOX     考虑到设计应用的需要,选用了三星公司的S3C44BOX微处理器。这是该公司一款基于ARM7TDMI的SOC芯片。它一方面具有ARM处理器低功耗、高性能的优点;又具有非常丰富的片上资源,非常适合嵌入式产品的开发。其特点如下:     ·采用ARM7TDMI内核,I/O电压3.3V,内核电压2.5V;     ·内置锁相环(PLL),系统主频最高达66MHz;     ·4种工作模式,可以实现电源管理以降低系统功耗;     ·8kB的系统高速缓存(CACHE),极大地提高了系统运行速度;     ·支持8个MEMORY BANK,最大外部存储空间达256MB,并支持SDRAM;     ·内置彩色LCD控制器;     ·2路异步串口(UART);     ·71个通用I/O口;     ·8通路模/数转换器(ADC);     ·实时时钟(RTC)和看门狗电路(WATCHDOG)。 2 直流系统接地故障检测装置总体结构     如图1所示,可以看出此检测装置主要分为两个部分:S3C44BOX主控单元及各种接口、信号采集及预处理单元。     此装置将实现以下功能:     (1)通常情况:此装置处于在线监视状态,通过采集现场信号并依据相关算法判断直流系统是否存在一点接地;     (2)直流系统发生一点接地:当发现直流系统存在一点接地时,并启动低频信号源,向电网中注入低频信号;     (3)依次对低频电压和各个支路电流信号进行同步采样;通过直流系统每个支路上的电流互感器检测出每个支路的电流信号。由多路开关依次选通每个支路,将相关信号经调理后进行采样,同步进行低频电压信号的采样,然后依次按照特定的基于小波变换的控制算法对采样数据进行处理,从而确定故障支路,将结果显示在LCD或是远程终端上以便于用户查看并及时排除该接地故障。 3 软件总体设计方案     对于一个开放的嵌入式系统而言,其程序存储器中一定要有系统的初始化代码。初始化在系统复位后自动完成。在系统的初始化中,必须包含如下的初始化代码:设置入口指针、设置中断向量表、初始化堆栈指针寄存器、初始化存储器系统、初始化I/O端口以及需要改变处理器的工作模式、初始化应用程序存储空间。之后,呼叫并开始执行应用程序。     μC/OS-Ⅱ是源码公开的实时嵌入式操作系统,其主要特点是公开源代码;可移植;可固化;可裁剪;是占先式实时内核;可管理多任务:执行时间可确定;提供很多系统服务;具有中断管理;稳定且可靠。但是,μC/OS-Ⅱ提供的仅仅是一个任务调度内核,需要在其基础上扩展成实用的RTOS。根据该装置的功能要求,系统软件中需要实现相应的用户任务:a.监视;b.报警;c.启动低频信号源;d.低频电压采样,并计算其幅值和初始相位;e.选通各个支路并检测其电流信号,然后利用小波算法进行判断;f. 在LCD或远程终端上显示相关信息。其中任务e的具体流程如图2所示。     相对于相敏检波、载波相位等传统的检测方法,上述基于小波变换的处理方法可以充分发挥小波分析优良的时频分析特性,有效地克服直流系统大电容接地环网等因素的影响,能够准确地计算出支路接地电阻值,从而判断出故障支路。由于8/16bit单片机有限的资源,无法实现这么复杂的算法,而ARM的高性能和高可靠性为这种算法提供了良好的硬件平台。扩展后的RTOS总体框图如图3所示。   4 应用程序设计     根据以上的分析,设计应用程序运行流程图如4所示。 4.1 直流系统正负母线对地接地绝缘监测     系统初始化完成以后,进入任务一,如果发现存在接地故障,则等待键盘消息,以设定待检支路数,然后系统调用任务二;如果没有发生接地故障,则延时特定时间段后再次调用任务一。     任务一的具体代码如下所示: 4.2 启动低频信号源,同步采样低频电压及当前支路电流     当判定直流系统发生接地故障之后,调用任务二,首先确定支路号,然后同步采样正负母线低频电压信号和当前支路电流信号,当完成了相应采样之后,系统调用任务三。     任务二的具体代码如下所示: 4.3 对采样数据进行滤波及低频提取处理,并计算接地电阻值     当任务二完成相应的采样工作之后,系统调用任务三,任务二和任务三构成了一个循环,任务三主要对任务二采样所得的数据进行3次B样条滤波和Morlet小波低频分量提取等处理,并判断该支路故障与否,同时依据当前支路号判断是否已经检测了全部支路,如果直流系统中还存在没有检测的支路,则返回任务二开始新的采样,如果已经全部完成,则延时30分钟后返回任务一。     任务三的具体代码如下所示: 5 结束语     基于ARM微处理器进行相关的设计应用可以提高系统性能,并使系统小型化、低成本,而且具有高可靠性。本文介绍的基于ARM的直流系统接地故障检测系统的应用程序设计,构建了一个完整的硬、软件平台,在实际应用中取得了很好的效果。  

    时间:2010-09-25 关键词: ARM 检测 接地故障 直流系统

发布文章

技术子站

更多

项目外包