当前位置:首页 > 短路
  • 共模电感与共模信号之间存在哪些关系

    共模电感与共模信号之间存在哪些关系

    共模电感在制作时应该改满足以下要求: 1.绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈地匝间不发生击穿短路。 2.当线圈流过瞬时大电流时,磁芯不要出现饱和。 3.线圈中地磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者发生击穿 4.线圈应尽可能绕制单层,这样做可减小线圈地寄生电容,增强线圈对瞬时过电压地承受能力。 共模电感如何抑制共模信号 目前已经知道共模信号是两个幅度相等、相位相同的信号,共模信号一般来自电网,共模信号会影响电路板的正常工作,也会以电磁波的形式干扰周围环境。 既然是用电感来抑制共模信号,那么这肯定和磁场相关。先来介绍通电螺线感,产生的磁场的方向(对于项目应用而言,有些场合比如抑制共模信号而言,不太需要定量的计算,电感产生的磁场以及磁通量的大小,感兴趣的童鞋,这里推荐一本书可以参考,《《开关电源中磁性元器件》》赵修科老师)。对于通电螺线管的磁场方向判断方法为,右手握住螺管,四指指向电流方向,则拇指指向就是磁场方向。接下来介绍一个重要的名词,即磁通。垂直通过一个截面的磁力线总量称为该截面的磁通量,简称磁通。磁力线是通电螺线管产生的,是实际存在的,只是看不见也摸不着,磁力线是一个闭和的回路,对于通电螺线管,磁力线都要经过螺线管内部,磁力线是与磁感应强度B成正比的。如图3所示为通电螺线管产生磁力线的示意图。     共模电感如何抑制共模信号 图3 螺线管磁力线 如图4所示为,穿过某一截面的磁通     共模电感如何抑制共模信号 图4 穿过截面的磁通 磁通量用F表示,是一个标量,单位为韦伯,代号Wb。磁通量和磁感应强度B以及截面积A的关系为: F=BA 从关系式可以看出,穿过横截面的磁力线越多,磁通量就越大。对于绕在磁芯上的线圈,在其上通电流i,则线圈的电感L可以表示为: L=NF/i N为线圈匝数。 到此为止,通过上述的简要概述,可以知道,绕在磁芯上的线圈在匝数和电流不变时,磁芯中穿过的磁力线越多,那么磁通量就越大,则相对应的电感量也越大。电感天生的作用就是阻止流过其上电流的变化,其实质是阻止其磁通量的变化。这就是利用共模电感来抑制共模电流的基本原理。 如图5所示为,共模电流在共模电感上产生的磁感应强度,电流I1产生的磁感应强度为B1,电流I2产生的磁感应强度为B2,两条黄色箭头分别表示电流I1和I2在铁氧体中产生的磁力线,可以看出电流I1和I2产生的磁力线是相加的,故磁通也是相加的,那么电感量就是相加的,电感量越大,对电流的抑制能力就越强。     共模电感如何抑制共模信号 图5共模电流在共模电感上的磁通分布 对于共模电感如何抑制共模电流用一句话可以解释,即共模电感上流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用。

    时间:2019-09-08 关键词: 短路 抑制 电源资讯

  • 测量漏感,为何短路次级绕组?

    测量漏感,为何短路次级绕组?

    如图是理想变压器,理想变压器遵循以下公式: V2 = N2/N1*V1 N2:副边的匝数 N1:原边的匝数 但实际中变压器总是不理想的,总有一部分磁通不参与能量传递,在原边兴风作浪,产生很多不利影响。这部分不传递能量到副边的磁通产生的电感就是漏感,实际变压器的等效图如下: 等效图中漏感总是绕组串联的。为了测量绕组的电感量,我们使用电桥施加一定的频率一定的电压进行测量,测量原理如下: 假如在原边施加1V的测量电压,变压器的匝比是2:1,则副边的电压为0.5V,这是变压器原理。原边测得的总的电感包含了漏感。为了测量漏感,要想法使主电感LP为零,然后测量得到的就是漏感。但是如何使主电感量为零呢方法其实很简单,比如要测量原边的漏感则短路副边,那短路副边后为何就能测得原边的漏感呢?如图: 短路副边后,副边的电压为0V,根据 V2 = N2/N1 * V1 的变压器公式可知原边的电压也一定为0V,由于漏磁通没有参与耦合,因此短路副边后对漏感没有任何影响,此时从左边看进去测量得到的电感量就是漏感了。

    时间:2020-01-12 关键词: 短路 电源资讯 漏感

  • 电动车无刷电机控制器短路的工作模型

    议题内容: 电动车无刷电机控制器短路的工作模型 控制器在短路时MOSFET的工作状态 计算MOSFET瞬态温升的计算公式 设定短路保护时间的原则 解决方案: 温升公式:Tj = Tc + P × Rth(jc) 根据单脉冲的热阻系数确定允许的短路时间 工作温度越高短路保护时间就应该越短 1 短路模型及分析 短路模型如图1所示,其中仅画出了功率输出级的A、B两相(共三相)。Q1和Q3为A相MOSFET,Q2和Q4为B相MOSFET,所有功率MOSFET均为AOT430。L1为电机线圈,Rs为电流检测电阻。 当控制器工作时,如电机短路,则会形成如图1中所示的流经Q2,Q3的短路电流,其电流值很大,达几百安培,MOSFET的瞬态温升很大,这种情况下应及时保护,否则会使MOSFET结点温度过高而使MOSFET损坏。短路时Q3电压和电流波形如图2所示。图2a中的MOSFET能承受45us的大电流短路,而图2b中的MOSFET不能承受45us的大电流短路,当脉冲45us关断后,Vds回升,由于温度过高,仅经过10us的时间MOSFET便短路,Vds迅速下降,短路电流迅速上升。由图2我们可以看出短路时峰值电流达500A,这是由于短路时MOSFET直接将电源正负极短路,回路阻抗是导线,PCB走线及MOSFET的Rds(on)之和,其数值很小,一般为几十毫欧至几百毫欧。   2 计算合理的保护时间 在实际应用中,不同设计的控制器,其回路电感和电阻存在一定的差别以及短路时的电源电压不同,导致控制器三相输出线短路时的短路电流各不相同,所以设计者应跟据自己的实际电路和使用条件设计合理的保护时间。 短路保护时间计算步骤: 2.1 计算MOSFET短路时允许的瞬态温升 因为控制器有可能是在正常工作时突然短路,所以我们的设计应是基于正常工作时的温度来计算允许的瞬态温升。MOSFET的结点温度可由下式计算: Tj = Tc + P × Rth(jc) 其中: Tc:MOSFET表面温度 Tj:MOSFET结点温度 Rth(jc):结点至表面的热阻,可从元器件Date sheet中查得。     理论上MOSFET的结点温度不能超过175℃,所以电机相线短路时MOSFET允许的温升为:Trising = Tjmax - Tj = 175-109 = 66℃。 2.2 根据瞬态温升和单脉冲功率计算允许的单脉冲时的热阻 由图2可知,短路时MOSFET耗散的功率约为: P = Vds × I = 25 × 400 = 10000W 脉冲的功率也可以通过将图二测得波形存为EXCEL格式的数据,然后通过EXCEL进行积分,从而得到比较精确的脉冲功率数据。 对于MOSFET温升计算有如下公式: Trising = P × Zθjc × Rθjc 其中: Rθjc------结点至表面的热阻,可从元器件Date sheet中查得。 Zθjc------热阻系数 Zθjc = Trising ÷( P × Rθjc) Zθjc = 66 ÷ (10000 × 0.45)= 0.015 2.3 根据单脉冲的热阻系数确定允许的短路时间 由图3最下面一条曲线(单脉冲)可知,对于单脉冲来说,要想获得0.015的热阻系数,其脉冲宽度不能大于20us。   3 设计短路保护应注意的几个问题 由于不同控制器的PCB布线参数不一样,导致相线短路时回路阻抗不等,短路电流也因此不同。所以,不同设计的控制器应根据实际情况设计确当的短路保护时间。 由于应用中使用的电源电压有可能不同,也会导致短路电流的不同,同样也会影响到保护时间。 注意控制器实际工作时的可能最高温度,工作温度越高,短路保护时间就应该越短。 本文讨论的短路保护时间是指MOSFET能承受的最长短路时间。在设计短路保护电路时,应考虑硬件及软件的响应时间,以及电流保护的峰值,这些参数都会影响到最终的保护时间。因此,硬件电路设计和软件的编写致关重要。 本文讨论的短路保护时间是单次短路保护时间,短路后短时间内不能再次短路。如果设计成周期性短路保护,则短路保护时间应更短。 4 结论 短路保护在瞬间大电流时能对MOSFET提供可靠的快速保护,大大增加了控制的可靠性,减少了控制器的损坏率。

    时间:2011-11-22 关键词: 控制器 电动车 短路 无刷电机

  • 一种新型多目标串联型短路限流控制器的研究

    摘要:提出一种串联型短路限流控制器,采用背靠背换流器与限流电抗器串联的方式,在系统未发生短路故障时,背靠背换流器可以实现电压补偿、谐波抑制等功能,当发生短路时,将换流器切出,使短路限流电抗器工作。分析了电路的拓扑结构和控制原理,采用完全补偿法对电压进行补偿,采用电源电流检测法滤除系统中的谐波,然后用PSCAD进行了仿真和实验验证。 关键词:控制器;短路限流;串联型;电压补偿 1 引言     很多破坏电力系统正常运行的情况是由短路故障引起的。随着电力系统容量的不断增加,电网中的短路电流问题也随之增多,因而限制电力系统短路电流已成为一个急需解决的问题。由于电力电子技术及大容量电力电子器件的快速发展,电力电子短路限流器(FCL)是限制短路电流一个较有效手段。它具有动作速度快、允许动作次数多、控制方便等优点,具有很好的应用前景。     这里将短路限流控制装置和限流电抗器串联后接在电源和负载之间,在系统正常运行时,换流器用于补偿限流电抗器产生的电压降,并抑制电抗器和负载产生的谐波,同时可消除电压暂升、电压暂降及三相不平衡等问题,当系统发生短路时将控制装置切出,此时限流电抗器起到了限制短路电流的作用。 2 原理与设计 2.1 主电路拓扑     图1为限流电抗器串联FCL控制器主电路拓扑。电网侧电压经3个单相FCL控制器,单相FCL控制器由单相PWM整流器和单相逆变器组成。 单相PWM整流器输出的直流电压作为3个单相逆变器的直流电源,逆变器的输出补偿由限流电抗器和负载产生的压降和谐波。L1,L2,L3为限流电抗器;G1,G2,G3为用于切出换流器的双向晶闸管;K1,K2,K3用于切出整个装置。 2.2 单相PWM整流器的控制策略     PWM整流器具有输入电流谐波含量低,功率因数高、体积小、重量轻等特点。其控制策略为:将实际直流侧电压Ud与给定期望值Uref作差,所得结果经PI控制器,其输出量乘以交流电压信号的单位量sinA,之后得到电流iref,与电感电流ia作差经PI控制器,保证了电感电流跟踪输入电压,最后产生的调制信号与三角波载波信号比较控制得到IGBT模块的驱动信号。 2.3 单相逆变器控制策略     逆变器控制分2部分,首先是对电压的跟踪控制,即逆变器的输出电压补偿因限流电抗器和负载产生的电压降落和无功损耗,然后是抑制系统中的谐波,即起到串联APF的作用,最后将上述两个调制信号进行叠加作为逆变器给定电压参考量与逆变器的实测电压作差经比例积分控制,保证了逆变器电压跟踪参考电压,最后与三角波载波信号比较控制得到IGBT模块的驱动信号。 2.3.1 电压降落的动态跟踪控制     目前对于电压降落的补偿方式主要有同相补偿、完全补偿、最小能量补偿这3种控制策略。这里采用完全补偿法。该方法可使补偿后的负载电流与理想参考电压的幅值和相位均相同,即实现了负载电压的连续性,在装置容量足够大时,它是一种理想的补偿方法。     短路限流控制器与限流电抗器串联于系统中,当系统未发生暂降或暂升,且此时假设负载为阻感的,则在系统中不存在谐波影响,那么可将该拓扑简化,如图2所示。     当系统未发生暂降或暂升,可得如图3a所示相量图。由于各物理量均随时间变化,该控制方法也是动态的,以期望的参考电压相量uref为基准,由于无暂降或暂升,因此电源电压相量us与uref重合,其中φLx为uLx与us夹角,由完全补偿法原理知,uL与us幅值和方向均相同,故图4a的四边形为平行四边形,于是可得补偿电压Ucom=-uLx。     为使控制更加精确,可令△U=Us-UL,对上式加以修正,其中Us,Ucom,ULx,UL分别为us,ucom,uLx,uL的幅值,则可得逆变器输出的补偿电压为:     Ucom=-ULx+△U,φcom=-φLxh+π       (1)     当系统发生电压暂降时,如图3b所示,由完全补偿法原理可知,uL与us的幅值和方向均相同,为计算补偿电压的大小,可设中间量um的有效值为Um,补偿电压相量的大小和角度的推导为:     φk=π-φs-φLx     (2)     2.3.2 检测电源电流控制法     通过第一步控制方法后,负载侧电压虽得到了补偿,且效果很好,但是当系统加入非线性负载时,电流波形畸变非常严重,因此考虑用检测电源电流控制法对电流谐波进行滤除,如图4所示。     通过瞬时无功理论检测出电网谐波电流ish,然后与控制增益K相乘形成ux,即ux=Kish,理论上K值很大(但为有限值),使系统中对谐波呈高阻抗特性,从而可以隔离谐波电压源,抑制电网上的谐波电流。若在系统中提供无源滤波器支路,该支路对谐波呈现低阻抗特性,可抑制谐波电流对电网侧的影响。图5为该部分控制原理。 3 仿真结果与分析     采用PSCAD对所述控制方法进行仿真,参数为:220 V/50 Hz三相交流电压源,1 mH限流电抗器,线性负载为阻感负载,其中电感为0.1 mH,电阻为10 Ω,交流侧输入电感为1 mH,直流侧稳压电容为1 000μF。图6示出仿真波形。     由图6a可知,控制中做选择的直流电压参考值为0.5 kV,可见0.5 s后直流电压在0.5 kV上基本保持恒定;由图6b可见,uL很好地跟踪了us;由图6c可见,虽然iLa畸变很大,但ia仍保持为正弦波;由图6d可见,在0.2~0.3 s时,系统发生电压暂降,但uL仍可保持为预期的usag,达到预期目标。 4 实验结果分析 4.1 DSP/FPGA控制器     此处装置控制器由DSP,FPGA和CPLD等构成,其中DSP模块负责完成数据的处理,与上位机(人机交互系统)的通讯,与下层结构(FPGA)的数据交换:FPGA模块完成电压、电流等各变量采样,及各变量的逻辑运算并上传数据给上层结构DSP;CPLD负责直接采集功率单元(IGBT模块)的各项数据和指标,如死区产生、温度信号采集、IGBT过压过流保护等。图7为基于DSP和FPGA构成的主控结构框图。 4.2 实验分析     首先用该装置进行了电压暂降实验,由于三相是对称的,下面仅对a相进行研究,结合电压扰动发生装置使系统电压在0.1~0.3 s发生电压暂降,并通过上述控制策略进行控制。图8a示出实验波形。由图可见,虽然usag发生了电压暂降,但是由于装置的补偿uL仍然保持220V。     用该装置进行了短路电流限制实验。当系统正常工作时,电压补偿装置补偿系统电压到额定电压Uo=220V,iL约为10A。工作一段时间后,使负载侧发生短路,系统会有较大电流通过。设定电流互感器检测系统电流超过30A时,装置脉冲闭锁,同时双向晶闸管触发导通,旁路补偿装置,投入限流电抗器实施限流其中限流电抗器选择8.5mH。     由实验波形可见,当短路故障发生时,iL增大,装置延迟半个工频周期推出运行,双向晶闸管代替装置工作,之所以延迟半个周期是因为晶闸管驱动板具有10 ms延时时间。对比图8b上、下波形可知,负载侧电流在加入限流电抗器之后明显减小,从而达到短路电流限制的作用。 5 结论     提出一种新型短路限流控制器,将该控制装置与短路限流电抗器串联于电路之中,当发生短路时,将控制器切除,用限流电抗器实现限流作用,这里着重讨论了当发生短路时控制装置的控制策略,用完全电压补偿法实现了对电压降落的补偿,讨论了在系统发生暂降时电压的补偿策略,然后研究了对系统中谐波的抑制,运用电源电流控制法滤除系统中的谐波,最后用PSCAD对所研究的控制方法进行了仿真和实验,结果实现了电压的补偿和谐波的抑制功能。

    时间:2012-05-07 关键词: 限流 短路 串联型 多目标

  • 具有短路、极性保护的恒流充电器

    具有短路、极性保护的恒流充电器

    时间:2010-10-20 关键词: 保护 充电器 极性 短路 具有 电源充电电路

  • 闩式短路保护电路

    闩式短路保护电路

    时间:2011-03-17 关键词: 保护 电路 短路 电源DC/DC

  • MIC5158与一些其他器件构成的5V输入、3.3V/10A输出并且具有短路保护功能的线性稳压器电路

    MIC5158与一些其他器件构成的5V输入、3.3V/10A输出并且具有短路保护功能的线性稳压器电路

    由MIC5158与一些其他元器件构成的5V输入、3.3V/10A输出,并且具有短路保护功能的线性稳压器电路如图所示。该电路中若输入电压Ui=5V时,外加的N沟道MOSFET管就选IR244;若输入电压Ui>5V时,外加的N沟道MOSFET管就选IR644。MIC5158的13脚S端到地之间外加一只47μF的滤波电容,可以改善由于负载的变化而引起的波动。   

    时间:2009-03-15 关键词: 保护 电路 稳压器 短路 线性 输出 具有 功能 10a 并且 电源稳压电源

  • 具有输入短路保护的6V稳压电源

    具有输入短路保护的6V稳压电源

    时间:2010-10-20 关键词: 保护 短路 输入 稳压电源 具有 6v 电源稳压电源

  • 具有输入短路保护的6V稳压电源

    具有输入短路保护的6V稳压电源

    时间:2010-10-20 关键词: 保护 短路 输入 稳压电源 具有 6v 电源稳压电源

  • 具有输入短路保护的6V稳压电源电路

    具有输入短路保护的6V稳压电源电路

    时间:2012-04-13 关键词: 保护 电路 短路 输入 稳压电源 具有 6v 电源通信电源

  • 1500V直流电源短路过载保护电路图

    1500V直流电源短路过载保护电路图

    时间:2011-04-15 关键词: 保护 电路图 短路 直流电源 过载 1500v 电源电源保护

  • 短路保护电路

    短路保护电路

     下图是应用检测IGBT集电极电压的过流保护原理,采用软降栅压、软关断及降低工作频率保护技术的短路保护电路     正常工作状态,驱动输入信号为低电平时,光耦IC4不导通,V1,V3导通,输出负驱动电压。驱动输入信号为高电平时,光耦IC4导通,V1截止而V2导通,输出正驱动电压,功率开关管V4工作在正常开关状态。发生短路故障时,IGBT集电极电压增大,由于Vce增大,比较器IC1输出高电平,V5导通,IGBT实现软降栅压,降栅压幅度由稳压管VD2决定,软降栅压时间由R6C1形成2μs。同时IC1输出的高电平经R7对C2进行充电,当C2上电压达到稳压管VD4的击穿电压时,V6导通并由R9C3形成约3μs的软关断栅压,软降栅压至软关断栅压的延迟时间由时间常数R7C2决定,通常选取在5~15μs。 V5导通时,V7经C4R10电路流过基极电流而导通约20μs,在降栅压保护后将输入驱动信号闭锁一段时间,不再响应输入端的关断信号,以避免在故障状态下形成硬关断过电压,使驱动电路在故障存在的情况下能执行一个完整的降栅压和软关断保护过程。 V7导通时,光耦IC5导通,时基电路IC2的触发脚2获得负触发信号,555输出脚3输出高电平,V9导通,IC3被封锁,封锁时间由定时元件R15C5决定(约1.2s),使工作频率降至1Hz以下,驱动器的输出信号将工作在所谓的“打嗝”状态,避免了发生短路故障后仍工作在原来的频率下,连续进行短路保护导致热积累而造成IGBT损坏。只要故障消失,电路又能恢复到正常工作状态。

    时间:2015-08-24 关键词: 短路 保护电路 保护技术 电源电源保护

  • 5G14外加短路保护应用电路图

    5G14外加短路保护应用电路图

    时间:2011-02-11 关键词: 保护 电路图 短路 应用 5g14 外加 电源其他电源电路

  • 镍镉电池短路消除器

    镍镉电池短路消除器

    时间:2011-09-09 关键词: 电池 短路 消除器 镍镉 电源电池电路

  • 镍镉电池短路消除器2

    镍镉电池短路消除器2

    时间:2011-09-09 关键词: 电池 短路 消除器 镍镉 电源电池电路

  • 电池短路导致“烧伤” 美国召回中国产LED手电筒

    2月19日,美国消费品安全委员会(CPSC)和LucentAce Manufacturing联合宣布对中国产LED手电筒实施自愿性召回。 此次被召回的产品名称是LED手电筒,共有黑色、红色、绿色、蓝色四种颜色,产品型号为FSAACE6022,该型号位于包装上。2013年10月~2013年11月在美国Academy户外运动商店销售,售价约为3美元。 此次被召回的产品在美国销售数量约为3000个。召回原因为,电池短路导致烧伤危险。截至目前,LucentAceManufacturing收到1起事故报告,但无人员伤亡报告。 为此,美国消费品安全委员会(CPSC)建议消费者立即停止使用该产品,并将产品退回至购买商店获得全额退款。

    时间:2014-02-24 关键词: 美国 短路 召回 烧伤

  • 飞兆高可靠性和卓越开关性能的阳极短路型IGBT

    高功率和高频率感应加热(IH)家用电器需要更低的传导损耗和卓越的开关性能,以便在IH电饭煲、台式电磁炉和基于逆变器的微波炉等应用中实现更高的效率和系统可靠性。 飞兆半导体的高电压场截止阳极短路(Shorted Anode) trench IGBT可针对这些设计挑战为设计人员提供经济实惠且高效的解决方案。     该款全新产品系列针对软开关应用,在1000V至1400V的电压范围内,利用固有的反并联二极管进行了优化。 随着超越典型非穿通型(NPT) IGBT技术的不断进步,飞兆半导体的阳极短路硅技术可提供更低的饱和电压,比额定功率相同的NPT-trench IGBT要低12%以上。 此外,如果与竞争对手的IGBT产品相比,该产品系列的拖尾电流速率要低20%以上。 由于具有这些丰富特性,飞兆半导体先进的IGBT因而能提供更佳的热性能、更高的效率以及更低的功耗。 特点与优势: · 高速开关频率范围: 10至50 kHz · 业界最低的拖尾电流,可改进开关损耗(FGA20S140P) · 与现有的NPT trench IGBT相比,饱和压降更低 · 电位计检测抗噪能力强健,可提高可靠性 · 高温稳定特性: Tj(max) = 175 ºC · 符合RoHS标准(无铅引脚电镀) 封装和报价信息(1,000片起订,价格单位:美元) 按请求提供样品。交货期:收到订单后8-12周内 采用TO-3P 3L封装: · 1250V FGA20S125P $2.03 · 1250V FGA25S125P $2.03 · 1300V FGA30S120P $5.25 · 1400V FGA20S140P $2.25 采用TO-247 3L封装: · 1300V FGH30S130P $3.40 飞兆半导体的场截止阳极短路trench IGBT提供业界领先的技术,以应对在当今设计中遇到的能效和形状因数挑战。 这些应用都是飞兆半导体节能型功率模拟IC、功率分立式器件和光电子器件解决方案的一部分,而这些解决方案可在功率敏感型应用中实现最大限度的节能。

    时间:2013-01-30 关键词: 飞兆 可靠性 短路 igbt

  • CANL对地短路了为什么还能通讯?

    CANL对地短路了为什么还能通讯?

    CAN一致性测试中,有一项测试叫“CANL对地短路测试”,但是我们测试的时候发现被测设备有时候在对地短路时也能正常通讯,这是什么回事呢?   我们都知道CAN总线采用差分传输,这样可以极大的避免信号的反射和干扰,从而抑制共模干扰,也是CAN容错性能好的原因之一,CAN的波特率最大可以到1Mbps。根据波特率的大小我们把CAN总线分为单线CAN、低速CAN、高速CAN。 表 1 CAN 总线类型   CAN 的通讯质量也跟其传输距离有关,如图1,做CAN的工程师都知道CAN总线上任意两个节点的最大传输距离与其波特率有关,CAN 的波特率越大,传输距离就越短,因为传输线缆本身可以看成一个阻容结构的器件,线缆越长,寄生电容跟电阻就越大。   图 1 CAN波特率跟传输距离的关系 既然线缆都会有寄生电容,那寄生电容对CAN总线的影响是怎么样的呢?我们用CANScope模拟给总线上加不同的电容,通过眼图来看看会发生什么,如图2,可以看到随着电容的增大,显性位跟隐性位的下降沿变得越来越缓。   图 2 线缆不同电容对波形的影响 当总线上CANL对地短路后,那么CAN传输就只有CANH这条线维持了,这种情况下CAN总线就类似于单线CAN,差分传输的优势就荡然无存,那么我们就看看在高速CAN下,CANL短路会出现什么情况。 我们选择波特率500kbps的通信速率,用ZLG的CANScope发送CAN报文,CAN卡接收报文。 先调整Stressz的设置,模拟总线长度为10m,终端电阻为120欧姆,Stressz的设置如图3所示:   图 3 模拟线缆长度为10m 打开CANScope报文接收,可以正常接收报文,将CANL线短接到GND后,从示波器上看CANL电压为0V,但是报文正常接收,如图4:从示波器上差分电压还能够进行清晰的辨识。   图 4 CANL短路通讯正常 但是实际应用现场,CAN总线的传输距离比较长,当我们模拟总线长度为120m时,我们再看看通讯质量,先把Stressz设置为线缆长度为120m。如图5:   图 5 模拟120m线缆长度 打开CANScope报文接收,如图6所示,未短路时可以正常接收报文,将CANL线短接到GND后,从示波器上看CANL电压为0V,报文出现大量的错误。   图 6 CANL短路出现错误 为什么在线缆长度变长后CANL对地短路后会出现错误呢? 问题就在于线缆长度变长后带来的寄生电容变大使总线电平的下降沿变得很缓,本来就脆弱的差分传输信号,在CANL挂掉后,CANH单线传输无法承担传输的重任,所以就出现了报文错误。如图7:我们对总线做边沿统计,可以看到下降沿最大达到638ns。根据GMW3122的标准,高速CAN 的边沿区间为30~350ns。 所以在高速CAN的CANL对地短路后,由于差分传输优势没有了,在大的下降沿影响下,导致接收节点无法正常接收报文。而CANL没有短路时,CAN总线依然可以利用差分传输的优势,让节点正常收到正确的报文。   图 7 边沿统计

    时间:2017-12-07 关键词: 通讯 嵌入式开发 短路 canl

  • 电路故障的的问题排查

    电路故障的的问题排查

    科技的不断发展让电路越来越复杂,当电路出现问题的时候,就需要大家能排查,电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小;完全失去容量;漏电;短路。电容在电路中所起的作用不同,引起的故障也各有特点。在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。 这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。 曾经修过一台X光探伤仪的电源,用户反映有烟从电源里冒出来,拆开机箱后发现有一只1000uF/350V的大电容有油质一样的东西流出来,拆下来一量容量只有几十uF,还发现只有这只电容与整流桥的散热片离得最近,其它离得远的就完好无损,容量正常。另外有瓷片电容出现短路的情况,也发现电容离发热部件比较近。所以在检修查找时应有所侧重。 有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。 电阻损坏的特点与判别 常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。 前两种电阻应用最广,其损坏的特点一是低阻值(100Ω以下)和高阻值(100kΩ以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。 线绕电阻一般用作大电流限流,阻值不大。圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹。水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹。保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。 根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值,如果量得阻值比标称阻值大,则这个电阻肯定损坏(要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程),如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。 运算放大器好坏判别 运算放大器好坏的判别对相当多的电子维修者有一定的难度,不只文化程度的关系,在此与大家共同探讨一下,希望对大家有所帮助。 理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,先应分清楚器件在电路中是做放大器用还是做比较器用。 根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑!(我是用的FLUKE179万用表) 如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。 SMT元件测试小窍门 有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。 公共电源短路检修 电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑,如果板上元件不多,采用“锄大地”的方式终归可以找到短路点,如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点。 要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,此电源不贵,300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大,用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。 橡皮解决大问题 工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式.由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其某些进口设备的板卡。其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题!方法简单又实用。 电气故障分析 各种时好时坏电气故障从概率大小来讲大概包括以下几种情况: 1、接触不良 板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类; 2、信号受干扰 对数字电路而言,在特定的情况条件下,故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点,从而出现故障; 3、元器件热稳定性不好 从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等; 4、电路板上有湿气、尘土等 湿气和积尘会导电,具有电阻效应,而且在热胀冷缩的过程中阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数,使故障发生; 5、软件也是考虑因素之一 电路中许多参数使用软件来调整,某些参数的裕量调得太低,处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。以上就是电路的一些问题的检查方法,希望对大家有所帮助。

    时间:2020-03-26 关键词: 测试 电阻 短路

  • 锂电池爆炸可能因素

    锂电池爆炸可能因素

    什么是锂电池?它有什么注意事项?本文主要讲了锂电池爆炸的类别包括:负极容量不足水份含量过高内部短路、保护线路老化失效过充过放外部短路、外部挤压和暴力碰撞、负极容量不足、水分含量过高、内部短路等内容。 锂电池爆炸的原因类别: 1 负极容量不足水份含量过高内部短路 2 保护线路老化失效过充过放外部短路、外部挤压和暴力碰撞 3 负极容量不足 当正极部位对面的负极部位容量不足,或是根本没有容量时,充电时所产生的部分或全部的锂就无法插入负极石墨的间层结构中,会析在负极的表面,形成突起状“枝晶”,而下一次充电时,这个突起部分更容易造成锂的析出,经过几十至上百次的循环充放电后,“枝晶”会长大,最后会刺穿隔膜纸,使内部产生短路。电芯急剧放电,产生大量的热,烧坏隔膜,而造成更大的短路现象,高温会使电解液分解成气体,负极碳和隔膜纸燃烧,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会爆炸。 4 水分含量过高 水份可以和电芯中的电解液反应,生产气体,充电时,可以和生成的锂反应,生成氧化锂,使电芯的容量损失,易使电芯过充而生成气体,水份的分解电压较低,充电时很容易分解生成气体,当这一系列生成的气体会使电芯的内部压力增大,当电芯的外壳无法承受时,电芯就会爆炸。 5 内部短路 由于内部产生短路现象,电芯大电流放电,产生大量的热,烧坏隔膜,而造成更大的短路现象,这样电芯就会产生高温,使电解液分解成气体,造成内部压力过大,当电芯的外壳无法承受这个压力时,电芯就会爆炸。 6 上部胶 激光焊时,热量经壳体传导到正极耳上,使正极耳温度高,如果上部胶纸没有隔开正极耳及隔膜,热的正极耳就会使隔膜纸烧坏或收缩,造成内部短路,而形成爆炸。 7 高温胶纸包住负极耳 客户在负极耳点焊时,热量传导到负极耳上,如果高温胶纸未贴好,负极耳上的热量就会烧坏隔膜,造成内部短路,形成爆炸。 8 贴底部胶未完全包住底部 客户在底部铝镍复合带处点焊时,会在底部壳壁产生大量的热,传导极芯的底部,如果高温胶纸未完全包住隔膜,会烧坏隔膜,造成内部短路,形成爆炸。 9 过充 电芯过充电时,正极的锂过度放出会使正极的结构发生变化,而放出的锂过多也容易无法插入负极中,也容易造成负极表面析锂,而且,当电压达到4.5V以上时,电解液会分解生产大量的气体。上面种种均可能造成爆炸。 10 外部短路 外部短路可能由于操作不当,或误使用所造成,由于外部短路,电池放电电流很大,会使电芯的发热,高温会使电芯内部的隔膜收缩或完全坏坏,造成内部短路,因而爆炸。 负极容量不足的工位负极包不住正极正负极分档配对错误负极压片时压死负极颗粒负极露箔负极凹点负极划痕负极暗痕负极涂布不均正极头尾部堆料正极涂布不均正极敷料量偏大正负极搅拌不均负极来料容量偏低正极来料容量偏高水份含量过多的工位封口太慢而吸潮陈化时吸潮电解液水份含量过大注液前烘烤未烘干或吸潮组装烘烤时未烘干涂布时正负极未烘干正极打胶配料时吸潮正极烘烤不充分内部短路的工位贴底部胶未完全包住底部高温胶纸包住负极耳上部胶位置。 不对烘烤时温度太高烘坏隔膜激光焊短路电芯未检出组装微短路电芯下流组装短路电芯未检出压扁时压力太大隔膜纸有砂眼卷绕不齐负极铆焊未拍平,有毛刺正负极分小片毛刺正负极分小片掉料正负裁毛刺过充可能的工位用户使用时充电器电压偏大检测时个别点电压偏大检测时电流设置过大电芯容量不足预充柜个别点电流过大预充时电流设置过大外部短路可能的工位保护线路板失效用户在使用时正负极短路电芯在周转过程中打火上电芯未对好,造成正负极接触总结所有相关工位必须加强控制。安全性为各项性能中最重要的。当与其它要求冲突时,优先满足安全性。以上就是锂电池爆炸的可能原因分析,希望能给大家帮助。

    时间:2020-04-05 关键词: 锂电池 短路 爆炸

首页  上一页  1 2 3 4 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客