在当今电气系统和设备日益普及的背景下,电器故障和老化等因素引发的火灾事故频繁发生,严重威胁着人们的生命安全和财产。现有的火灾预警方案多数依赖于电气参数与固定阈值的比较,存在响应速度慢、准确性不足等问题,无法有效应对复杂的电气故障情况。为了解决这种问题,提出一种创新的电气火灾预警系统,基于长短期记忆网络(LSTM)技术,结合高频电气参数循环神经网络(HF-LSTM)和低频电气参数循环神经网络(LF-LSTM)进行研究。HF-LSTM深入挖掘线路的温升规律和超温故障特性,而LF-LSTM则用于探索线路温度变化的周期性模式。通过这两种模型的结合,使系统能够精确预测线路温度,实现对电气火灾风险的早期识别和预警。该系统突破了传统模式只依赖某几个参量的数据特征对电气火灾危险性进行计算和研判,忽略了参量间的物理关联,本文采用基于LSTM的动态阈值调整机制,增强了时间序列信息的连续性和相关性,从而提高了预警准确性和响应速度。系统还引入了预警分位的概念,实现了火灾风险的定量评估和分级管理。硬件电路实时采集电流、电压和温度信息,并与物联网平台结合,实现实时监控和自动响应。通过先进算法,系统提高了对微弱信号的识别能力,确保了早期风险感知和预防。实验数据表明,该电气火灾预警系统在预测准确性和响应速度上均显著优于现有方案,能够有效降低火灾发生率,为保障生命和财产安全提供了高效可靠的解决方案。