当前位置:首页 > 过程控制
  • 魏德米勒助力提升过程控制行业的国际关注度和工程专业知识水平

    魏德米勒助力提升过程控制行业的国际关注度和工程专业知识水平

    总部位于德国代特莫尔德的全球电联接专家魏德米勒拥有悠久的制造传统和丰富的行业经验。随着总部设在英国莱斯特市的子公司 “Klippon Engineering UK Limited”的成立,魏德米勒拟将其多年积累的过程控制行业专业知识注入这家新设公司中。早在1959年,魏德米勒就在英国建厂,成立了Klippon Electricals Ltd.。魏德米勒将保持初心,续写60多年的成功实践新篇章! 新成立的Klippon Engineering公司将负责维护专业的全球工程和服务体系。未来,依靠公司的销售团队、应用程序专家、所属生产装配设施,将开展产品及应用程序解决方案的开发、认证和实施业务。“凭借60多年的丰富行业经验,我们成为客户在过程控制行业众多领域中的合作伙伴。虽然市场规模不断扩大,我们依然坚守承诺,恪守企业传统和发展历程,同时根据未来需求不断重新定位,”魏德米勒集团首席营销官Timo Berger博士高兴地表示。 经过多年不懈努力,魏德米勒成功地夯实了“Klippon”品牌在过程控制行业中的品牌地位,为客户提供高品质联接技术、通信和数字化解决方案,以及危险区域组件和相关工程服务。作为一家获得认可并活跃于全球的公司,Klippon Engineering将秉承这一传统,为以下行业开发解决方案:石油、天然气及液化天然气、化工制药、水及废水处理、采矿、矿产冶金、纸浆造纸、玻璃、氢能及电力多元化转换。 “我们侧重于应用及特定客户解决方案的开发业务,特别是在防爆领域。在这类业务中,延长现有工厂使用寿命的方案研发工作与日俱增。例如,在对流程控制技术完成现代化改进中,就采用了简便迅速的迁移解决方案,”Klippon Engineering UK Limited总经理Jonathan Lane表示。 新公司的成立,魏德米勒将进一步扩大其国际市场份额。凭借其在亚洲、中东、阿联酋、德国、英国以及魏德米勒其他生产基地的专业技术人员,Klippon Engineering公司目前正在世界各地积极拓展公司业务。 魏德米勒集团首席营销官 Timo Berger博士 Klippon Engineering UK Limited总经理Jonathan Lane Klippon Engineering UK Limited成立后,魏德米勒集团拟将其多年积累的过程控制行业专业知识注入这家新设公司。 60多年前,Klippon Electricals Ltd.的英国总部造就了Klippon品牌故事。

    时间:2021-03-24 关键词: 魏德米勒 过程控制 Klippon

  • e络盟发售Omega全系列传感和过程控制产品

    e络盟发售Omega全系列传感和过程控制产品

    中国上海,2020年9月24日 – 安富利旗下全球电子元器件产品与解决方案分销商e络盟大力拓展Omega产品系列,极大地丰富了其工业自动化与控制产品供应范围。全球电子设计工程师、工业工程师及维修工程师现可通过e络盟采购到Omega世界一流的产品系列,适用于测量和控制温度、湿度、压力、应力、力、流量、液位、pH值和电导率。 Omega可助力航空航天、汽车、无线、测试与测量、过程控制及电源监控等领域客户连通其系统。客户现可从e络盟获取Omega系列传感、加热、自动化、数据采集和控制解决方案,其中包括: · CN16PT-330 PID控制器:基于微处理器的通用型Platinum系列PID控制器功能强大,可为过程测量提供无与伦比的灵活性,且易于安装和使用。其通用输入适用于热电偶、RTD、热敏电阻、过程电压/电流和应力,并带有24位ADC,数据采样速度最快可达每秒20个样本;配备标准USB、可选以太网和RS232/RS485连接,并带Modbus®串行通信功能。该系列控制器尤其适合注重视觉验证的应用,如工厂自动化、机械测试和加工业(包括食品、塑料和陶瓷加工)以及实验室应用。 · NOMAD OM-91温度数据记录器:这款电池供电的便携式数据记录器既紧凑又轻便易用,且能够准确、重复进行温度记录。它配备图形用户界面,可超直观地进行新设备配置和数据采集;它还配有LED状态指示灯和可供快速传输数据的USB接口。这款温度记录器非常适合运输应用,可记录运输中的材料是否保持在限定环境温度范围内,并且支持安装多个数据记录器。 · OS136A-1-K红外温度传感器/变送器:这款小型非接触式高性能红外温度传感器兼变送器成本低廉,配有适用于电源和输出连接的1.8米屏蔽电缆。它提供两种温度测量范围:-18到202°C和149到538°C;具备工业标准输出,可轻松地连接到所有仪表、控制器、数据记录器、记录仪、电脑主板和PLC。该传感器/变送器特别适合那些难以进入、受限或恶劣环境中的温度测量应用。 · FL-500系列管路流量计:FL-500流量计结构坚固耐用、安装方便,可直接读取水和气体在大气压力和6.2bar (90psi) 压力下的流速。只需使用螺丝刀即可轻松调整各种设置,且可添加接近开关用于发送特定的流速信号。FL-500流量计可用于指示液体、气体和蒸汽的流速。 Farnell及e络盟全球互连、无源及机电 (IP&E) 产品总监Simon Meadmore 表示:“我们很高兴扩大了Omega 专业工业自动化和过程控制产品的供应范围。现在,我们能够一站式向客户快速交付多品类的Omega产品。Omega产品具备的高品质与高可靠性使其成为了我们客户构建工业控制应用的首选。” Omega拥有超过55年历史,被业界誉为市场领导者。此次新增Omega系列产品能够让e络盟客户轻松获取更丰富的领先自动化与控制产品。e络盟客户还可获得每周5天、每天8小时的技术支持服务,包括免费在线资源、数据表、应用说明、视频和网络研讨会。 客户可通过Farnell(欧洲、中东和非洲地区)和e络盟(亚太区)购买Omega传感和过程控制产品系列,均可迅速发货。

    时间:2020-09-24 关键词: e络盟 omega 过程控制

  • 贸泽开售用于工业自动化和过程控制应用的Analog Devices AD567xR DAC

    贸泽开售用于工业自动化和过程控制应用的Analog Devices AD567xR DAC

    2020年9月23日 – 专注于引入新品并提供海量库存的电子元器件分销商贸泽电子 (Mouser Electronics) 即日起开售Analog Devices, Inc的新款AD567xR 数模转换器 (DAC)。AD567xR器件为低功耗12位和16位DAC,提供缓冲电压输出,采用2.7 V至5.5 V单电源供电。这些16通道DAC具有宽作业范围和高相对准确度,适用于工业自动化、光收发器、基站功率放大器、数据采集系统和过程控制等各类应用。 贸泽电子供应的Analog Devices AD567xR DAC提供稳定可靠的低功耗性能,包括耗电量低至2 μA的断电模式。这些DAC还具有上电复位电路,确保输出电压达到并保持在零刻度/中刻度,直至发生有效写入。这些高度集成的转换器采用紧凑的4 mm×4 mm 28引线LFCSP封装,具有1.8V逻辑兼容性和用户可选增益引脚,提供更简单的实现方式,让开发人员能够快速着手开发工业解决方案。

    时间:2020-09-23 关键词: 工业自动化 贸泽 过程控制

  • 过程控制在空分装置中的应用

      以太网光纤通道技术(FCoE),能压缩光纤通道存储数据,使之通向以太网的LAN(局域网),消除了数据中心分离存储网络的管理和成本负担。现在,我们与存储分析公司Demartek LCC的总裁Dennis MarTIn一起探讨一下这技术吧!   部署FCoE首先在硬件上有什么要求呢?在优化FCoE部署方面您有什么推荐和建议?   一般来说FCoE需要能进行数据中心桥接(data center bridging,DCB)的交换机来扩展传统以太网,使之适合传送存储流量而不丢失数据。有一部分(但不是所有)以太网供应商支持10 GbE交换机的DCB功能。同时,融合网络适配器(converged network adapter,CNA)适合FCoE。CNA可用于传统以太网和光纤通道主机总线适配器(host bus adapter,HBA),而且在同一线缆、同样时间都支持以太网和光纤通道。这些CNA无论在以太网还是在光纤通道都是10 Gbps。   部署FCoE需要哪些软件?这些软件堆栈在适应FCoE的方面程度如何?   我们从08年就开始运行FCoE,首先就是在Windows系统上。FCoE支持最近版本的Linux、Solaris等操作系统。每个CAN适配器都有合适环境下工作的驱动。而且很多CNA供应商对本地光纤通道和FCoE都使用相同套件的驱动。FCoE也支持VMware。现在,有人在努力使FCoE达到iSCSI在操作系统中的比重,但是这得看以后有多少人买它的账。   FCoE有没有满足特定需要的存储子系统?光纤通道子系统有什么功能该注意?   FCoE可以本地支持存储子系统,这一点有的供应商已经公开声明了。NetApp也已经推行了本地FCoE支持,其他厂商也是如此。FCoE fabric必须能与本地光纤通道fabric相互支持,FCoE必须支持所有的光纤通道功能。我们测试让FCoE CAN连接DCB/FCoE交换机(它们的本地光纤通道端口也连接了本地光纤通道存储系统)的服务器,看它们是否如预期那样运行。在存储系统界面的层面,FCoE相当于以10 Gbps运行的光纤通道。唯一不同在于它连接了DCB/FCoE交换机,而不是本地光纤通道交换机。         您对于FCoE部署的最佳实践有什么建议?   FCoE,我称之为“慢热技术”,应该在计划配置新数据中心、新服务器或者存储扩建的时候考虑。最大的问题是在FCoE部署过程中,得让以太网工作者了解关于存储网络的知识,还得让存储工作者懂点关于以太网的知识,因为直到现在,两者的规则还不尽相同。而布线也需要考虑。比如OM3和OM4的布线适合FCoE和10 GbE,而光纤通道则适合更快的速度。   有什么适合FCoE存储的管理工具?FCoE对第三方数据中心管理工具的支持程度如何?还有,管理工具和存储子系统在一起是不是更好?   DCB/FCoE交换机有它们自己的分区界面,但主要取决于供应商,这些界面和它们对应的光纤通道界面相似。HBA/CAN供应商使用和以前用在适配器上相同的管理界面,支持FCoE的存储供应商会把管理界面弄得和光纤通道差不多一样。   尽管我们没有测试很多第三方存储管理软件,但对于这些管理软件,FCoE和Fibre Channel应该差不多。主要的不同在于FCoE存储将和不同的交换机连接,而不是和本地光纤通道存储。   

    时间:2020-09-08 关键词: 空分装置 过程控制

  • PLC用于过程控制系统中所带来的优势

    PLC用于过程控制系统中所带来的优势

    简介 工业控制、工厂自动化以及PLC (可编程逻辑控制器)是发展成熟的技术,能够有效地节约时间、材料、能源和金钱。但从何入手呢? 设计一个完全自动化的工厂是一项巨大工程,有可能在还没有启动项目时就放弃了。 这使我们想起多年以前非洲的一位探险家,当他询问本地的一位部落男子:“如何吃掉一头大象?”,这位男子惊讶地看着探险家回答到:“我们吃大象就像吃别的任何东西一样,一次一口”。与其它大型系统开发一样,工业控制系统可以划分成许多小规模电路。下面我们就开始探讨这些细分后的电路。 过程控制流程 装配生产线是人类历史上相当新的发明创造,许多国家都在同一时期涌现出了类似的创新方案。我们将列举其中的几个示例,阐述如何演进到一个完整的自动化工厂。 Samuel Colt (美国的枪支制造商)在19世纪中叶展示了一种通用部件。早期的枪支需要独立制造每只枪的部件,然后进行组装。Colt先生展示了10只枪的通用部件,然后随机地从箱子里抓取这些部件并组装好一只枪。在20世纪初期,Henry Ford进一步拓展了大批量生产技术。他采用固定的装配厂,用卡车在工厂之间运输零部件。雇员只需要了解很少的装配知识,在以后的工作中也只进行这些操作。1954年,George Devol申请了美国专利2,988,237,这项专利标志着首台工业机器人的诞生,该机器人被命名为Unimate。20世纪60年代末期,General Motors®使用PLC (可编程逻辑控制器)组装汽车的自动变速器。被称为PLC之父的Dick Morley为GM生产了首个PLC。他的美国专利3,761,893是当前许多PLC的基础(有关上述四位发明家的详细信息,请参考:www.wikipedia.org/;相关专利请查询:http://patft.uspto.gov/netahtml/PTO/srchnum.htm)。 过程控制可以简单到何种程度? 图1给出了一个常见的家用加热器。 图1. 家用电子加热器,一个简单的过程控制示例。 加热器部件密封在一个容器内,简化系统通信。这个概念可以扩展到远端控制的恒温加热器,通信距离在几米左右,通常采用电压控制。 现在,我们可以考虑一个小型的简单过程控制系统,在图2所示工厂中需要哪些必要部件? 图2. 工厂的远程通信 长距离传输线的阻抗、EMI以及RFI (电磁及无线电干扰)使得电压控制方案的实施非常困难,这种情况下,电流环不失为简单、有效的解决方案。由基尔霍夫定律可知,电流环中任何一点的电流等于环路中其它所有点的电流之和,由此可以抵消传输线阻抗的影响。由于环路阻抗和带宽较低(几百欧姆,《 100Hz),EMI和RFI的杂散拾取最小。 PLC基本原理 电流控制环的应用始于20世纪早期的电传打字机,最先使用的是0–60mA环路,后来改为0–20mA环路,PLC系统率先加入4–20mA环路。4–20mA电流环有很多优势,将4mA作为最低通信电流,传输线断开(开路)时很容易检测到这一故障,只需两条连线即可实现远端传感器供电,大约3.5mA。4–20mA环路可以采用模拟通信,也可以采用数字通信。 在传统的分立器件设计中需要仔细计算,而且电路占用较大空间。Maxim推出了几款20mA器件,能够大大简化系统设计。我们首先考虑典型的PLC功能,如图3所示。 图3. PLC简化框图 PLC用于完成某项工作或任务。我们先检测一个物理参数,对其处理并进行决策,然后命令某个物理设备进行动作。根据这一模型,左下框显示了信号调理输出,可以采用MAX15500/MAX15501集成电路。 MAX15500/MAX15501允许选择近程电压控制或远程电流控制。从图4可以看出,除了传统的分立方案中所具备的基本通信功能外,器件中又加入了新的监测和保护功能。 图4. MAX15500/MAX15501输出调理器系列产品,器件功能包括:为1kΩ提供的±12V加载感应输出、供给750Ω的±24mA电流、100µs的14位建立时间、40µs的12位建立时间。 工厂布线受运动、震动等因素的影响,可能导致与其它连接器之间的开路或短路。为了保证设备和人身安全,需要进行安全监测。电缆发生失效时,在系统彻底失效之前会有一段间隔时间。MAX15500系列能够智能化地进行监测,管理不同的失效状况。 考虑到工厂极端的EMI、RFI、电源浪涌条件,任何监控措施都必须可靠,能够不受外界环境的干扰。MAX15500系列包含了一个最小260ms的开路、短路超时周期,这个时间周期足以避免监测嘈杂环境引起的错误报警,而且也足够捕获短暂的电缆故障。此外,器件将锁存故障并触发一个独立的硬件中断引脚报警,从而使处理器快速响应电缆短路故障。处理器收到中断后可以读取MAX15500的寄存器内容,获取准确的故障信息,清除故障中断。除了监测电缆的状况外,器件还提供其它安全功能,例如,通过检测芯片温度监控环境是否过热。可调节的电源跌落检测门限对于可靠的系统设计非常关键,电源电压检测门限可以在±10V至±24V范围调节,级差为2V。 为了保证系统安全,MAX15500/MAX15501输出还具有过流保护、对地短路保护以及高达±35V的过压保护。为满足客户需求,MAX15500/MAX15501提供可编程的超量程能力。某些用户采用满量程的105%,甚至120%进行测试或处理紧急操作(系统可能出于部分故障或强噪声环境)。MAX15500/MAX15501采用32引脚、5mm² TQFN封装,带有裸焊盘,改善散热。 MAX15500/MAX15501输出调理器符合HART®标准,HART (高速可寻址远端传感器)协议能够在4–20mA控制线路上承载双向数字信号,类似于1200波特率、用于固定电话呼叫的Bell 202协议。 MAX15500/MAX15501还具有独立的SPI™总线,减少了电气隔离所需要的光隔离器。器件采用的是特殊的自定时SPI接口,支持菊链协议。当多个SPI器件需要通过电气隔离控制时,这种模式有助于减少控制线和隔离光耦的需求。 在更小的PCB (PC板)上集成更多功能 设计分立、可选电压(单极性和双极性)或电流输出调节电路是一项极具挑战的任务,特别是当设计人员了解到需要控制满量程可变增益、针对单极性和双极性电压设置的多种复位电平、0mA和4mA电路需求时,会对系统的复杂度又进一步的认识。图5简化了这些功能设计,因为这些功能已经集成在MAX5661电流和电压输出DAC的内部。 图5. MAX5661的简化功能框图 MAX5661借助其编程功能解决了分立方案设计难题,可以方便地选择以下参数: 输出电压 单极性范围:0至+10.24V,±25% 双极性范围:±10.24V,±25% 电流输出 单极性低档范围:0至20.45mA 单极性高档范围:3.97mA至20.45mA 满量程输出增益 以10位分辨率或间隔调整到高达±25%的超范围 异步复位或清零,或预置到16位数字 这些功能提供了设计灵活性,作为模拟电源时,输出电压范围为±13.48V至±15.75V;电流输出时,输出电压摆幅为:+13.48V至+40V。差分电压输出可以通过电压输出放大器的加载/感应检测实现远程检测。故障输出中断指示开路电流输出、短路电压输出或状态清除。该功能由限流电压输出驱动;对于电流输出,压差检测器对超出规定范围的电流输出进行监测。/LDAC引脚用于控制异步DAC更新和多DAC同步系统。 上述所有功能集成在MAX5661 10mm x 10mm LQFP封装内。 利用电压和电流调理提供多PLC输出 很明显,可以利用多片MAX5661 16位器件提供其它附加功能,但是,对于需要低分辨率、低成本的PLC系统可以考虑其它方案,Maxim提供分辨率为6位至16位的DAC,拥有超过2500种不同型号的器件。该系列产品的通道选择包括:1至4通道、8通道、16通道以及32通道。通信接口包括并行、高速SPI和I²C串行总线等。另外,还可以选择快速建立时间(《 1µs)、小尺寸(SOT23、QFN、µMAX®)以及更高精度(≤ 1 LSB INL)等器件。 Maxim近期推出的高精度DAC系列产品包括MAX5134–MAX5137和MAX5138/MAX5139,这些DAC包括六路可选的缓冲电压输出。所有器件采用+2.7V至+5.25V单电源供电,提供3线SPI/QSPI™/MICROWIRE™/DSP兼容串行接口。 MAX5134–MAX5137为引脚兼容、软件兼容的16位和12位DAC。MAX5134为四通道16位器件,INL为±8。MAX5135同样为四通道DAC,分辨率为12位,INL为±1;MAX5136为双通道16位器件,INL为±8;MAX5137为双通道12位器件,INL为±1。每款DAC都提供超小尺寸(4mm²)、24引脚TQFN封装,工作在-40°C至+105°C扩展工业级温度范围。 MAX5138/MAX5139都是单通道、引脚和软件兼容的DAC,提供小尺寸(3mm²)、16引脚TQFN封装。MAX5138为16位DAC,INL典型值为±2;MAX5139为12位DAC,INL典型值为±0.25。 高性能MAX5134–MAX5139内置10ppm/°C的高精度基准,也可以使用外部基准,以支持满摆幅输出。利用一个硬件输入引脚控制DAC的输出设置,可以在上电或复位时将DAC输出置于0或中间值。该特性为阀门驱动或其它需要在上电时处于关闭状态变送器应用提供了附加保护。硬件加载DAC (/LDAC)引脚支持多片DAC的同步更新。串行接口提供/READY输出,简化多片MAX5134–MAX5139、MAX15500/MAX15501以及MAX5661器件链接时的控制。 对于高性价比的4路输出PLC应用,可以选择MAX5135四通道12位DAC和四通道MAX15500输出调理器。 结论 Maxim DAC的高线性度和输出调理功能使得这些器件能够理想用于高精度控制和仪器仪表。Maxim器件为设计人员提供了一个简单、明智的选择,能够消除分立电路复杂、大尺寸的设计困扰。简化设计意味着可以随意选择电压或电流驱动,使繁忙的工程师能够专注于系统设计的关键部分,减少浪费,提供更加有效的高精度控制,进而改进我们的环境。

    时间:2020-07-12 关键词: plc 过程控制

  • GEPPS在铁矿选厂过程控制系统中的应用———GEPPS在铁矿选厂过程控制系统中的应用

    GEPPS在铁矿选厂过程控制系统中的应用———GEPPS在铁矿选厂过程控制系统中的应用

    [编辑简介]:本文以包钢集团巴润选矿生产线为例,介绍GE PPS 系统在选矿厂全流程自动控制的应用。主要说明了系统结构和产品选型,并给出典型的系统流程图。[摘要]:本文描述了选矿厂全流程自动控制,结合GE PPS在包钢集团巴润选矿生产线上的应用。[关键词]:GE PPS 过程控制系统 项目名称  包钢巴润矿业有限公司选矿过程控制应用背景  包钢集团巴润矿业选矿项目设计规模1000万吨/年原矿处理能力。整个流程包括:闭路破碎、磨矿选别、弱磁选、反浮降硫选矿、尾矿浓缩。客户需求  由于北方气候寒冷,选矿厂又有很多大型机械设备,这就要求控制系统的硬件产品能很好得用在苛刻的环境下。用户希望通过自动化系统提升整个公司的管理,达到国际先进水平。同时,系统还需要和磨机、破碎机等设备通讯,对系统得开放性也提出了很高的要求。解决方案  GE PPS针对用户的需求提供了新一代混合控制系统PPS来实施铁选矿厂的生产控制。本项目的控制系统由三部分组成,分别为:人机界面、控制器和I/O卡件。整个系统结构图如下:   人机界面部分,采用最新的 PPS 软件,具体配置如下:两台工程师站,四台操作员站,一台应用服务器,一台历史服务器。工程师站的主要功能在于实现过程系统控制策略的设计、开发和文档生成以及对在操作员控制台上运行的可视化显示画面进行组态,工程师站还能够运行操作员控制台的可视化显示画面并当作操作员控制台使用。操作员站兼历史数据站负责提供可视化显示画面、趋势图、PID 面板和系统的报警列表以及历史趋势的记录功能,操作员能够对过程控制器进行监视控制并确认报警,操作员站界面选用了代表当今最新技术的HMI软件Cimplicity。  历史数据服务器存储过程实时数据,提供工厂管理网及MES系统长周期历史数据。控制器部分:采用高性能的 PAC Rx3i 控制器,通过以太网与上位机连接。GE 公司提供的 PAC Rx3i 控制器是一款领先行业的高性能控制器,主频高达1GHZ,用户内存可达64MB,并且是一款真正的多功能控制器。控制逻辑组态符合 IEC 61131(LD、FBD、IL和 SFC)要求。支持100Mbps EGD 以太网 I/O协议,以实现在子系统控制器和系统可视化软件中通讯。  I/O 卡件部分:采用GE公司高性能的PAC3iIO模块。PAC3i IO具有基于机架式安装,维护方便、支持热插拔并带有完善的自诊断功能特点。卡件精度高,模拟量达16Bit分辨率。  整个系统约5000点I/O,系统同时和多个第三方设备进行通信,包括磨机控制系统,西门子S7 300,采用Profibus DP,,系统还通过OPC和AB PLC通信。系统流程图如下: 实施结果  采用PPS方便了系统控制策略的生成,采用统一数据库变量名,简化了系统开发和维护的时间。高性能的控制器提升了运行效率,提供的解决方案最大程度的保护了用户的投资。系统对连续、离散过程良好的支持,为整个全流程优化控制的实施创造了条件。关于GE智能平台  GE智能平台是一个提供高新技术的企业,它为世界各地的用户提供用于自动化控制的软件、硬件和技术服务以及嵌入式计算。我们为用户提供一个独特的,灵活的,超可靠的技术基础,使得他们在包括能源、水处理、消费品、国防和防御,以及通讯等产业领域获得持续的优势。GE智能平台是一家总部设在美国弗吉尼亚州的夏洛茨维尔的全球性企业,是GE企业解决方案集团公司的一员。想获取更多信息,请访问:/cn。

    时间:2019-03-29 关键词: 嵌入式开发 系统中的应用 铁矿 gepps 过程控制

  • 基于Nios II的过程控制实验装置的研究

    基于Nios II的过程控制实验装置的研究

    利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。1. 功能描述1.1 整体设计思路利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。通过SOPC设计技术可以很容易的构造多个UART接口,降低系统的设计成本。在Quartus中可以用VHDL/Verilog语言写入总线复用模块,解决SRAM、SDRAM、FLASH之间存在的总线冲突问题。显示和操作部分的硬件主要在Altera的CycloneⅡEPSC35板上由SOPC Builder配置实现。传感检测和信号处理部分则通过系统扩展来实现。特别是放大和A/D转换部分,必须由专门的模块来处理。1.2 系统的主要功能旋风预热器仿真主要实现对水泥回转窑模型在模拟工作状态下的参数检测和控制。由传感器采集的数据经过放大和修正送入A/D转换芯片,转换后的数据送入作为下位机的AT89S52系列单片机中,通过串口通信的方式将数据流送入作为上位机的DE2开发板中,利用NiosⅡ软核的VGA视频显示功能将采集的数据显示为状态曲线。同时,利用FPGA快速反应的优点,实现对下位机部分的控制,从而对模型的模拟工作状态进行调整和监控。整个旋风筒模型由透明的有机玻璃构成,具有很强的观赏性。LED灯的提示和LCD的数字显示更加提高了整体的实用性。由于系统的各个单元之间存在独立性,因此,本系统可以做为教学上的演示模型。传感器的用法,A/D的用法,放大的原理以及通信和FPGA的使用都可以独立的用来作为教学模型。在旋风筒模型上预留了各成120度的三维测量孔,装入传感器后可以同时在X、Y、Z三维场中检测,实现同一参数的三维测量。因此,该系统在科研方面也具有很大的实用性。2. 系统模块概述本系统主要由检测单元、信号放大修正单元、串口通信单元、显示单元组成。各个部分通过单片机和FPGA之间的通信联系在一起。构成一个完整的集检测、通信、显示、控制为一体的系统。本系统只测量模拟工作下一维场中的状态参数。风机的控制使用专用的晶闸管智能控制模块,直接由0~5V电压控制输出0~220V的风机电源电压。方案的硬件设计框图如图1所示。3. 模块功能描述3.1 显示单元整个处理过程就是对四路传感器所采集的实时数据进行分时显示。通过按键操作VGA,让四路参数状态的曲线可以分屏显示。显示屏采用普通的PC机显示器,显示像素为480640。当第一路数据流通过串口通信送入上位机后,软核处理器将该组数据流迅速进行暂存,按键操作VGA显示函数选择屏数并调用这部分数据在显示屏上依次点亮对应的像素点,从而可以将整个数据流所对应的状态曲线动态的显示在屏幕上,达到可视化的监控效果。在第一屏进行画线显示的同时,处理器将继续对各路参数的数据流进行接收和缓存。按键操作进入第二屏后,开始对第二个参数状态进行画线和实时数值描述,四路状态曲线全部画完结束返回。 在这个过程中,处理器同时调用字符液晶显示和数码管的显示函数,对当前数据的平均值和瞬时值进行准确的数值描述。LED用于提示当前分屏显示的屏数,即提示目前采集的参数类型。按键用于控制风机转速。显示单元的系统软件设计框图如图23.2 检测单元由于传感器的输出电压变化都是在毫伏级,因此必须由稳定的放大和滤波电路将采集信号进行放大和修正,达到可以满足数据传输的电平要求和线性要求。经过放大的信号送入A/D转换芯片中,将模拟信号转换成数字信号后再由单片机送入NiosⅡ中。旋风筒模拟工作时,分别由传感器将温度、风机转速、气压、气体流量等参数值进行采集。温度采用高精度的铂热敏电阻测量。气压和空气流量采用由Honeywell公司生产的专用检测传感器进行测量。风机转速通过单片机对光电开关开合产生的脉冲进行计数从而予以确定。传感器将采集的信号通过放大修正单元的处理后直接送给单片机。四路信号采用同时采集,分时传送的方式发送给上位机。在NiosⅡ对第一路送入的数据开始进行显示处理,同时将第二路数据送入。3.3 通信单元采用串口多机通信的方式。在多路数据传送方法上,可以选择485通信的方式。多路下位机同时挂在485的通信输出端,分时的传送数据。但是这种方式如果有传送速度上的要求则有很大的弊端,传送速度会比较慢。本系统充分发挥CycloneⅡ处理器可以定制多个UART的强大功能,实现上位机对多路数据的同时接收和处理。在速度上要比485的方式要快。从而实现对模拟环境的迅速监控。下位机采用AT89S52系列单片机,同样支持串行通信。由于通信距离比较近,为了避免资源的浪费,不建议采用RS232或485的串行通信方式。在今后的系统扩展上可以将232通信添加进去。检测和通信单元的系统软件设计流程如图34. 软件设计4.1 基于Nios IDE的软件设计由SOPC Builder构建成的硬件系统首先必须下载到FPGA中,在FPGA上生成对应外设的引脚,然后才能够通过IDE烧程序给外设,使外设可以正常的运行。也就是说对主程序部分必须要在IDE模式下进行调试,这是整个过程中感觉效率比较低的地方,每次修改的程序都必须通过再次运行Run As Hardware重新编译才能写入硬件中,造成调试进度很慢。程序可以在SRAM或SDRAM上运行。为了保证断电后数据不丢失,采用FLASH Programmer把数据写入FLASH,然后把CPU的ResetAddress地址指向FLASH。通电后系统会自动对FPGA进行配置,并运行内部程序。该部分的程序主要是设置多个串口通信的时序以及VGA显示的内容。程序流程图如图4所示。5. 结果分析经过检测和调试,系统的整体功能完全可以正常实现。系统采用Nios软核结合可编程逻辑阵列对旋风预热器的仿真模型的模拟工作状态进行检测和控制。实现了多线程的串口通信和VGA的显示,充分发挥了FPGA快速响应的实用性特点和支持CPU操作的强大功能。使用SOPC Builder可以方便的对系统的扩展部分和自定义部分进行添加和删除,根据需要开发自己的IP核优化系统。充分利用SOPC的特点来缩短设计和开发周期。利用SOPC Builder配置了四个串口来完成这一要求,而这一特殊用法却是其它处理器如单片机,ARAM等无法实现的。

    时间:2018-11-06 关键词: 装置 ii NIOS uc/os 过程控制

  • 过程控制和PLC设计指南

    过程控制和PLC设计指南

    简介工业控制、工厂自动化以及PLC (可编程逻辑控制器)是发展成熟的技术,能够有效地节约时间、材料、能源和金钱。但从何入手呢? 设计一个完全自动化的工厂是一项巨大工程,有可能在还没有启动项目时就放弃了。这使我们想起多年以前非洲的一位探险家,当他询问本地的一位部落男子:“如何吃掉一头大象?”,这位男子惊讶地看着探险家回答到:“我们吃大象就像吃别的任何东西一样,一次一口”。与其它大型系统开发一样,工业控制系统可以划分成许多小规模电路。下面我们就开始探讨这些细分后的电路。过程控制流程装配生产线是人类历史上相当新的发明创造,许多国家都在同一时期涌现出了类似的创新方案。我们将列举其中的几个示例,阐述如何演进到一个完整的自动化工厂。Samuel Colt (美国的*制造商)在19世纪中叶展示了一种通用部件。早期的*需要独立制造每只枪的部件,然后进行组装。Colt先生展示了10只枪的通用部件,然后随机地从箱子里抓取这些部件并组装好一只枪。在20世纪初期,Henry Ford进一步拓展了大批量生产技术。他采用固定的装配厂,用卡车在工厂之间运输零部件。雇员只需要了解很少的装配知识,在以后的工作中也只进行这些操作。1954年,George Devol申请了美国专利2,988,237,这项专利标志着首台工业机器人的诞生,该机器人被命名为Unimate。20世纪60年代末期,General Motors?使用PLC (可编程逻辑控制器)组装汽车的自动变速器。被称为PLC之父的Dick Morley为GM生产了首个PLC。他的美国专利3,761,893是当前许多PLC的基础(有关上述四位发明家的详细信息,请参考:www.wikipedia.org/;相关专利请查询:http://patft.uspto.gov/netahtml/PTO/srchnum.htm)。过程控制可以简单到何种程度? 图1给出了一个常见的家用加热器。图1. 家用电子加热器,一个简单的过程控制示例。加热器部件密封在一个容器内,简化系统通信。这个概念可以扩展到远端控制的恒温加热器,通信距离在几米左右,通常采用电压控制。现在,我们可以考虑一个小型的简单过程控制系统,在图2所示工厂中需要哪些必要部件?图2. 工厂的远程通信长距离传输线的阻抗、EMI以及RFI (电磁及无线电干扰)使得电压控制方案的实施非常困难,这种情况下,电流环不失为简单、有效的解决方案。由基尔霍夫定律可知,电流环中任何一点的电流等于环路中其它所有点的电流之和,由此可以抵消传输线阻抗的影响。由于环路阻抗和带宽较低(几百欧姆,< 100Hz),EMI和RFI的杂散拾取最小。PLC基本原理电流控制环的应用始于20世纪早期的电传打字机,最先使用的是0–60mA环路,后来改为0–20mA环路,PLC系统率先加入4–20mA环路。4–20mA电流环有很多优势,将4mA作为最低通信电流,传输线断开(开路)时很容易检测到这一故障,只需两条连线即可实现远端传感器供电,大约3.5mA。4–20mA环路可以采用模拟通信,也可以采用数字通信。在传统的分立器件设计中需要仔细计算,而且电路占用较大空间。Maxim推出了几款20mA器件,能够大大简化系统设计。我们首先考虑典型的PLC功能,如图3所示。图3. PLC简化框图PLC用于完成某项工作或任务。我们先检测一个物理参数,对其处理并进行决策,然后命令某个物理设备进行动作。根据这一模型,左下框显示了信号调理输出,可以采用MAX15500/MAX15501集成电路。MAX15500/MAX15501允许选择近程电压控制或远程电流控制。从图4可以看出,除了传统的分立方案中所具备的基本通信功能外,器件中又加入了新的监测和保护功能。图4. MAX15500/MAX15501输出调理器系列产品,器件功能包括:为1kΩ提供的±12V加载感应输出、供给750Ω的±24mA电流、100µs的14位建立时间、40µs的12位建立时间。工厂布线受运动、震动等因素的影响,可能导致与其它连接器之间的开路或短路。为了保证设备和人身安全,需要进行安全监测。电缆发生失效时,在系统彻底失效之前会有一段间隔时间。MAX15500系列能够智能化地进行监测,管理不同的失效状况。考虑到工厂极端的EMI、RFI、电源浪涌条件,任何监控措施都必须可靠,能够不受外界环境的干扰。MAX15500系列包含了一个最小260ms的开路、短路超时周期,这个时间周期足以避免监测嘈杂环境引起的错误报警,而且也足够捕获短暂的电缆故障。此外,器件将锁存故障并触发一个独立的硬件中断引脚报警,从而使处理器快速响应电缆短路故障。处理器收到中断后可以读取MAX15500的寄存器内容,获取准确的故障信息,清除故障中断。除了监测电缆的状况外,器件还提供其它安全功能,例如,通过检测芯片温度监控环境是否过热。可调节的电源跌落检测门限对于可靠的系统设计非常关键,电源电压检测门限可以在±10V至±24V范围调节,级差为2V。为了保证系统安全,MAX15500/MAX15501输出还具有过流保护、对地短路保护以及高达±35V的过压保护。为满足客户需求,MAX15500/MAX15501提供可编程的超量程能力。某些用户采用满量程的105%,甚至120%进行测试或处理紧急操作(系统可能出于部分故障或强噪声环境)。MAX15500/MAX15501采用32引脚、5mm² TQFN封装,带有裸焊盘,改善散热。MAX15500/MAX15501输出调理器符合HART®标准,HART (高速可寻址远端传感器)协议能够在4–20mA控制线路上承载双向数字信号,类似于1200波特率、用于固定电话呼叫的Bell 202协议。MAX15500/MAX15501还具有独立的SPI™总线,减少了电气隔离所需要的光隔离器。器件采用的是特殊的自定时SPI接口,支持菊链协议。当多个SPI器件需要通过电气隔离控制时,这种模式有助于减少控制线和隔离光耦的需求。在更小的PCB (PC板)上集成更多功能设计分立、可选电压(单极性和双极性)或电流输出调节电路是一项极具挑战的任务,特别是当设计人员了解到需要控制满量程可变增益、针对单极性和双极性电压设置的多种复位电平、0mA和4mA电路需求时,会对系统的复杂度又进一步的认识。图5简化了这些功能设计,因为这些功能已经集成在MAX5661电流和电压输出DAC的内部。图5. MAX5661的简化功能框图MAX5661借助其编程功能解决了分立方案设计难题,可以方便地选择以下参数:输出电压单极性范围:0至+10.24V,±25%双极性范围:±10.24V,±25%电流输出单极性低档范围:0至20.45mA单极性高档范围:3.97mA至20.45mA满量程输出增益以10位分辨率或间隔调整到高达±25%的超范围异步复位或清零,或预置到16位数字这些功能提供了设计灵活性,作为模拟电源时,输出电压范围为±13.48V至±15.75V;电流输出时,输出电压摆幅为:+13.48V至+40V。差分电压输出可以通过电压输出放大器的加载/感应检测实现远程检测。故障输出中断指示开路电流输出、短路电压输出或状态清除。该功能由限流电压输出驱动;对于电流输出,压差检测器对超出规定范围的电流输出进行监测。/LDAC引脚用于控制异步DAC更新和多DAC同步系统。上述所有功能集成在MAX5661 10mm x 10mm LQFP封装内。利用电压和电流调理提供多PLC输出很明显,可以利用多片MAX5661 16位器件提供其它附加功能,但是,对于需要低分辨率、低成本的PLC系统可以考虑其它方案,Maxim提供分辨率为6位至16位的DAC,拥有超过2500种不同型号的器件。该系列产品的通道选择包括:1至4通道、8通道、16通道以及32通道。通信接口包括并行、高速SPI和I²C串行总线等。另外,还可以选择快速建立时间(< 1µs)、小尺寸(SOT23、QFN、µMAX®)以及更高精度(≤ 1 LSB INL)等器件。Maxim近期推出的高精度DAC系列产品包括MAX5134–MAX5137和MAX5138/MAX5139,这些DAC包括六路可选的缓冲电压输出。所有器件采用+2.7V至+5.25V单电源供电,提供3线SPI/QSPI™/MICROWIRE™/DSP兼容串行接口。MAX5134–MAX5137为引脚兼容、软件兼容的16位和12位DAC。MAX5134为四通道16位器件,INL为±8。MAX5135同样为四通道DAC,分辨率为12位,INL为±1;MAX5136为双通道16位器件,INL为±8;MAX5137为双通道12位器件,INL为±1。每款DAC都提供超小尺寸(4mm²)、24引脚TQFN封装,工作在-40°C至+105°C扩展工业级温度范围。MAX5138/MAX5139都是单通道、引脚和软件兼容的DAC,提供小尺寸(3mm²)、16引脚TQFN封装。MAX5138为16位DAC,INL典型值为±2;MAX5139为12位DAC,INL典型值为±0.25。高性能MAX5134–MAX5139内置10ppm/°C的高精度基准,也可以使用外部基准,以支持满摆幅输出。利用一个硬件输入引脚控制DAC的输出设置,可以在上电或复位时将DAC输出置于0或中间值。该特性为阀门驱动或其它需要在上电时处于关闭状态变送器应用提供了附加保护。硬件加载DAC (/LDAC)引脚支持多片DAC的同步更新。串行接口提供/READY输出,简化多片MAX5134–MAX5139、MAX15500/MAX15501以及MAX5661器件链接时的控制。对于高性价比的4路输出PLC应用,可以选择MAX5135四通道12位DAC和四通道MAX15500输出调理器。结论Maxim DAC的高线性度和输出调理功能使得这些器件能够理想用于高精度控制和仪器仪表。Maxim器件为设计人员提供了一个简单、明智的选择,能够消除分立电路复杂、大尺寸的设计困扰。简化设计意味着可以随意选择电压或电流驱动,使繁忙的工程师能够专注于系统设计的关键部分,减少浪费,提供更加有效的高精度控制,进而改进我们的环境。

    时间:2018-10-17 关键词: plc 电源技术解析 可编程逻辑控制器 过程控制

  • 基于Nios II的过程控制实验装置的研究

    利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。1. 功能描述1.1 整体设计思路利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。通过SOPC设计技术可以很容易的构造多个UART接口,降低系统的设计成本。在Quartus中可以用VHDL/Verilog语言写入总线复用模块,解决SRAM、SDRAM、FLASH之间存在的总线冲突问题。显示和操作部分的硬件主要在Altera的CycloneⅡEPSC35板上由SOPC Builder配置实现。传感检测和信号处理部分则通过系统扩展来实现。特别是放大和A/D转换部分,必须由专门的模块来处理。1.2 系统的主要功能旋风预热器仿真主要实现对水泥回转窑模型在模拟工作状态下的参数检测和控制。由传感器采集的数据经过放大和修正送入A/D转换芯片,转换后的数据送入作为下位机的AT89S52系列单片机中,通过串口通信的方式将数据流送入作为上位机的DE2开发板中,利用NiosⅡ软核的VGA视频显示功能将采集的数据显示为状态曲线。同时,利用FPGA快速反应的优点,实现对下位机部分的控制,从而对模型的模拟工作状态进行调整和监控。整个旋风筒模型由透明的有机玻璃构成,具有很强的观赏性。LED灯的提示和LCD的数字显示更加提高了整体的实用性。由于系统的各个单元之间存在独立性,因此,本系统可以做为教学上的演示模型。传感器的用法,A/D的用法,放大的原理以及通信和FPGA的使用都可以独立的用来作为教学模型。在旋风筒模型上预留了各成120度的三维测量孔,装入传感器后可以同时在X、Y、Z三维场中检测,实现同一参数的三维测量。因此,该系统在科研方面也具有很大的实用性。2. 系统模块概述本系统主要由检测单元、信号放大修正单元、串口通信单元、显示单元组成。各个部分通过单片机和FPGA之间的通信联系在一起。构成一个完整的集检测、通信、显示、控制为一体的系统。本系统只测量模拟工作下一维场中的状态参数。风机的控制使用专用的晶闸管智能控制模块,直接由0~5V电压控制输出0~220V的风机电源电压。方案的硬件设计框图如图1所示。3. 模块功能描述3.1 显示单元整个处理过程就是对四路传感器所采集的实时数据进行分时显示。通过按键操作VGA,让四路参数状态的曲线可以分屏显示。显示屏采用普通的PC机显示器,显示像素为480640。当第一路数据流通过串口通信送入上位机后,软核处理器将该组数据流迅速进行暂存,按键操作VGA显示函数选择屏数并调用这部分数据在显示屏上依次点亮对应的像素点,从而可以将整个数据流所对应的状态曲线动态的显示在屏幕上,达到可视化的监控效果。在第一屏进行画线显示的同时,处理器将继续对各路参数的数据流进行接收和缓存。按键操作进入第二屏后,开始对第二个参数状态进行画线和实时数值描述,四路状态曲线全部画完结束返回。 在这个过程中,处理器同时调用字符液晶显示和数码管的显示函数,对当前数据的平均值和瞬时值进行准确的数值描述。LED用于提示当前分屏显示的屏数,即提示目前采集的参数类型。按键用于控制风机转速。显示单元的系统软件设计框图如图23.2 检测单元由于传感器的输出电压变化都是在毫伏级,因此必须由稳定的放大和滤波电路将采集信号进行放大和修正,达到可以满足数据传输的电平要求和线性要求。经过放大的信号送入A/D转换芯片中,将模拟信号转换成数字信号后再由单片机送入NiosⅡ中。旋风筒模拟工作时,分别由传感器将温度、风机转速、气压、气体流量等参数值进行采集。温度采用高精度的铂热敏电阻测量。气压和空气流量采用由Honeywell公司生产的专用检测传感器进行测量。风机转速通过单片机对光电开关开合产生的脉冲进行计数从而予以确定。传感器将采集的信号通过放大修正单元的处理后直接送给单片机。四路信号采用同时采集,分时传送的方式发送给上位机。在NiosⅡ对第一路送入的数据开始进行显示处理,同时将第二路数据送入。3.3 通信单元采用串口多机通信的方式。在多路数据传送方法上,可以选择485通信的方式。多路下位机同时挂在485的通信输出端,分时的传送数据。但是这种方式如果有传送速度上的要求则有很大的弊端,传送速度会比较慢。本系统充分发挥CycloneⅡ处理器可以定制多个UART的强大功能,实现上位机对多路数据的同时接收和处理。在速度上要比485的方式要快。从而实现对模拟环境的迅速监控。下位机采用AT89S52系列单片机,同样支持串行通信。由于通信距离比较近,为了避免资源的浪费,不建议采用RS232或485的串行通信方式。在今后的系统扩展上可以将232通信添加进去。检测和通信单元的系统软件设计流程如图34. 软件设计4.1 基于Nios IDE的软件设计由SOPC Builder构建成的硬件系统首先必须下载到FPGA中,在FPGA上生成对应外设的引脚,然后才能够通过IDE烧程序给外设,使外设可以正常的运行。也就是说对主程序部分必须要在IDE模式下进行调试,这是整个过程中感觉效率比较低的地方,每次修改的程序都必须通过再次运行Run As Hardware重新编译才能写入硬件中,造成调试进度很慢。程序可以在SRAM或SDRAM上运行。为了保证断电后数据不丢失,采用FLASH Programmer把数据写入FLASH,然后把CPU的ResetAddress地址指向FLASH。通电后系统会自动对FPGA进行配置,并运行内部程序。该部分的程序主要是设置多个串口通信的时序以及VGA显示的内容。程序流程图如图4所示。5. 结果分析经过检测和调试,系统的整体功能完全可以正常实现。系统采用Nios软核结合可编程逻辑阵列对旋风预热器的仿真模型的模拟工作状态进行检测和控制。实现了多线程的串口通信和VGA的显示,充分发挥了FPGA快速响应的实用性特点和支持CPU操作的强大功能。使用SOPC Builder可以方便的对系统的扩展部分和自定义部分进行添加和删除,根据需要开发自己的IP核优化系统。充分利用SOPC的特点来缩短设计和开发周期。利用SOPC Builder配置了四个串口来完成这一要求,而这一特殊用法却是其它处理器如单片机,ARAM等无法实现的。

    时间:2018-09-10 关键词: 装置 ii NIOS 过程控制

  • 测量仪表流量需具备的要求-应用于过程控制

    流量仪表广泛应用于过程控制,流量仪表在过程控制中的作用是对密封管道中的流体流量进行检测,必要时还将流量测量仪表与调节仪表、执行器等组成调节系统,将流量稳定在合适的范围,从而实现过程的稳定性。流量测量仪表在过程控制中担当这样一个特定的任务,因此需要满足一下一些要求。1、性能稳定①流量测量仪表的输出应具备良好的稳定性,如果流量信号本身有噪声,应可通过表内的阻尼调整,使示值稳定到便于读数。在与调节器组成调节系统时,应使调节器输出无明显振荡。②流量测量仪表表示值的环境温度影响应在规定的技术指标范围内。③仪表应具有良好的长期稳定性。2、可靠性要求①仪表应具有高度的可靠性.现代工业装置趋向于大型化的连续过程,仪表故障容易导致过程的不稳定,而对安装在管道上的流量计一旦发生故障,又不可能为了修理特地将流程停下来,因此仪表制造和系统设计都要首先考虑可靠性,包括用于温度补偿的热电阻的可靠性。有些仪表制造商对相比之下容易发生故障不便维修的部件实行双重化。也有一些制造商设计了在不断流条件下更换传感器的方法。有的电磁流量计制造商提供了不断流更换电极的方法和工具,这些都为提高可靠性创造了良好的条件。②故障诊断。仪表一旦发生故障,故障诊断部分应能自动提示发生故障的部位和故障性质,以便维修者缩短排除故障的时间。在仪表数字通信的方法将诊断信息送入计算机后,计算机可对仪表的运行状况进行监视,在仪表故障时发出报警信号,并显示故障内容,甚至采取必要的安全措施。3、抗干扰能力强①抗振动干扰能力。流量传感器大多安装在管道上,现场环境条件较恶劣,其中振动式一大干扰,所以流量传感器、转换器等都应有较强的抗干扰能力。有些涡街流量计和科里奥利质量流量计就是因为抗振动干扰能力不够理想,在现场用不好,出现“无中生有”和“示值偏高”等现象②抗射频干扰能力。在安装流量计的工业现场有多种干扰源,例如厂房内的行车开过,铲车开过或附近有人使用对讲机,都会引起某些流量测量仪表示值升高,这是因为行车中的电器、铲车的火花塞发出的射频电磁波,对讲机天线发出的射频电磁波经某些途径进入仪表,干扰其工作。近几年,人们对射频干扰影响开始重视起来。测量仪表增设射频干扰影响指标,并采取很多措施提高抗干扰能力。4、影响时间短有许多流量测量仪表与调节器等一起组成调节系统,要求流量测量仪表的响应时间在1s以内。在流量定值调节系统中,流量测量环节的总时间常数如果大于1s,就可能对调节品质产生明显影响,严重时导致系统振荡,无法工作

    时间:2018-08-13 关键词: 仪表流量 过程控制

  • 基于Nios II的过程控制实验装置研究

    利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。  1. 功能描述  1.1 整体设计思路  利用SOPC强大的IP核和容易配置的优势简化设计流程。充分发挥NiosⅡ强大的并行处理能力。该系统主要涉及多个下位机与FPGA的通信问题。通过SOPC设计技术可以很容易的构造多个UART接口,降低系统的设计成本。在Quartus中可以用VHDL/Verilog语言写入总线复用模块,解决SRAM、SDRAM、FLASH之间存在的总线冲突问题。  显示和操作部分的硬件主要在Altera的CycloneⅡEPSC35板上由SOPC Builder配置实现。传感检测和信号处理部分则通过系统扩展来实现。特别是放大和A/D转换部分,必须由专门的模块来处理。  1.2 系统的主要功能  旋风预热器仿真主要实现对水泥回转窑模型在模拟工作状态下的参数检测和控制。由传感器采集的数据经过放大和修正送入A/D转换芯片,转换后的数据送入作为下位机的AT89S52系列单片机中,通过串口通信的方式将数据流送入作为上位机的DE2开发板中,利用NiosⅡ软核的VGA视频显示功能将采集的数据显示为状态曲线。  同时,利用FPGA快速反应的优点,实现对下位机部分的控制,从而对模型的模拟工作状态进行调整和监控。整个旋风筒模型由透明的有机玻璃构成,具有很强的观赏性。LED灯的提示和LCD的数字显示更加提高了整体的实用性。由于系统的各个单元之间存在独立性,因此,本系统可以做为教学上的演示模型。传感器的用法,A/D的用法,放大的原理以及通信和FPGA的使用都可以独立的用来作为教学模型。在旋风筒模型上预留了各成120度的三维测量孔,装入传感器后可以同时在X、Y、Z三维场中检测,实现同一参数的三维测量。因此,该系统在科研方面也具有很大的实用性。  2. 系统模块概述  本系统主要由检测单元、信号放大修正单元、串口通信单元、显示单元组成。各个部分通过单片机和FPGA之间的通信联系在一起。构成一个完整的集检测、通信、显示、控制为一体的系统。本系统只测量模拟工作下一维场中的状态参数。风机的控制使用专用的晶闸管智能控制模块,直接由0~5V电压控制输出0~220V的风机电源电压。  方案的硬件设计框图如图1所示。    3. 模块功能描述  3.1 显示单元  整个处理过程就是对四路传感器所采集的实时数据进行分时显示。通过按键操作VGA,让四路参数状态的曲线可以分屏显示。显示屏采用普通的PC机显示器,显示像素为480640。当第一路数据流通过串口通信送入上位机后,软核处理器将该组数据流迅速进行暂存,按键操作VGA显示函数选择屏数并调用这部分数据在显示屏上依次点亮对应的像素点,从而可以将整个数据流所对应的状态曲线动态的显示在屏幕上,达到可视化的监控效果。  在第一屏进行画线显示的同时,处理器将继续对各路参数的数据流进行接收和缓存。按键操作进入第二屏后,开始对第二个参数状态进行画线和实时数值描述,四路状态曲线全部画完结束返回。 在这个过程中,处理器同时调用字符液晶显示和数码管的显示函数,对当前数据的平均值和瞬时值进行准确的数值描述。LED用于提示当前分屏显示的屏数,即提示目前采集的参数类型。按键用于控制风机转速。显示单元的系统软件设计框图如图2  3.2 检测单元  由于传感器的输出电压变化都是在毫伏级,因此必须由稳定的放大和滤波电路将采集信号进行放大和修正,达到可以满足数据传输的电平要求和线性要求。经过放大的信号送入A/D转换芯片中,将模拟信号转换成数字信号后再由单片机送入NiosⅡ中。  旋风筒模拟工作时,分别由传感器将温度、风机转速、气压、气体流量等参数值进行采集。温度采用高精度的铂热敏电阻测量。气压和空气流量采用由Honeywell公司生产的专用检测传感器进行测量。风机转速通过单片机对光电开关开合产生的脉冲进行计数从而予以确定。传感器将采集的信号通过放大修正单元的处理后直接送给单片机。四路信号采用同时采集,分时传送的方式发送给上位机。在NiosⅡ对第一路送入的数据开始进行显示处理,同时将第二路数据送入。  3.3 通信单元  采用串口多机通信的方式。在多路数据传送方法上,可以选择485通信的方式。多路下位机同时挂在485的通信输出端,分时的传送数据。但是这种方式如果有传送速度上的要求则有很大的弊端,传送速度会比较慢。本系统充分发挥CycloneⅡ处理器可以定制多个UART的强大功能,实现上位机对多路数据的同时接收和处理。在速度上要比485的方式要快。从而实现对模拟环境的迅速监控。下位机采用AT89S52系列单片机,同样支持串行通信。由于通信距离比较近,为了避免资源的浪费,不建议采用RS232或485的串行通信方式。在今后的系统扩展上可以将232通信添加进去。  检测和通信单元的系统软件设计流程如图3    4. 软件设计  4.1 基于Nios IDE的软件设计  由SOPC Builder构建成的硬件系统首先必须下载到FPGA中,在FPGA上生成对应外设的引脚,然后才能够通过IDE烧程序给外设,使外设可以正常的运行。也就是说对主程序部分必须要在IDE模式下进行调试,这是整个过程中感觉效率比较低的地方,每次修改的程序都必须通过再次运行Run As Hardware重新编译才能写入硬件中,造成调试进度很慢。程序可以在SRAM或SDRAM上运行。  为了保证断电后数据不丢失,采用FLASH Programmer把数据写入FLASH,然后把CPU的ResetAddress地址指向FLASH。通电后系统会自动对FPGA进行配置,并运行内部程序。该部分的程序主要是设置多个串口通信的时序以及VGA显示的内容。程序流程图如图4所示。    5. 结果分析  经过检测和调试,系统的整体功能完全可以正常实现。系统采用Nios软核结合可编程逻辑阵列对旋风预热器的仿真模型的模拟工作状态进行检测和控制。实现了多线程的串口通信和VGA的显示,充分发挥了FPGA快速响应的实用性特点和支持CPU操作的强大功能。使用SOPC Builder可以方便的对系统的扩展部分和自定义部分进行添加和删除,根据需要开发自己的IP核优化系统。充分利用SOPC的特点来缩短设计和开发周期。  利用SOPC Builder配置了四个串口来完成这一要求,而这一特殊用法却是其它处理器如单片机,ARAM等无法实现的。

    时间:2018-08-02 关键词: 装置 ii NIOS 过程控制

  • 0201/01005元件贴装的贴片过程控制

    在贴片过程中,关键控制因素有基板平整的支撑、真空关闭转为吹气的控制、贴片压力的控制,以及贴片的精 度和稳定性。基板进入贴片机后,传输导轨将基板两边夹住,同时支撑平台上升,将板支撑住并继续上升到贴片高度。在此 过程中,由于外力的作用,容易导致基板变形,加上基板来料可能存在的变形,会严重影响贴片的质量。对基板 平整的支撑变得非常重要。薄型基板的应用,更容易出现“弹簧床”效应。薄板随着贴片头的下压而下凹,并随 着贴片压力的消失而恢复变形,这样反复,造成元件在基板上移动,而出现贴片缺陷。所以,在支撑平台上需要 安排支撑装置,保证基板在贴片过程中平整稳定。这种装置可以采用真空将基板吸住,也可采用具有吸能作用的 特殊橡胶顶针,以消除在贴片过程中的震动并保证基板平整。如图1和图2所示支撑装置。这类装置非常客户化, 需要根据不同应用来设计相应的支撑结构,确保有效地平整支撑,并使平台在上升和下降过程中稳定顺畅,而且可控。贴片头将元件拾取后,照相机对元件对中照相,贴片头在将元件移至PCB贴片位置上方。贴片头Z轴加速下降到 贴片高度,这时Z轴继续减速下降,同时轴内真空关闭,转化为吹气。元件接触到PCB上的锡膏,贴片轴感应到设 定的压力后上升并移开,完成单个元件的贴片过程。在这个过程中,真空的灵敏快速切换和吹气的时间和强度控 制很关键。真空关闭太慢,吹气动作也会延迟,在贴片轴上升过程中会将元件带走,或导致元件偏移。同时,如 果在元件被压至最低点时吹气,容易将锡膏吹散,回流焊接之后出现锡珠等焊接缺陷。真空关闭太快,吹气动作也会提前,有可能元件还未接触到锡膏便被吹飞,导致锡膏被吹散,吸嘴被锡膏污 染。灵敏的真空切换可以在5 ms内在50 mm的轴内完成。 图1 具有吸能作用的特殊橡胶支撑装置 图2 可以产生真空的支撑装置 贴片压力是另一序言控制的关键因素。贴片压力控制不当,会导致元件损坏,锡膏压塌,元件下出现锡珠,还 有可能导致元件位置偏移。贴装0201和01005元件合适的压力范围为150~300 g。对于基板变形的情况,对应压 力的变化,贴片轴必须能够感应小到25.4μm的变形以补偿基板变形。过大的压力会导致在下压过程中元件上出现一个水平力,雨使元件产生滑动偏移,如图3所示。 图3 过多下压导致元件偏移过大的压力会将元件底部的锡膏挤开,形成锡珠,或导致相邻元件短路,如图4所 图4 0201元件,过大的压力导致锡珠和桥连欢迎转载,信息来源维库电子市场网(www.dzsc.com)来源:0次

    时间:2018-07-17 关键词: 元件 贴片 过程控制

  • PCB的蚀刻工艺及过程控制

    印刷线路板从光板到显出线路图形的过程是一个比较复杂的物理和化学反应的过程,本文就对其最后的一步--蚀刻进行解析。目前,印刷电路板(PCB)加工的典型工艺采用"图形电镀法"。即先在板子外层需保留的铜箔部分上,也就是电路的图形部分上预镀一层铅锡抗蚀层,然后用化学方式将其余的铜箔腐蚀掉,称为蚀刻。一.蚀刻的种类要注意的是,蚀刻时的板子上面有两层铜。在外层蚀刻工艺中仅仅有一层铜是必须被全部蚀刻掉的,其余的将形成最终所需要的电路。这种类型的图形电镀,其特点是镀铜层仅存在于铅锡抗蚀层的下面。另外一种工艺方法是整个板子上都镀铜,感光膜以外的部分仅仅是锡或铅锡抗蚀层。这种工艺称为“全板镀铜工艺“。与图形电镀相比,全板镀铜的最大缺点是板面各处都要镀两次铜而且蚀刻时还必须都把它们腐蚀掉。因此当导线线宽十分精细时将会产生一系列的问题。同时,侧腐蚀会严重影响线条的均匀性。在印制板外层电路的加工工艺中,还有另外一种方法,就是用感光膜代替金属镀层做抗蚀层。这种方法非常近似于内层蚀刻工艺,可以参阅内层制作工艺中的蚀刻。目前,锡或铅锡是最常用的抗蚀层,用在氨性蚀刻剂的蚀刻工艺中.氨性蚀刻剂是普遍使用的化工药液,与锡或铅锡不发生任何化学反应。氨性蚀刻剂主要是指氨水/氯化氨蚀刻液。此外,在市场上还可以买到氨水/硫酸氨蚀刻药液。以硫酸盐为基的蚀刻药液,使用后,其中的铜可以用电解的方法分离出来,因此能够重复使用。由于它的腐蚀速率较低,一般在实际生产中不多见,但有望用在无氯蚀刻中。有人试验用硫酸-双氧水做蚀刻剂来腐蚀外层图形。由于包括经济和废液处理方面等许多原因,这种工艺尚未在商用的意义上被大量采用.更进一步说,硫酸-双氧水,不能用于铅锡抗蚀层的蚀刻,而这种工艺不是PCB外层制作中的主要方法,故决大多数人很少问津。二.蚀刻质量及先期存在的问题对蚀刻质量的基本要求就是能够将除抗蚀层下面以外的所有铜层完全去除干净,止此而已。从严格意义上讲,如果要精确地界定,那么蚀刻质量必须包括导线线宽的一致性和侧蚀程度。由于目前腐蚀液的固有特点,不仅向下而且对左右各方向都产生蚀刻作用,所以侧蚀几乎是不可避免的。侧蚀问题是蚀刻参数中经常被提出来讨论的一项,它被定义为侧蚀宽度与蚀刻深度之比, 称为蚀刻因子。在印刷电路工业中,它的变化范围很宽泛,从1:1到1:5。显然,小的侧蚀度或低的蚀刻因子是最令人满意的。蚀刻设备的结构及不同成分的蚀刻液都会对蚀刻因子或侧蚀度产生影响,或者用乐观的话来说,可以对其进行控制。采用某些添加剂可以降低侧蚀度。这些添加剂的化学成分一般属于商业秘密,各自的研制者是不向外界透露的。从许多方面看,蚀刻质量的好坏,早在印制板进入蚀刻机之前就已经存在了。因为印制电路加工的各个工序或工艺之间存在着非常紧密的内部联系,没有一种不受其它工序影响又不影响其它工艺的工序。许多被认定是蚀刻质量的问题,实际上在去膜甚至更以前的工艺中已经存在了。对外层图形的蚀刻工艺来说,由于它所体现的“倒溪”现像比绝大多数印制板工艺都突出,所以许多问题最后都反映在它上面。同时,这也是由于蚀刻是自贴膜,感光开始的一个长系列工艺中的最后一环,之后,外层图形即转移成功了。环节越多,出现问题的可能性就越大。这可以看成是印制电路生产过程中的一个很特殊的方面。从理论上讲,印制电路进入到蚀刻阶段后,在图形电镀法加工印制电路的工艺中,理想状态应该是:电镀后的铜和锡或铜和铅锡的厚度总和不应超过耐电镀感光膜的厚度,使电镀图形完全被膜两侧的“墙”挡住并嵌在里面。然而,现实生产中,全世界的印制电路板在电镀后,镀层图形都要大大厚于感光图形。在电镀铜和铅锡的过程中,由于镀层高度超过了感光膜,便产生横向堆积的趋势,问题便由此产生。在线条上方覆盖着的锡或铅锡抗蚀层向两侧延伸,形成了“沿”,把小部分感光膜盖在了“沿”下面。锡或铅锡形成的“沿”使得在去膜时无法将感光膜彻底去除干净,留下一小部分“残胶”在“沿”的下面。“残胶”或“残膜”留在了抗蚀剂“沿”的下面,将造成不完全的蚀刻。线条在蚀刻后两侧形成“铜根”,铜根使线间距变窄,造成印制板不符合甲方要求,甚至可能被拒收。由于拒收便会使PCB的生产成本大大增加。另外,在许多时候,由于反应而形成溶解,在印制电路工业中,残膜和铜还可能在腐蚀液中形成堆积并堵在腐蚀机的喷嘴处和耐酸泵里,不得不停机处理和清洁,而影响了工作效率。三.设备调整及与腐蚀溶液的相互作用关系在印制电路加工中,氨性蚀刻是一个较为精细和复杂的化学反应过程。反过来说它又是一个易于进行的工作。一旦工艺上调通,就可以连续进行生产。关键是一旦开机就需保持连续工作状态,不宜干干停停。蚀刻工艺在极大的程度上依赖设备的良好工作状态。就目前来讲,无论使用何种蚀刻液,必须使用高压喷淋,而且为了获得较整齐的线条侧边和高质量的蚀刻效果,必须严格选择喷嘴的结构和喷淋方式。为得到良好的侧面效果,出现了许多不同的理论,形成不同的设计方式和设备结构。这些理论往往是大相径庭的。但是所有有关蚀刻的理论都承认这样一条最基本的原则,即尽量快地让金属表面不断的接触新鲜的蚀刻液。对蚀刻过程所进行的化学机理分析也证实了上述观点。在氨性蚀刻中,假定所有其它参数不变,那么蚀刻速率主要由蚀刻液中的氨(NH3)来决定。因此用新鲜溶液与蚀刻表面作用,其目的主要有两个:一是冲掉刚刚产生的铜离子;二是不断提供进行反应所需要的氨(NH3)。在印制电路工业的传统知识里,特别是印制电路原料的供应商们,大家公认,氨性蚀刻液中的一价铜离子含量越低,反应速度就越快.这已由经验所证实。事实上,许多的氨性蚀刻液产品都含有一价铜离子的特殊配位基(一些复杂的溶剂),其作用是降低一价铜离子(这些即是他们的产品具有高反应能力的技术秘诀 ),可见一价铜离子的影响是不小的。将一价铜由5000ppm降至50ppm,蚀刻速率会提高一倍以上。由于蚀刻反应过程中生成大量的一价铜离子,又由于一价铜离子总是与氨的络合基紧紧的结合在一起,所以保持其含量近于零是十分困难的。通过大气中氧的作用将一价铜转换成二价铜可以去除一价铜。用喷淋的方式可以达到上述目的。这就是要将空气通入蚀刻箱的一个功能性的原因。但是如果空气太多,又会加速溶液中的氨损失而使PH值下降,其结果仍使蚀刻速率降低。氨在溶液中也是需要加以控制的变化量。一些用户采用将纯氨通入蚀刻储液槽的做法。这样做必须加一套PH计控制系统。当自动测得的PH结果低于给定值时,溶液便会自动进行添加。在与此相关的化学蚀刻(亦称之为光化学蚀刻或PCH)领域中,研究工作已经开始,并达到了蚀刻机结构设计的阶段。在这种方法中,所使用的溶液为二价铜,不是氨-铜蚀刻。它将有可能被用在印制电路工业中。在PCH工业中,蚀刻铜箔的典型厚度为5到10密耳(mils),有些情况下厚度则相当大。它对蚀刻参量的要求经常比PCB工业中的更为苛刻。四.关于上下板面,导入边与后入边蚀刻状态不同的问题大量的涉及蚀刻质量方面的问题都集中在上板面上被蚀刻的部分。了解这一点是十分重要的。这些问题来自印制电路板的上板面蚀刻剂所产生的胶状板结物的影响。胶状板结物堆积在铜表面上,一方面影响了喷射力,另一方面阻挡了新鲜蚀刻液的补充,造成了蚀刻速度的降低。正是由于胶状板结物的形成和堆积使得板子的上下面图形的蚀刻程度不同。这也使得在蚀刻机中板子先进入的部分容易蚀刻的彻底或容易造成过腐蚀,因为那时堆积尚未形成,蚀刻速度较快。反之,板子后进入的部分进入时堆积已形成,并减慢其蚀刻速度。五.蚀刻设备的维护蚀刻设备维护的最关键因素就是要保证喷嘴的清洁,无阻塞物而使喷射通畅。阻塞物或结渣会在喷射压力作用下冲击版面。假如喷嘴不洁,那么会造成蚀刻不均匀而使整块PCB报废。明显地,设备的维护就是更换破损件和磨损件,包括更换喷嘴,喷嘴同样存在磨损的问题。除此之外,更为关键的问题是保持蚀刻机不存在结渣,在许多情况下都会出现结渣堆积.结渣堆积过多,甚至会对蚀刻液的化学平衡产生影响。同样,如果蚀刻液出现过量的化学不平衡,结渣就会愈加严重。结渣堆积的问题怎么强调都不过分。一旦蚀刻液突然出现大量结渣的情况,通常是一个信号,即溶液的平衡出现问题。这就应该用较强的盐酸作适当地清洁或对溶液进行补加。残膜也可以产生结渣物,极少量的残膜溶于蚀刻液中,然后形成铜盐沉淀。残膜所形成的结渣说明前道去膜工序不彻底。去膜不良往往是边缘膜与过电镀共同造成的结果。0次

    时间:2018-06-25 关键词: PCB 工艺 过程控制

  • 基于ZigBee的液位过程控制实验平台设计

    摘要:应用ZigBee技术,设计了一种液位过程控制实验平台,以期实现工业现场和控制室之间的无线信号传输来代替目前的有线传输模式。经过分析有线模式的众多弊端,提出了无线模式的解决方案,并通过ZigBee短距离无线通信以及其他物联网技术来完成参数的采集、传输、存储和显示。 关键词:ZigBee;过程控制;物联网;信号传输 0 引言     目前,许多领域都需要对水位、油罐液位、锅炉液位等进行监控。然而,传统的液位控制系统中工业现场和控制室之间都是通过有线模式进行信号传输,缺陷非常明显,其安装、调试成本高,铺设线缆麻烦,其他干扰因素繁杂。     为了解决传统液位控制系统中有线模式带来的麻烦,采用基于ZigBee短距离无线通信方式的液位过程控制实验平台,可以克服目前有线模式的不足,降低安装、调试、维护的成本,因此,它必将成为未来过程控制实验平台市场中的主流。     ZigBee核心技术可以归结为无线传感器网络技术,该技术具有低成本、低功耗、方便扩展等优点,它的网络结构灵活多变,传感监测范围广,无需接线即可随时增加监测点。因此,无线传感网络在军事、农业、工业、医学、家居生活及娱乐方而有着广阔的应用前景。     本系统是在基于ZigBee的无线传感器网络技术的基础上设计的无线液位过程控制装置,符合传感器智能化、无线化、网络化的发展趋势。 1 系统总体设计     本系统通过ZigBee无线技术将CS—E型液位过程控制装置的信息传输到数据库中。一方面,操控人员和用户可以通过PC机应用程序或者网页形式访问数据库,从而实时监测液位传感器信息。另一方面,操作人员还可以通过PC机发送控制指令,控制指令通过ZigBee网络到达液位控制节点,然后通过执行器达到液位控制之目的。其液位过程控制装置结构图如图1所示。 2 系统硬件集成设计     无线液位过程控制系统主要由液位传感器、控制执行机构、无线数据传输(终端节点)、中心控制、上位机液位显示等部分组成,其系统框图如图2所示。     液位传感器采集的液位数据可通过串口传送给终端节点,终端节点再通过无线数据传输方式发送给中心控制,中心控制结合上位机应用程序来实时显示液位数据。     根据功能划分,本系统主要由终端节点和中心控制组成。终端节点主要完成液位数据的采集、控制执行和无线传输功能。中心控制主要完成数据处理、液位显示、控制命令生成及发布等功能。     终端节点主要由ZigBee节点、阀门、电源、天线、液位传感器等部分组成。本系统选用CS—E型压力液位变送器,由液位传感器采集的液位数据经终端节点通过无线传输的方式发送给中心节点。系统从中心节点接收控制信号并经上位机判断处理后,可发送相应的控制指令对阀门进行相关控制。     中心控制主要由ZigBee协调器、路由器、电源、天线、上位机液位显示等部分组成。ZigBee协调器负责将所有ZigBee节点组网,路由器用于扩展无线传输距离。终端节点将采集到的液位数据,经路由节点转发送给ZigBee协调器,协调器再通过串口方式传送到后台数据库,最后利用上位机对数据进行判断处理后显示液位数据,同时生成相应控制指令并将其发送给终端节点。     ZigBee节点和协调器芯片均选用CC2530。CC2530是一个兼容IEEE 802.15.4的真正的片上系统,可支持专有的802.15A以及ZigBee、ZigBee PRO和ZigBeeRF4CE标准。 3 系统软件设计与开发     根据液位监控的要求,可分别设计基于C/S、B/S模式的监控程序,实时显示液位值、阀门开度等参数。系统总程序流程图如图3所示,监控程序效果图如图4和图5所示。 4 结语     本设计的最大意义和亮点在于将ZigBee无线传感技术引入到传统的有线模式液位过程控制实验平台,从而克服了目前有线模式的一些弊端,同时降低了安装、调试、维护的成本。这是国内首次将ZigBee无线传感技术运用到液位过程的控制实验平台,本设计可以说是过程控制领域一个重要的模式变革,必将对过程控制领域产生一定的影响。

    时间:2013-01-24 关键词: 实验 Zigbee 液位 过程控制

  • PLC对柴油发电机组全过程控制的探讨

    标签:PLC 应急供电  发电机 引言 柴油发电机组在应急供电、远离电力网的海岛矿山供电中广泛应用,对供电系统基本要求是提供稳频稳压的电源;柴油发电机组自动化控制特别是多机并列运行机组有其自身特点,因为柴油发电系统容量小,对机组调速器的调整改变的不仅是有功还可能影响系统频率,对机组励磁的调整改变的不仅是无功还可能影响系统电压。在机组的自动化控制方面,已经有一些专用核心控制器在应用,如丹麦DEIF公司的GPC很早就我国在船舶电站中应用;国内也有公司开发出类似控制装置,但主要还是以多个控制模块组合控制为主,如并车模块、负载分配模块等; 本文探讨一种采用PLC为核心控制器和其它电气设计人员熟悉的元件组成的多台柴油发电机组控制系统,可大大提高系统的可靠性和可维护性,且控制方式灵活。 一、典型应用系统方案 某典型应急供电系统含三台发电机组,见图1所示,QF1~3为机组开关,QF4为机组总供电开关,QF5为市电开关,QF6为负载开关。PLC1~3为机组控制元件;ME1~3电力综合仪表为机组电量监视元件,提供机组过电流、逆功率等保护功能;PLC4为公用控制元件,上位监控采用1台触摸屏即可。 公用PLC可完成QF4、QF5的位置监控、公用起动条件监视、起停顺序管理、发出各机组起停命令信号、接受机组起动阻塞信号等,甚至还可以进行大负荷投入的闭锁控制、公用蓄电池管理等。机组控制PLC主要执行机组起动控制、并列元件自动投退、功率分配、机组解列控制等主要控制工作。     对柴油发电机组起停控制、开关闭锁等一些时序控制与逻辑控制,本文不多介绍,重点讨论机组频载控制;当然还应该提到另外两个重要控制元件,电子调速器与并车模块。并车模块与其它发电厂所用的自动准同期装置在原理、功能、接线方式上并无二致,主要区别在于自动准同期装置所加电压信号来自电压互感器,为交流100V;而柴油发电机组的并车模块可以直接接入交流380V电压信号。 电子调速器实际就是一个速度闭环控制模块,单机运行中对保证频率稳定,在机组并列运行中,就应该用到droop功能,即下降曲线控制方式,另外为了减少因为下降曲线控制带来的频率降和实现功率分配,辅助控制电压(AUX)的重要作用就体现出来了,本文所述PLC控制,就是将PLC产生的控制信号作用于辅助控制端而实现的。 二、机组并列运行的频载控制方式和PLC控制探讨 机组能够稳定并列运行的一个基本要求是对转速频率控制、电压无功控制采用有差调节, 其实这两项控制的模式完全一致;为了实现有差调节,频率闭环控制系统的反馈量叠加有功功率分量K· Pf,图2就是一个频率有差调节的框图, k>0的情况下,控制结果为下降曲线,见图3所示;显而易见,曲线3的功率叠加系数大于曲线1的功率跌加系数,所以下垂更加明显;如果k=0,则转变为恒频控制,适合单机运行;假设将频率返回量乘以系数二,则电机频率(转速)为设定值的一半,就可以实现机组怠速运行; 以上所述就是电子调速器的基本原理。如果要对电压无功进行有差调节,只是将频率改为电压,将有功改为无功,由于柴电机组励磁多采用相复励不可控励磁,可以通过多种均压线方式进行无功分配,且电压稳定,这里不做过多论述。     柴电机组并列运行的频载控制方式主要有以下几种:①全部采用下降曲线,②功率均分或按比例分配,③主调电机法,即设一台调频机组,其它机组采用固定功率控制。下面试探讨论采用PLC的PID控制、高速计数、模拟量采集和模拟量输出功能进行机组频载控制的方法。PLC通过高速计数输入口计算速度传感器脉冲数以获取机组转速,被控机组功率和所有并列运行机组总功率通过安装于本机的智能仪表和总电量监视仪表(如图1中的ME4)变送输出,当然也可以采用有功功率变送器。 见图4所示,采用下降曲线控制时,可以设置xset = fN-ff(fN为系统额定频率),强制xf =0,PLC只是维持系统频率稳定,功率分配由各调速器调差率决定。虽然没有实现功率分配功能,但克服了单纯采用电子调速器下降曲线控制带来的频率偏差。     各机组额定功率相同时,可以采用功率均分控制,以图1所示系统为例,可将xset设置为(fN-ff )+Pz / 3,xf设置为Pf(Pf为被控机组的有功反馈,Pz为负载消耗功率),若该机组输出功率小于功率平均值,则该机组运行曲线上移,斜率不变,机组承担更多有功;反之机组运行曲线下移,减少有功出力;各机组功率不断调整,直到实现功率均分;当系统频率发生变化时所有并列运行发电机组共同调整。各机组额定功率不等时,如图1所示,假设G1、G2、G3额定功率分别为   机组额定功率相差悬殊时,可采用功率最大的机组作为主调机组,承担系统主要功率,其电子调速器采用恒转速控制,PLC实现频率微调功能,设置方式与下降曲线控制一致;机组控制与下降曲线控制的主要区别是禁止了电子调速器的droop功能。功率很小的机组只作为功率补充之用,电子调速器必须设置droop功能,PLC采用功率闭环控制。这样的系统中只能设置一台主调电机,否则无法并机工作。 三、过渡过程的控制分析 现按照机组并列运行后采用功率均分方式运行分析机组过渡运行过程的控制策略。所有机组起动时,怠速时间内,PLC不参转速与控制,只进行怠速时间计时,怠速时间结束后,采用转速闭环控制,以方便接受自动准同期的增速、减速命令。如图1所示,市电停电后,PLC4跳开断路器QF5并禁止QF5合闸,向G1发起机命令,G1启动建压后检测到QF1~QF3全部分位,则不检同期合闸;机组单机运行时,电子调速器采用恒速控制;PLC4合上断路器QF4、QF6,向负载供电。由于负载增加,QF4向2号机组控制器发起机命令,2号机组起动成功后,检测到QF1合位,则接通同步模块回路,进行准同步并网。并网成功后,1、2号机组控制器检测到QF1、QF2合位,立即转入功率均分运行模式,两机组电子调速器投入droop功能(采用下降曲线控制),机组1控制曲线下移,机组2控制曲线上移,机组1向机组2转移负荷,最终达到平衡;同样机组3并入后,机组1、机组2同时向机组3转移负荷并最终达到平衡;不同之处在于2台机组并机运行时,功率控制目标为Pz / 3,3台机组并机运行时,功率控制目标为Pz / 3。当所需功率下降时,可以减少一台机组运行,假设1号机组接到解列命令,首先将其功率控制目标改为0,其控制曲线缓慢下降,机组逐渐甩负荷;由于另外两台机组的控制目标仍然为Pz / 3,可能会导致机组出力不足,但将频率差引入控制目标,保证了频率稳定;在1号机组有功负载降至额定值20%以下后,可择机断开断路器QF1,机组1解列后,按停机流程停止运行。继续运行机组检测到有两台断路器处于合位,则将功率控制目标修改为Pz / 2。当然,如果将机组1开始解列操作的信息以开关量信号通知2号、3号机组控制器,则功率转移的过程更平稳。 四、系统的可实现性和稳定性析 通过以上分析,为实现频载控制,机组控制PLC应具备1路PID运算功能、1路高速计速功能,需2路模拟量(本机有功、总有功变送)输入、1路电压模拟量输出,另外还需要为数不多的开关量。公用控制器以开关量为主,当然,如果机组数量增加,也就相应增加输入输出点数量。可见西门子S7-200这个层级的PLC就能胜任控制任务,即使增加AVR控制功能,也不在话下。 从系统的稳定性方面来说,PLC频载控制指示对机组调速器控制的辅助控制,作为补充功能;PLC控制器以比例积分控制为主,系统的稳定性快速性得到保障。由于电子调速器提供了转速限制功能,智能电量仪表提供了电量保护功能,系统的安全性得到保障。 五、结束语 PLC除具备逻辑运算功能外,还具有丰富的数值计算、模拟量处理、高速计速、数据通讯等功能;充分利用PLC的各项功能,并配以必要的变送器,可以实现柴油发电机组并列运行的各项自动控制功能,可以保证系统运行的稳定性可靠性,由于所采用的元件为广大电气人员所熟悉,增强了系统的可维护性。 参考文献. [1]船舶电站.王文义.哈尔滨工程大学出版社.2006年9月 [2]S7-200可编程序控制器.西门子(中国)有限公司自动化与驱动集团.2005

    时间:2012-09-10 关键词: plc 智慧工业 柴油发电机组 过程控制

  • 计算机液位过程控制综合实验系统研制与开发

    摘要:设计了一个液位过程控制的实验系统,代写论文 可以通过连接阀门的不同的组合来模拟工业过程中典型的过程环节。其中控制算法为独立的模块,可以编写不同的控制算法在目标系统上实施,从而验证和比较控制算法的优劣。实验实例结果表明,该系统是验证多种控制算法的良好实验平台。 1 研制液位过程控制综合实验系统的背景 最近几年,科教仪器受到了高等院校的重视,代写硕士论文 许多教学实验设备都是由许多公司、企业和高等学校共同来完成的,由学校提供教学实验设备的想法和技术,由企业来实现。作为学校方既得到实验设备,更重要的是在生产过程中,教师通过这个途径来实现自己的设计并能在生产实践中不断总结改进,及时反馈给企业;而企业则获得了高校的技术支持并获取了经济效益,这显然是一个很好的思路,可达到双赢的目的。 液位不仅是工业过程中的常见参数,且便于直接观察、容易测量,过程时间常数小。许多科教公司生产了不少液位过程控制系统,这些液位过程控制系统生产的目的是基于本科学生的实验教学,大都采用的一阶和二阶对象,提供了许多种控制手段,但是可扩展性不强,不利于更高层次科研开发的需要,而且售价高昂。因此,笔者考虑设计了如下的水箱系统,组建计算机液位过程控制系统。 2 液位过程控制系统的基本组成 液位系统的工作介质是水,其基本组成如图1所示。图1 中箭头表示水流方向。运行前,操作手动阀构成一定特性的被控过程,再接入调节器即可构成闭环系统。系统测量容器液位和管道压力的变送器,送给计算机的数据采集卡,并通过相应的控制算法输出控制信号给电动调节阀和变频器,来改变输入流量的大小,以实现对液位、压力等参数的控制。 3 硬件电路设计 硬件部分主要有水泵、数据采集部分、变频器和调节阀组成。 3.1 PCI-1710 数据采集控制卡 数据采集部分采用研华的PCI— 1710 数据采集控制卡。PCI— 1710 是一款PCI 总线的多功能数据采集卡。先进的电路设计使其具有更高的质量和功能。这其中包含最常用的测量和控制功能:12 位A/D转换、D/A 转换、数字量输入、数字量输出及计数器/定时器功能,具有16 路单端或8 路差分或组合模拟量输入和2 路模拟量输出通道。 3.2 DLL 技术 由于本系统采用组态王的工控软件和Visual Basic 6.0 编程软件,代写医学论文 但VB 本身并不支持对硬件端口的操作。PCI—1710 的附带软件中包含了多种操作系统下的驱动程序,并可在VB 和VC++、BorlandC++、Delphi 等多种开发软件环境下使用,其中包含有一系列能对硬件设备进行底层I/O 操作的函数。从VB 调用DLL 函数时,先在全局模块或窗体的说明部分,用Declare 声明所要使用的DLL 函数;然后,像使用VB 自己的函数一样调用这些函数。进行动态链接库调用前,必须安装研华AdvantechDriver for WIN95/NT/XP 程序,程序安装结束后才会添加其相关的DLL 库到系统的Windows 安装目录下的System 子目录中(如Advapi32.d11 库等)。为方便用户,研华开发商制作了“ Driver.bas”文件,其中声明了有关DLL 函数及相应的结构,只需把“ Driver.bas”导入VB 工程的模块中,用户就可省去声明DLL 函数的麻烦。 3.3 注意事项 使用中,PCI— 1710 采集卡的信号线要尽可能远离电源线、发电机和具有电磁干扰的场所,也要远离视频监视系统,因为它会对数据采集系统产生很大的影响。在现场试验中,如果信号线和电源线必须并行(比如在同一个电缆沟里),则两者之间必须保持适当的安全距离,同时最好采用屏蔽电缆,以确保信号能够安全准确地传输。采集卡的每个通道的模拟量采集都有一个输入电压范围,超过了这一范围会造成采集卡A/D 转换部分的烧毁。所以在采集模拟信号时,要保证被采集的信号在设定的量程范围内。 4 软件设计 软件总体结构,如图2 所示。 利用工控组态软件来实现控制系统示意图和动态显示,形成实验数据报表;利用VB 编写数据采集程序获取系统的液位和压力等参数;利用matlab软件实现参数辨识、控制算法的编写。 5 控制算法设计 本系统提供一个验证和比较各种控制算法的实验平台,控制算法的修改和参数摄制的变化均不影响其他的模块,这样可以为控制算法的验证提供一个通用的平台。选控制对象为单回路,出水阀门开度保持不变,采用PID 控制算法对其进行控制达到了很好的效果,响应曲线如图3 所示。 6 结束语 从目前实验效果上看,基本实现了设计的目标,对于单容对象的控制取得了较好的控制效果,代写职称论文 控制算法也只是PID 控制算法。但是,一个具有一定的通用性和扩展性的控制算法的实验验证平台基本建成。今后,对于具有耦合的多输入、多输出系统可以研制更好的控制算法,能够满足更高层次教学科研的要求。 参考文献: [1] 邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,1997. [2] 谢剑英,贾青.微型计算机控制技术(第3 版)[M].北京:国防工业出版社,2001. [3] 付家才.工业控制实践技术[M].北京:化学工业出版社,2003. [4] 马明建,周长城.数据采集与处理技术[M].西安:西安交通大学出版社,2003. [5] 侯媛彬,汪梅,王立琦.系统辨识及其Matlab 仿真[M].北京:科学出版社,2004. [6] 刘金琨.先进PID 控制及其Matlab 仿真[M].北京:电子工业出版社,2003 更多计算机与外设信息请关注:21ic计算机与外设频道

    时间:2012-05-28 关键词: 计算机 液位 实验系统 过程控制

  • 针对工业过程控制和自动化的高阻抗、高CMR、±10 V模拟前端信号调理

    电路功能与优势 图1所示电路是一个完整的模拟前端,它利用一个16位差分输入PulSARADC对±10V工业级信号进行数字转换。该电路仅利用两个模拟器件,来提供一路具有高共模抑制(CMR)性能的高阻抗仪表放大器输入、电平转换、衰减和差分转换功能。由于具有高集成度,该电路可节省印刷电路板空间,为常见的工业应用提供高性价比解决方案。 在过程控制和工业自动化系统中,典型的信号电平最高可达±10V。而来自热电偶和称重传感器等传感器的信号输入则较小,因此常常会遇到大共模电压摆幅,这就需要灵活的模拟输入,它能以高共模抑制性能处理大小差分信号,同时具有高阻抗输入。 图1.适合工业过程控制应用的高性能模拟前端(原理示意图:所有连接和去耦均未显示) 用现代低压ADC处理工业级信号时,必须进行衰减和电平转换。此外,全差分输入ADC具有以下优势:良好的共模抑制性能,更少的二阶失真产物,以及简化的直流调整算法。因此,工业信号需要经过进一步调理才能与差分输入ADC正确接口。 图1所示电路是一个完整且具有高集成度的模拟前端工业级信号调理器,仅使用两个有源器件来驱动差分输入16位PulSARADCAD7687:精密仪表放大器(片内集成两个辅助运算放大器)AD8295precisionin-amp(withtwoon-chipauxiliaryopamps)和电平转换器/ADC驱动器AD8275。低噪声2.5VXFET®基准电压源ADR431为ADC提供基准电压。 AD8295是一款精密仪表放大器,片内集成两个非专用信号处理放大器和两个精密匹配的20kΩ电阻,采用4mm×4mm封装。 AD8275是一款G=0.2差动放大器,可以用来衰减±10V工业信号,衰减后的信号可以与单电源低压ADC轻松接口。AD8275在该电路中执行衰减和电平转换功能,可以保持良好的CMR,无需任何外部元件。 AD7687是一款16位逐次逼近型ADC,采用2.3V至5.5V的单电源供电。它采用差分输入,具有良好的CMR,并且能够简化SARADC的使用。 电路描述 该电路由用作模拟前端电路的AD8295和AD8275、ADCAD7687以及基准电压源ADR431组成,只需少量外部元件进行去耦等。 仪表放大器(集成于AD8295) AD8295中集成的仪表放大器(IA)的工作条件设置为1倍的增益。如果应用需要更高的增益,可以增加一个适当的外部增益电阻。AD8295的电源为±15V,完全支持±10V工业输入信号电平。仪表放大器的基准电压引脚接地,因此AD8295的输出以地为基准。 差动放大器/衰减器(AD8275) AD8295仪表放大器输出单端信号,最大幅度为±10V。必须将该信号衰减并转换到适当的电平,以便驱动AD7687ADC。如果在AD8295的输出端直接使用一个简单的阻性电平衰减器级,将无法提供差分输出来驱动ADC。AD8275(G=0.2)电平转换器是一个差动放大器,内置精密激光调整匹配薄膜电阻,可确保低增益误差、低增益漂移(最大1ppm/°C)和高共模抑制(80dB)特性。AD8275具有+3.3V至+15V的宽电源电压范围,采用+5V单电源供电时,输入电压范围宽达−12.3V至+12V。 图1所示电路使用一个平衡差动放大器,它由AD8275(U2)和AD8295中的一个非专用运放(U1-C)组成。此运放(U1-C)用于反转AD8275的正输出(从而提供互补的负输出),并且驱动AD8275的REF1和REF2引脚。差分输出的输出共模电压(VCOM=1.25V)由连接到2.5V基准电压源的10kΩ外部电阻分压器产生,并且应用于U1-C的同相输入。描述电路操作的方程式如下: VOUTP+VOUTN=2×VCOM VOUTP=VOUTN+0.2×VIN VOUTP=VCOM+0.1×VIN VOUTN=VCOM−0.1×VIN 根据以上方程式,对于±10V输入电压,ADC的各输入电压(VOPTP和VOUTN)摆幅为0.25V至2.25V,彼此180°反相,共模电压为1.25V。因此,差分信号使用ADC可用差分输入范围5V中的4V。 ADR431是2.5VXFET系列基准电压源,具有低噪声、高精度和低温度漂移性能。ADR431驱动电阻分压器和AD7687ADC的基准电压输入。ADR431输出由AD8295中的另一个非专用运放(U1-B)缓冲,并且驱动AD7687的电源(VDD)。由两个33Ω电阻和一个1.5nF电容组成的一个单极点RC滤波器充当AD7687的3MHz截止抗混叠和降噪滤波器。 布局布线考虑 该电路或任何高速/高分辨率电路的性能都高度依赖于适当的PCB布局,包括但不限于电源旁路、信号路由以及适当的电源层和接地层。有关PCB布局的详情,请参见指南TutorialMT-031、MT-101和“高速印刷电路板布局实用指南”一文。 图2.Kaiser窗口(参数=20)、20kHz输入、250kSPS采样速率下的FFT 系统性能 交流性能在系统级进行测试,AD7687的采样速率为250kSPS。图2所示为5Vp-p20kHz输入时的FFT测试结果。图3所示为10VDC输入时的ADC输出直方图。 评估软件产生的结果如下: SNR=85.531dBFS(不含谐波) 信纳比(SINAD)=81.432dBFS. SFDR=77.403dBFS. THD=–76.479dBFS 图3.10VDC输入时的直方图,15,000个样本 常见变化 PulSAR系列的其它引脚兼容差分输入16位ADC提供不同的采样速率:AD7684(100kSPS)、AD7688(500kSPS)和AD7693(500kSPS)。 如果需要18位分辨率,下列器件也是PulSAR系列的引脚兼容产品:AD7691(250kSPS)、AD7690(400kSPS)和AD7982(1MSPS)。 ADC的基准电压源可以换用2.048VADR430,它支持使用ADC更大比例的输入范围,不过AD7687将需要额外的AVDD电源。 电路评估与测试 本电路使用EVAL-CN0225-SDPZ电路板和EVAL-SDP-CB1Z系统演示平台(SDP)评估板。这两片板具有120引脚的对接连接器,可以快速完成设置并评估电路性能。EVAL-CN0225-SDPZ板包含要评估的电路,如本笔记所述。SDP评估板与CN0225评估软件一起使用,可从EVAL-CN0225-SDPZ电路板获取数据。 设备要求 带USB端口的WindowsXP、WindowsVista(32位)或Windows7(32位)PC EVAL-CN0225-SDPZ电路评估板 EVAL-SDP-CB1ZSDP评估板 直流电源:+15V、–15V和+6V 低失真单端或差分信号源,如Agilent81150A或AudioPrecisionSystemTwo2322等 开始使用 将CN0225评估软件光盘放进PC的光盘驱动器,加载评估软件。找到包含评估软件光盘的驱动器,打开Readme文件。按照Readme文件中的说明安装和使用评估软件。 功能框图 图4所示为测试设置的功能框图。PDF文件“EVAL-CN0225-SDPZ-SCH”包含CN0225评估板的详细原理图。此文件位于CN0225设计支持包中:CN0225-DesignSupport.rar。 图4.测试设置功能框图 设置 EVAL-CN0225-SDPZ电路板上的120引脚连接器连接到EVAL-SDP-CB1Z(SDP)评估板上标有“CONA”的连接器。应使用尼龙五金配件,通过120引脚连接器两端的孔牢牢固定这两片板。将直流输出电源成功设置为+15V、-15V和+6V输出后,关闭电源。 在断电情况下,将一个+15V电源连接到标有“+15VA”的J3引脚,将一个−15V电源连接到标有“−15VA”的J3引脚,将“GND”连接到标有“AGND”的J3引脚。以同样方式将+6V连接到J2。接通电源,然后将SDP板附带的USB电缆连接到PC上的USB端口。注意:接通EVAL-CN0225-SDPZ的直流电源之前,请勿将该USB电缆连接到SDP板上的微型USB连接器。 测试 设置好电源并将它连接到EVAL-CN0225-SDPZ电路板后,启动评估软件,并通过USB电缆将PC连接到SDP板上的微型USB连接器。如果设备管理器中列出了AnalogDevicesSystemDevelopmentPlatform驱动器,软件将能与SDP板通信。 一旦USB通信建立,就可以使用SDP板来发送、接收、捕捉来自EVAL-CN0225-SDPZ板的串行数据。 本电路笔记中的数据利用Agilent81150A差分信号源产生。 更多资讯请关注:21ic模拟频道

    时间:2012-05-23 关键词: 工业 高阻抗 cmr 过程控制

  • 针对工业过程控制和自动化的高阻抗、高CMR、±10 V模拟前端信号调理

    电路功能与优势 图1所示电路是一个完整的模拟前端,它利用一个16位差分输入PulSARADC对±10V工业级信号进行数字转换。该电路仅利用两个模拟器件,来提供一路具有高共模抑制(CMR)性能的高阻抗仪表放大器输入、电平转换、衰减和差分转换功能。由于具有高集成度,该电路可节省印刷电路板空间,为常见的工业应用提供高性价比解决方案。 在过程控制和工业自动化系统中,典型的信号电平最高可达±10V。而来自热电偶和称重传感器等传感器的信号输入则较小,因此常常会遇到大共模电压摆幅,这就需要灵活的模拟输入,它能以高共模抑制性能处理大小差分信号,同时具有高阻抗输入。 图1.适合工业过程控制应用的高性能模拟前端(原理示意图:所有连接和去耦均未显示) 用现代低压ADC处理工业级信号时,必须进行衰减和电平转换。此外,全差分输入ADC具有以下优势:良好的共模抑制性能,更少的二阶失真产物,以及简化的直流调整算法。因此,工业信号需要经过进一步调理才能与差分输入ADC正确接口。 图1所示电路是一个完整且具有高集成度的模拟前端工业级信号调理器,仅使用两个有源器件来驱动差分输入16位PulSARADCAD7687:精密仪表放大器(片内集成两个辅助运算放大器)AD8295precisionin-amp(withtwoon-chipauxiliaryopamps)和电平转换器/ADC驱动器AD8275。低噪声2.5VXFET®基准电压源ADR431为ADC提供基准电压。 AD8295是一款精密仪表放大器,片内集成两个非专用信号处理放大器和两个精密匹配的20kΩ电阻,采用4mm×4mm封装。 AD8275是一款G=0.2差动放大器,可以用来衰减±10V工业信号,衰减后的信号可以与单电源低压ADC轻松接口。AD8275在该电路中执行衰减和电平转换功能,可以保持良好的CMR,无需任何外部元件。 AD7687是一款16位逐次逼近型ADC,采用2.3V至5.5V的单电源供电。它采用差分输入,具有良好的CMR,并且能够简化SARADC的使用。 电路描述 该电路由用作模拟前端电路的AD8295和AD8275、ADCAD7687以及基准电压源ADR431组成,只需少量外部元件进行去耦等。 仪表放大器(集成于AD8295) AD8295中集成的仪表放大器(IA)的工作条件设置为1倍的增益。如果应用需要更高的增益,可以增加一个适当的外部增益电阻。AD8295的电源为±15V,完全支持±10V工业输入信号电平。仪表放大器的基准电压引脚接地,因此AD8295的输出以地为基准。 差动放大器/衰减器(AD8275) AD8295仪表放大器输出单端信号,最大幅度为±10V。必须将该信号衰减并转换到适当的电平,以便驱动AD7687ADC。如果在AD8295的输出端直接使用一个简单的阻性电平衰减器级,将无法提供差分输出来驱动ADC。AD8275(G=0.2)电平转换器是一个差动放大器,内置精密激光调整匹配薄膜电阻,可确保低增益误差、低增益漂移(最大1ppm/°C)和高共模抑制(80dB)特性。AD8275具有+3.3V至+15V的宽电源电压范围,采用+5V单电源供电时,输入电压范围宽达−12.3V至+12V。 图1所示电路使用一个平衡差动放大器,它由AD8275(U2)和AD8295中的一个非专用运放(U1-C)组成。此运放(U1-C)用于反转AD8275的正输出(从而提供互补的负输出),并且驱动AD8275的REF1和REF2引脚。差分输出的输出共模电压(VCOM=1.25V)由连接到2.5V基准电压源的10kΩ外部电阻分压器产生,并且应用于U1-C的同相输入。描述电路操作的方程式如下: VOUTP+VOUTN=2×VCOM VOUTP=VOUTN+0.2×VIN VOUTP=VCOM+0.1×VIN VOUTN=VCOM−0.1×VIN 根据以上方程式,对于±10V输入电压,ADC的各输入电压(VOPTP和VOUTN)摆幅为0.25V至2.25V,彼此180°反相,共模电压为1.25V。因此,差分信号使用ADC可用差分输入范围5V中的4V。 ADR431是2.5VXFET系列基准电压源,具有低噪声、高精度和低温度漂移性能。ADR431驱动电阻分压器和AD7687ADC的基准电压输入。ADR431输出由AD8295中的另一个非专用运放(U1-B)缓冲,并且驱动AD7687的电源(VDD)。由两个33Ω电阻和一个1.5nF电容组成的一个单极点RC滤波器充当AD7687的3MHz截止抗混叠和降噪滤波器。 布局布线考虑 该电路或任何高速/高分辨率电路的性能都高度依赖于适当的PCB布局,包括但不限于电源旁路、信号路由以及适当的电源层和接地层。有关PCB布局的详情,请参见指南TutorialMT-031、MT-101和“高速印刷电路板布局实用指南”一文。 图2.Kaiser窗口(参数=20)、20kHz输入、250kSPS采样速率下的FFT 系统性能 交流性能在系统级进行测试,AD7687的采样速率为250kSPS。图2所示为5Vp-p20kHz输入时的FFT测试结果。图3所示为10VDC输入时的ADC输出直方图。 评估软件产生的结果如下: SNR=85.531dBFS(不含谐波) 信纳比(SINAD)=81.432dBFS. SFDR=77.403dBFS. THD=–76.479dBFS 图3.10VDC输入时的直方图,15,000个样本 常见变化 PulSAR系列的其它引脚兼容差分输入16位ADC提供不同的采样速率:AD7684(100kSPS)、AD7688(500kSPS)和AD7693(500kSPS)。 如果需要18位分辨率,下列器件也是PulSAR系列的引脚兼容产品:AD7691(250kSPS)、AD7690(400kSPS)和AD7982(1MSPS)。 ADC的基准电压源可以换用2.048VADR430,它支持使用ADC更大比例的输入范围,不过AD7687将需要额外的AVDD电源。 电路评估与测试 本电路使用EVAL-CN0225-SDPZ电路板和EVAL-SDP-CB1Z系统演示平台(SDP)评估板。这两片板具有120引脚的对接连接器,可以快速完成设置并评估电路性能。EVAL-CN0225-SDPZ板包含要评估的电路,如本笔记所述。SDP评估板与CN0225评估软件一起使用,可从EVAL-CN0225-SDPZ电路板获取数据。 设备要求 带USB端口的WindowsXP、WindowsVista(32位)或Windows7(32位)PC EVAL-CN0225-SDPZ电路评估板 EVAL-SDP-CB1ZSDP评估板 直流电源:+15V、–15V和+6V 低失真单端或差分信号源,如Agilent81150A或AudioPrecisionSystemTwo2322等 开始使用 将CN0225评估软件光盘放进PC的光盘驱动器,加载评估软件。找到包含评估软件光盘的驱动器,打开Readme文件。按照Readme文件中的说明安装和使用评估软件。 功能框图 图4所示为测试设置的功能框图。PDF文件“EVAL-CN0225-SDPZ-SCH”包含CN0225评估板的详细原理图。此文件位于CN0225设计支持包中:CN0225-DesignSupport.rar。 图4.测试设置功能框图 设置 EVAL-CN0225-SDPZ电路板上的120引脚连接器连接到EVAL-SDP-CB1Z(SDP)评估板上标有“CONA”的连接器。应使用尼龙五金配件,通过120引脚连接器两端的孔牢牢固定这两片板。将直流输出电源成功设置为+15V、-15V和+6V输出后,关闭电源。 在断电情况下,将一个+15V电源连接到标有“+15VA”的J3引脚,将一个−15V电源连接到标有“−15VA”的J3引脚,将“GND”连接到标有“AGND”的J3引脚。以同样方式将+6V连接到J2。接通电源,然后将SDP板附带的USB电缆连接到PC上的USB端口。注意:接通EVAL-CN0225-SDPZ的直流电源之前,请勿将该USB电缆连接到SDP板上的微型USB连接器。 测试 设置好电源并将它连接到EVAL-CN0225-SDPZ电路板后,启动评估软件,并通过USB电缆将PC连接到SDP板上的微型USB连接器。如果设备管理器中列出了AnalogDevicesSystemDevelopmentPlatform驱动器,软件将能与SDP板通信。 一旦USB通信建立,就可以使用SDP板来发送、接收、捕捉来自EVAL-CN0225-SDPZ板的串行数据。 本电路笔记中的数据利用Agilent81150A差分信号源产生。 更多资讯请关注:21ic模拟技术

    时间:2012-04-25 关键词: 工业 高阻抗 cmr 过程控制

  • 排空过程控制电路图

    排空过程控制电路图

    时间:2012-04-15 关键词: 电路图 速度/角度/位移 过程控制

  • 简单介绍过程控制在空分装置中的应用

    莱钢12000m3/h空分装置全套引进德国林德公司的技术设备,采用空气低温精馏法生产高纯度的氧气、氮气和氩气。其简要生产工艺过程如下:原料空气经压缩、预冷,并在分子筛站除去水分和CO2,进入冷箱后分成两股,一股经主换热器逆流冷却进入高压塔,另一股经膨胀降温进入低压塔。空气经高压塔、低压塔两级精馏,在低压塔顶部分离出气氮、液氮,在其底部分离出液氧。在低压塔中部抽出富氩的氩馏分(约含90%O2、10%Ar和0.05%N2),送往初级粗氩塔中除去氧分,从初级粗氩塔顶部引出气态氩(纯度约99.8%)送到次级粗氩塔底部,进一步除去氧分。最后,含氧量小于0.0001%的氩送往纯氩塔除去氮和碳氢化合物,生产出纯氩。 1 控制系统结构 该空分装置采用了加拿大Elsag公司的INFI-90控制系统,其中INFI-90DCS作为过程控制系统,完成数据采集、回路调节及逻辑顺序控制;DECAlpha200计算机用于自动变负荷控制(ALC)。为了保证大型设备安全、可靠地运行,在现场选用了5台PLC,分别完成空压机、氮压机、氧压机和两台膨胀透平机的局部控制。主控室中配有1台工程师工作站、1台操作员监控站、1台自动变负荷过程站和3台打印机,用于生产过程监控,软件组态及图形、报警打印。控制系统网络结构如图1所示。 图1 控制系统网络结构示意图 该系统配置的最大特点是具有冗余功能,包括: INFI-NET环的双环热态冗余。 两块网络接口模件硬线配置成互为冗余,保证上环网的数据不中断。 4个多功能处理器分别用硬线配置成两对互为冗余模块,保证系统程序执行不中断。 工程师工作站与操作员监控站通过以太网配置成冗余,共享两台打印机。 2 控制功能 2.1 DCS过程控制 ElsagDCS主要完成产品加工区、存储区的数据采集和回路控制。控制回路主要有空压机吸入空气的流量控制;空冷塔、水冷塔的液位控制;两分子筛的运行步骤及切换控制;冷箱内各精馏塔及管道内的压力、流量、温度控制;存储罐内的液位及压力控制等等。 为使整个生产过程运行稳定,各回路间都设有级联控制。该空分装置主要是制取氧气,氧气流量调节回路如图2所示。 图2 氧气流量调节回路组态示意图 由于氧气流量调节会影响到氩馏分、氧气压力、氧气温度的变化,联锁停车信号会使回路处于安全设定值状态,因此设计过程中需考虑到这些因素的存在,使之处于级联状态,保证了氧气流量的安全调节。 PID回路调节是由PID功能块和控制站功能块组成,它有3种工作方式。 (1) 手动方式操作员在监控画面上直接修改阀门开度的输出值,达到手动控制现场设备的目的。 (2) 自动方式操作员通过监控画面修改控制站功能块的设定值1,由PID回路根据此设定值与测量值的偏差自动调节阀门的开度。 (3) 级联方式与自动方式基本相同,但控制站功能块的设定值2是由内部程序修改,在监控画面上不能修改此设定值。 2.2 ALC ALC是指通过DECAlpha200计算机中已组态好的实时数据库(DHI)与DCS系统进行通信,以控制现场25个主要控制回路,改变空分装置的运行负荷,即改变空气的吸入量和能耗,并自动地按照一定算法改变后续工序的相应重要生产参数,实现氧气产量随需求量的变化而变化的自动调节,调节范围为设计产量的70%~100%。这样就可降低生产成本,提高经济效益。 2.2.1 ALC系统主要功能 (1) 操作员接口 用于气氧产品目标产量的设定和自动变负荷全过程的监视。为保证生产安全,该气氧产品目标产量设定点有上、下限值。 (2) 计算块和设定点斜坡函数 用于ALC所控制的25个控制回路的各个目标设定点及其他重要工艺参数的计算。 (3) 数据传送 用于DEC Alpha200计算机计算出的各控制回路设定点的值到相应控制回路的动态传送,其数据每5s刷新一次。ALC系统启动前,受ALC控制的所有控制回路必须设定在适当的操作状态(即自动/串级)。一旦出现错误的信号,ALC便自动停止数据的传送,保持当前状态,同时发出声、光报警信号。 (4) 历史趋势图显示 用于显示自动变负荷控制过程中主要控制回路的参数曲线,以便于操作人员监视生产状况。 (5) 安全运行 自动变负荷可以随时启动或停止,当25个控制回路中有1个出现错误时,变负荷将自动停止,各回路保持在当前状态。 2.2.2 控制原理 对于每个控制回路来说,不同的氧产量值,对应着不同最佳设定值。在ALC系统内部设置了一套自己的专家控制系统,它是由上千组不同氧产量值对应不同控制回路的最佳经验设定值组成。每次变负荷之前,系统根据当前各控制回路的工艺值、当前氧产量值、输入的氧产量变量值、设计氧产量的最大最小值,计算出各控制回路的最终目标设定值和当前状态(OK或ERRO);并且在从当前氧产量向目标氧产量的变化过程中,按照每次改变量不能超过上次氧产量值的5%的原则,每5s改变一次氧产量值,即每5s计算并发送一次各控制回路的设定值,并计算出完成本次变负荷所需要的时间,再由氧产量和完成变负荷的时间构成一个一次函数,这就是斜坡方程。该斜坡方程控制曲线如图3所示。ALC系统每次运行都是按照这一计算好的斜坡方程轨迹运行,直到运行时间结束。ALC系统控制运行流程图如图4所示。 图3 斜坡方程控制曲线示意图 图4 ALC系统运行流程图 2.3 PLC局部控制 PLC局部控制由4台SIEMENS S5-115U 945和1台三菱MELSEC A1S PLC组成,用来完成主厂房内空压机等大型主体设备的启动、停止、运行的逻辑控制,回路控制及运行状态监视。 3 通信方式 3.1 DCS系统通信方式 该集散控制系统采用了INFI-NET环、控制总线(Controlway)和输入/输出扩展总线3层通信结构。   (1) INFI-NET环是一个无主站、封闭环路、缓冲器插入型的环行通信网络,由一对冗余的同轴电缆和相应的通信端子单元构成,最多支持250个节点,通信速率为10Mb/s。   (2) 控制总线是一个1Mb/s的串行通信链,最多支持32个多功能处理器,允许过程数据、文件数据和计算机数据的交换,也能处理组态下装和参数整定,并可通过网络处理模件从INFI-NET环接收或发送例外报告。   (3) 输入/输出扩展总线处理数字量I/O模件和模拟量I/O模件与多功能处理器之间的数据通信。它是一个高速并行通信通道,其总线宽为8个数据位,传输速率为0.5Mb/s。 3.2 ALC系统与DCS间的通信 ALC系统通过计算机的网络接口模块与INFI-NET环相连,它与DCS间的通信要经过DCS驱动器,将数据转换成两个系统都能接受的协议形式。通信示意图如图5所示。 图5 ALC与DCS通信 4 结束语 该集散控制系统于1996年11月开始调试,1997年9月20日通过考核验收,自动控制系统运行稳定,控制功能和控制精度符合生产工艺的要求。当氧产量从70%上升到100%时,ALC所需时间约为40min;氧产量从100%下降到70%时,ALC所需时间约为60min,耗电量是100%工况时的77.7%,大大降低了生产能耗,提高了经济效益。该系统基本达到无人控制,产品各项指标均达到合同要求,且重要的工艺参数可通过以太网传送到厂级管理计算机,对于冶炼用气的合理调度具有重要意义。  

    时间:2011-12-13 关键词: 中的应用 空分装置 过程控制

首页  上一页  1 2 下一页 尾页
发布文章

技术子站

更多

项目外包