当前位置:首页 > 量程
  • 揭开测试测量的小秘密——每周一考 【第2周】

    1、实时示波器的量程在低中端时没有差别,在高端时出现差别,比如有三大示波器厂家的最高端示波器的最大量程分别为8V, 1.2V , 800mV , 通常高速示波器测量的高速信号幅度也很小,以计算机高速总线测量为例,这个指标对哪些应用有影响、哪些没有影响?2、用示波器做总线协议分析与传统协议分析仪的区别?3、哪些技术可以提升示波器的响应速度和波形捕获率?它们有什么优缺点?----------------------------------我是答案分界线-----------------------------------------1、 实时示波器的量程在低中端时没有差别,在高端时出现差别,比如有三大示波器厂家的最高端示波器的最大量程分别为8V, 1.2V , 800mV , 通常高速示波器测量的高速信号幅度也很小,以计算机高速总线测量为例,这个指标对哪些应用有影响、哪些没有影响?(答案由安捷伦杜吉伟提供) 这个问题可以分为两部分,一是为什么会出现这样的差异,二是对哪些应用有影响,对哪些没有影响。为什么会出现这样的差异?实时示波器带宽在达到16GHz或以上时,各个示波器厂家的差异主要体现在半导体工艺上,如下图所示,磷化铟(InP)半导体工艺的工作电压在高频时的工作电压远高于IBM HP8硅锗半导体工艺,这决定了最后的示波器量程用磷化铟工艺可达到8V峰峰值,而用硅锗则只能达到1.2V或800mV 。 理论上,示波器前面增加衰减器可提升示波器的量程,但量程较低的两个示波器厂家都没有通过在示波器内部增加衰减器的方法来提升量程,这是因为硅锗示半导体工艺本来工作电压低,示波器自身的信噪比难以提高,如果增加衰减器,会进一步引入本底噪声和幅频特性、相频特性的偏差。对于用户来说,如果你外部使用一个衰减器,你无法知道加上它后,示波器的本底噪声、幅频特性、相频特性、通道时延不确定度等的指标会变成什么样子,除非厂家提供你可信可靠的指标数据。回到问题的第二部分,量程是1.2V , 800mV的示波器对哪些应用没有影响,哪些有影响。如果是用户可以使用探头的应用场合,只要探头的工作电压范围允许,示波器自身的量程这一局限性就可以被掩盖,这种方法的潜在缺点是,您可能浪费了对高端示波器的资金投入,因为目前探头最高带宽远小于示波器带宽,最高的是安捷伦提供的30GHz带宽,其次是其它厂家的25GHz或20GHz探头。另一种应用场合是一致性测试、必须使用测试夹具,也因此必须使用同轴电缆,这时示波器的量程就是一个制约条件,量程是800mV, 1.2V的示波器,一方面无法应对信号幅度稍大的信号,另一方面,高速系统设计的地线难免有地跳动,信号本身难免有过冲和下冲,这就制约了示波器的应用场合,使得您难以把它当作一台通用仪器来使用,只能针对幅度很小(包括过冲、下冲和地跳动)的应用。不仅是计算机行业,有很多领域也只用电缆来连接,这时示波器的量程就会成为制约条件。2、 用示波器做总线协议分析与传统协议分析仪的区别?(答案由安捷伦孙灯亮提供) 现在示波器的应用软件的发展方向之一是做串行总线的协议分析。示波器做串行总线的协议分析的工作原理是:示波器正常采集波形,使用软件或DSP的方式从捕获的波形里提取协议内容。这个协议内容与传统的协议分析仪的结果是一致的,而且可以同时看波形,同时调试协议。但是主要不足是两点:其一,除安捷伦9000、3000、7000、5000、6000系列,大部分示波器还没法实现硬件(DSP方法)的协议触发,特别针对高速串行总线,这样在示波器的捕获死区时间较大的情况下,很难保证捕获的协议内容是需要的协议内容。其二,示波器采用过采样的方式,捕获的协议内容长度有限,没法很好的做软件级的调试。而传统的协议分析仪就没有这样的问题,具备复杂的触发能力和足够的存储深度。而且一般还有训练器部分,不仅仅可以捕获协议,还可以产生协议。所以说,示波器替代传统协议分析仪还有很长的路要走。3、 哪些技术可以提升示波器的响应速度和波形捕获率?它们有什么优缺点?(答案由安捷伦孙灯亮提供) 调试产品时,响应速度、波形捕获率率和解码更新速率极为重要,尤其是当尝试找出并调试偶发或间歇发生的问题时,这是很难解决的问题。现在,有三种典型的方法可以提升示波器的响应速度和波形捕获率:DPX技术,MegaZoom技术,FPGA技术1)DPX技术:与DSO一样,输入信号首先经放大和ADC变换后得到信号的采样值,采样值经过DPX波形成像处理器的处理后形成一幅具有500*200像素、包含波形三维信息的完整流器波形图,在不间断捕获过程的情况下,DPX成像处理器每秒向波形显存储器发送30幅波形图,在微处理器的控制下,根据显示存储器的内容,在显示屏上得到采集到的波形图。实现"信号数字化→图形化→显示"这样一种波形显示方式。DPO技术在提升波形捕获率方面走了开创性的一部,但是仍有很大的不足,主要是:只注重波形的快速显示,不注重进一步的测量和分析。如果要做进一步的测量或分析,还需要示波器退出DPO模式或快速捕获模式,到常规采集模式,再一次捕获,再测量和分析。2)MegaZoom技术:MegaZoom 技术在每个通道中引入定制的专用集成电路,这个集成电路把存储器分成2部分,采用乒乓的方式,边采集边处理,可以迅速将采集的数据写入存储器,并可以迅速地从存储器中读取和处理采集的数据,以进行显示和分析。这样该仪器在访问所采集的数据时,可以即时响应平移和缩放控制命令。MegaZoom 技术将更新率、即时控制响应以及深存储器创新技术相结合,使能以高采样率捕获长时间周期,并在停止或运行时即时放大有关的波形细节。深存储器、前面板响应性以及显示更新率组合到示波器中,无需特殊工作方式或存储器深度选择。3)FPGA技术:为了加快数字示波器的波形更新速率和测量运算速率,现在的中高端示波器逐渐采用了FPGA技术加快信号处理。上图是90000A示波器的硬件架构,其中的IDA是集成数据加速处理器,是用FPGA实现的。先前,只把MegaZoom处理器软核集成其中,现在则开始把各种波形参数运算、协议触发和译码、FFT变换集成其中,这样即使在大数据量运算的情况下,仍然可以保证示波器的响应速度和数据处理速度。

    时间:2018-10-25 关键词: 示波器 测试测量 量程

  • 功率表的使用

      功率表的使用分为如下三个步骤。   ①正确选择功率表的量程。选择功率表的量程就是选择功率表中的电流量程和电压量程。使用时应使功率表中的电流量程不小于负载电流,电压量程不低于负载电压,而不能仅从功率量程来考虑。例如,两只功率表,量程分别是IA、300V和2A、150V,由计算可知其功率量程均为30OW,如果要测量一负载电压为220V、电流为IA的负载功率时应逸用IA、300V的功率表,而2A、150V的功率表虽功率量程也大于负载功率,但是由于负载电压高于功率表所能承受的电压150V,故不能使用。所以,在测量功率前要根据负载的额定电压和额定电流来选择功率表的量程。   ②正确连接测量线路。电动系测量机构的转动力矩方向和两线圈中的电流方向有关,为了防止电动系功率表的指针反偏,接线时功率表电流线圈标有“·”号的端钮必须接到电源的正极端,而电流线圈的另一端则与负载相连,电流线圈以串联形式接入电路中。功率表电压线圈标有“·”号的端钮可以接到电源端钮的任一端上,而另一电压端钮则跨接到负载的另一端,如图1所示。   图1 功率表的接线方法   当负载电阻远远大于电流线圈的电阻时,应采用电压线圈前接法见图1(a)。这时电压线圈的电压是负载电压和电流线圈电压之和,功率表测量的是负载功率和电流线圈功率之和。如果负载电阻远远大于电流线圈的电阻,则可以略去电流线圈分压所造成的影响,测量结果比较接近负载的实际功率值。   当负载电阻远远小于电压线圈电阻时,应采用电压线圈后接法见图1(b) 。这时电压线圈两端的电压虽然等于负载电压,但电流线圈中的电流却等于负载电流与功率表电压线圈中的电流之和,测量时功率读数为负载功率与电压线圈功率之和。由于此时负载电阻远小于电压线圈电阻,所以电压线圈分流作用大大减小,其对测量结果的影响也可以大为减小。   如界被测负载本身功率较大,可以不考虑功率表本身的功率对测量结果的影响,则两种接法可以任意选择。但最好选用电压线圈前接法,因为功率表中电流线圈的功率一般都小于电压线圈支路的功率。   ③正确读数。一般安装式功率表为直读单量程式,表上的示数即为功率数。但便携式功率表一般为多量程式,在表的标度尺上不直接标注示数,只标注分格。在选用不同的电流与电压量程时,每一分格都可以表示不同的功率数。在读数时,应先根据所选的电压量程U、电流量程I以及标度尺满量程时的格数&,求出每格瓦数(又称功率表常数)C,然后再乘上指针偏转的格数夕,就可得到所测功率P,即   例:有一只电压量程为250V,电流量程为3A,标度尺分格数为75的功率表,现用它来测量负载的功率。当指针偏转50格时负载功率为多少?   解:先计算功率表常数C   C=UI/a,=250V×3A/75格=10W/格   故被测功率为   P=C色=10W/格×50格=500W

    时间:2018-07-03 关键词: 功率表 量程

  • 教你巧选电子测量仪器

      由于测量仪器在不同的频段,即使功能相似的仪器,其工作原理与结构常有很大的不同。而对于不同使用目的,也常使用不同准确度的仪器。例如,作为计量工作标准的计量仪器常具有最高的精度,实验室中一般使用较精密测量仪器进行定量测量,而生产和维修场合,则常使用简易测试仪器进行测量。实际上在选择一台电子仪器时,要考虑的远不止这些,通常选择仪器要考虑的问题一般包括:   (1)量程。即被测量的最大值和最小值各为多少?选择何种仪器更合适?   (2)准确度。即被测量允许的最大误差是多少?仪器的误差及分辨率是否满足要求?   (3)频响特性。即被测量的频率范围是多少?在此范围内仪器频响是否平直?   (4)仪器的输入阻抗在所有量程内是否满足要求?如果输入阻抗不是常数,其数值变化是否在允许的范围内?   (5)稳定性。两次校准之间容许的最大时间范围是多少?能否在长期无人管理下工作?   (6)环境。仪器使用环境是否满足技术条件要求?供电电源是否合适?   (7)隔离和屏蔽。仪器的接地方式是否合适?工作环境的电磁场是否影响仪器的正常工作?   (8)可靠性。仪器的规定使用寿命有多长?维护方便否?   当然,实际选择仪器时,不一定要考虑上述全部项目。例如,测量音频放大器的幅频特性,主要考虑测量仪器的频率范围和量程是否合适?测量误差是否在允许的范围内?我们可以根据实验室现有仪器仪表,挑选电子电压表(毫伏表)或示波器作为测量仪器。使用时,注意给仪器预热、调零和校准。为保证等精度测量,实验时应尽可能用同一组仪器。

    时间:2018-06-21 关键词: 测量仪器 频响 量程

  • 万用表直流电流档各量程均无指示故障修理

    原因:对于误差为正误差:①与表头串联的电阻值变小;②表头灵敏度偏高。 修理: ①调整与表头串联的可调电阻器; ②表头灵敏度偏高可以从三个方面去解决: 第一。永久磁铁退磁处理,减弱其磁场强度,从而降低表头灵敏度; 第二,可以考虑更换一只烦左右力矩较大的游丝,也可以达到降低表头灵敏度的目的; 第三,重新绕制动圈,匝数略少与原线匝数,究竟应当绕多少匝,要看表头灵敏度偏高的程度而定。 若误差均为比例相同的负误差,分析过程与上面所述类似。但思路正好相反。

    时间:2018-06-15 关键词: 万用表 故障修理 量程 直流电流档

  • 万用表直流电流档各量程的误差有正有负故障修理

    原因: ①表头本身特性改变,如仪表轴尖与轴承安装不正;转动不灵活等等; ②某量程的分流电阻焊接不良;③某量程分流电阻器被烧坏或短路。 修理: ①检查表头内动圈的安装是否端正;检查磁铁极掌与铁芯的空隙间有无铁磁物质或杂物,这些都是造成表头本身特性改变的重要原因,若有上述情况应先排除之: ②检查个分流电阻器,将焊接的分流电阻器重新焊牢; ③跟换分流电阻器,更换前应查阅原理电路图,核实被更换电阻器的阻值。

    时间:2018-06-15 关键词: 误差 万用表 故障修理 量程 直流电流档

  • 怎样测量交流电压?

    答:测量交流电压分单相交流电压的测量和三相交流电压的测量。(1)单相交流电压的测量:单相交流电压测量通常采用交流电压表.并接在被测电路上也要注意量程的选择、但没有极性的要求问题。测量时可以用电怅表直接接人;为了扩大量程,常采用电压互感器,但互感器不应二次测短路以确保安全。电压表的直接接人法,如图3--7所示.带有电压互感器直接接人法如图3--8所示。3--7、3--8〔2)三相交流电压的测量:三相交流电压的测量.可以采用三只电压表.三只表同时读取测量数据,测量准确度较高,但是为了节省起见通常采用一只电压表,作三次测量.获得三相电压的数据.又常用电压转换开关.用一只电压表测量下相电压数据,此时,电压表可固定接线,操作比较方便。三相交流电压测量的各种连接.如图3--9所示。3--9

    时间:2018-06-04 关键词: 交流电压 量程

  • 使用电阻率测试仪要注意哪些问题?

    电阻率测试仪是一种常用的监测仪器,主要用于制药、电子、化工等行业对工业流程水质的在线监测,是各种中小型纯水设备的理想配套仪表。用户使用电阻率测试仪要注意哪些问题呢?下面小编就来具体介绍一下,希望可以帮助到大家。电阻率测试仪的使用注意事项1. 检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. 接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx"两端开路的情况下,调零使电流表的显示为0000。然后关机。3. 将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。4. 测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. 接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)6. 电流电阻量程按钮从低档位逐渐拨高档,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1",此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. 测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档,最后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。

    时间:2018-06-01 关键词: 量程 电阻率测试仪

  • 采用AT89C51单片机控制的量程自切换频率计

    量程自切换频率计采用AT89C51单片机控制,主要由信号放大整形电路,单片机控制电路,分频电路,信号显示电路以及电源电路五个模块组成。本文阐述了系统的硬件组成及工作原理,论证了设计方案的可行性。系统程序采用C语言编写,经Keil软件进行调试后在Prote us软件中进行仿真,并且经过实物的测试,可以实现对不同波形的频率进行测量。具有自动切换并指示量程,精度较高,测量范围较大等特点。 近年来,随着科学技术的快速发展,特别是类似单片机等相关集成电路生产技术的快速堀起,推动了仪器仪表及家电产业的快速发展,用程序代码来简化硬件电路的复杂程度,使其不断向着体积小,价格低廉,功能更加多样化、智能化的方向发展。功能齐全,价格低廉的产品越来越受到人们的青睐,当然,科技的发展最先受益的还是从事前沿科技研究领域的人员,对于他们来说,一款好的测量设备将为他们的研究工作带来便利的同时也减轻很多负担。就目前而言,高端仪器设备很多均依赖进口,研究并制造出属于我们国家自己的高端仪器设备将是我们一直努力的方向,而且也具有非常广阔的发展前景。 1 硬件电路设计 本设计主要由信号采集电路、放大整形电路、分频电路、信号处理电路、电源电路和显示电路等模块组成。当采集到的被测信号经过放大整形电路后被整形为幅度适中的矩形波后,根据其频率的高低选择相应的分频电路对其进行适当的分频处理,然后单片机对分频后的信号进行测频,再经过处理后将结果送出去,驱动显示电路输出的数字频率信息,同时指示相应的量程,从而实现对频率的自动测量和显示。频率计的总体工作原理框图如图1所示。 1.1 放大整形电路的设计 9013是一种NPN结构的三极管,集电极和发射极之间的最高电压25 V,集电极和基极之间的最高电压为45 V,发射极和基极之间的最高电压为5 V,集电极的最高电流0.5 A;三极管的最高耗散功率为0.625 W,最高的结温为150℃,其特征频率为150 MHz;放大倍数范围是40倍~110倍;工作温度范围为-55~+150℃;74LS14是一种双列直插式封装具有六反相器的施密特触发器,其工作的最高电源电压为7 V,工作环境温度范围为0~70℃;三极管9013和施密特触发器74LS14一起构成的放大整形电路能够有效的对方波,正弦波,矩形波,三角波等信号进行放大和整形,并且能够稳定的输出,具有较强的驱动能力,能够满足本课题对0 Hz~20 MHz的频率范围要求。三极管9013和施密特触发器74LS14构成的放大整形电路如图2所示。 1. 2 信号分频部分电路设计 74LS161为二进制同步计数器,具有同步预置数、异步清零以及保持等功能。合理应用计数器的清零功能和置数功能,一片74LS161可以组成16进制以下的任意进制分频器;74LS151是具有选通输入端,互补输出的8选1数据选择器,数据选择端(ABC)按二进制译码,以从8个数据(D0~D7)中选取1个所需的数据。 数据选择器74LS151与计数器74LS161构成的分频电路能够比较方便的完成对信号的分频处理,通过数据选择器来控制计数器构成的分频器工作,从而实现对不同数量级的频率信号进行有效的分频处理;为后续电路的顺利进行提供必要的保证。信号分频模块的电路图如图3所示。 1. 3 信号处理部分电路设计 单片机系统的拓展通常是以最小系统为基础的。信号处理模块主要是依靠单片机的最小系统。最小系统是一个真实有用的单片机最小配置系统。对于AT89C51单片机而言,因为片内带有程序存储器,所以只要在芯片上外接复位电路和晶振电路就构成了最小系统。单片机的XTAL1和XTAL2引脚是用来连接晶振电路的,XTAL1接外部晶振和微调电容的一端,它是内部时钟工作电路及振荡器的反向放大器的输入端;XTAL2接外部晶振和微调电容的器一端,在片内它是振荡器的反向放大器的输出端。RST为单片机的复位端,接复位电路,该引脚为高电平时可使单片机复位,回到初始状态。复位电路主要包括复位开关、复位电阻和复位电容。单片机的最小系统如图4所示。 1.4 显示部分电路设计 在本设计系统中,由于只要对信号频率和量程进行显示,因而选择4位共阳极的数码管来动态显示所测得的频率,选用红、黄、绿三色的发光二极管来指示对应的量程,分别对应为MHz、kHz、Hz档。由于发光二极管的工作电流较小,一般在10 mA左右,所以为了保证发光二极管的正常工作,还必须为其加上200 Ω的限流电阻。四位数码管用来显示频率的测量值,当频率在0~9999 Hz时,B档位指示灯(绿)点亮;当频率在10~999.9 kHz时,K档位指示灯(黄灯)点亮;当频率在1~20MHz时,M档位指示灯(红灯)点亮。由四位共阳极的数码管和三色发光二极管构成的显示电路如图5和图6所示。 1.5电源部分电路设计 本设计要用到5 V的直流电源为各个模块供电,利用变压器将220 V的交流电进行降压处理,得到9 V的交流电压,通过整流桥对降压后的交流电压进行整流处理变为直流电压,再通过电容进行滤波处理,滤除高频干扰信号,最后选择稳压块7805串联作用于整流滤波后的直流电压,并且为7805加上了散热铝片来保证其正常的散热和工作,从而使其输出稳定的+5 V直流电压提供给各个模块,理论计算得知整个系统的功率在稳压管的额定功率的范围内,从而保证整个系统的正常工作。电源电路原理图如图7所示。 2 软件设计 在单片机应用系统的开发过程中,C语言的应用最为广泛。C语言不仅能直接对计算机的硬件进行操作,而且语言灵活、程序结构良好、代码效率高、可移植性好。 2.1 系统总流程图 流程图分析:当电源开启后,系统进行初始化,系统开始运行,单片机内部开始判断输入信号频率的高低,按从高到低的顺序进行分频测算从而得到合适的分频系数来控制数据选择器实现对信号进行分频处理,根据频率的高低范围来确定点亮相应的量程指示灯以及确定要显示小数的位数,最后将倍频后的结果通过动态扫描的显示方式在四位数码管上显示出相应的测量结果。系统总流程图如图8所示。 2.2 量程显示的程序流程图 流程图分析:在系统确定了量程范围后,根据不同的量程范围分别电路不同颜色的量程指示灯:当频率范围在0~9999Hz时,绿色的发光二极管点亮;频率范围在10~999.9kHz时,黄色的发光二极管点亮;当频率范围在1~20 MHz时,红色的发光二极管点亮。显示量程的程序流程图如图9所示。 3 电路调试与结果 系统的调试主要从软件调试和硬件调试两方面着手,当然,所有的一切都是为了实现既定任务为目标的。软件调试和硬件调试过程是紧密相关、互相配合的,本次频率计设计重点是对软件程序的调试。 利用函数信号发生器输入正弦信号分别为279 Hz时,观察数码管的结果。得到结果如图10所示。 利用函数信号发生器输入方波信号分别为680 kHz时,得到结果如图11所示。 利用函数信号发生器输入锯齿波信号分别为2.76 MHz时,观察数码管的结果。得到结果如图12所示。 利用函数信号发生器输入三角波信号分别为583 Hz时,观察数码管的结果。得到结果如图13所示。 4 结论 本设计经Keil软件进行调试后在Proteus软件中进行仿真,并且经过实物的测试,实现了对方波、三角波、锯齿波、正弦波的频率进行测量。具有自动切换并指示量程,精度较高,测量范围较大等特点,符合电子仪表的发展趋势,具有一定的实用价值。

    时间:2018-05-30 关键词: 单片机 频率计 量程

  • 准确度、分辨率、量程、字、位及精度

      概述 准确度:仪器的准确程度 — 其测量值与被测信号的真值或参考值的接近程度。 分辨率:仪器能够检测和显示的最小增量 — 百分之一、千分之一、百万分之一。 量程:仪器能够测量的数值或信号(例如安培、伏特和欧姆)的上限和下限。 精度:仪器的可重复性 — 不断复现相同测量值的可靠性。 准确度 准确度指在特定工作条件下的最大允许误差。 准确度表示为百分比,指显示的测量值与被测信号真值(标准值)的接近程度。准确度要求与公认的行业标准进行比较。 根据具体应用的不同,特定数字万用表的准确度的重要性也不完全相同。例如,大多数交流电网电压的变化为±5%或更大。在标准交流115 V电源插座处测量电压就是这种变化范围。如果某只数字万用表仅用来检查插座是否有电,测量准确度为±3%的数字万用表就比较合适。 有些应用,例如汽车、医救航空或专用工业设备的校准,可能就需要较高的准确度。如果DMM的准确度为±2%,那么其读数100.0 V的可能范围为98.0 V至102.0 V。这对有些应用是没问题的,但对于敏感电子设备是不可接受的。 准确度还可能是在基本准确度指标上增加一个数字(字)。例如,±(2%+2)准确度表示如果万用表的读数为100.0 V,其范围可能为97.8 V至102.2 V。较高准确度的数字万用表可支持较多的应用。 福禄克手持万用表的基本直流准确度为0.5%至0.025%。 分辨率 分辨率是工具能够检测和显示的最小增量。 以两个直尺作为非电气测量工具的例子。对于一个标有1/16英寸刻度的直尺和另一个标有1/4英寸刻度的直尺,前者的分辨率更高。 以测试1.5 V家用电池为例。如果数字万用表(DMM)在3 V量程下的分辨率为1 mV,那么在读数为1 V时就可能观察到1 mV的变化。用户能够观察到千分之一伏特的变化,即0.001。 分辨率可能作为最大分辨率列在仪表的技术指标中,这是在仪表的最低量程设置下可能分辨出的最小值。 例如,如果最大分辨率为100 mV (0.1 V),则意味着当万用表的量程被设定为测量最高可能电压时,电压将被显示到最接近的十分之一伏特。 只要测量值在量程范围之内,通过降低数字万用表的量程设置,可提高分辨率。     量程 数字万用表的量程和分辨率是相关的,有时会在DMM的技术指标中列出。 许多万用表提供自动量程功能,根据测量幅值自动选择相应的量程。这样就能够提供最有意义的读数和最佳测量分辨率。 如果测量值高于设定量程,万用表将显示OL (过载)。在保证万用表不过载的情况下选择最低可能的量程,可获得最准确的测量值。    

    时间:2018-05-18 关键词: 精度 分辨率 准确度 量程

  • 一文看懂测量仪表准确度、分辨率、量程、精度的概念

    概述 准确度:仪器的准确程度 — 其测量值与被测信号的真值或参考值的接近程度。 分辨率:仪器能够检测和显示的最小增量 — 百分之一、千分之一、百万分之一。 量程:仪器能够测量的数值或信号(例如安培、伏特和欧姆)的上限和下限。 精度:仪器的可重复性 — 不断复现相同测量值的可靠性。 准确度 准确度指在特定工作条件下的最大允许误差。 准确度表示为百分比,指显示的测量值与被测信号真值(标准值)的接近程度。准确度要求与公认的行业标准进行比较。 根据具体应用的不同,特定数字万用表的准确度的重要性也不完全相同。例如,大多数交流电网电压的变化为±5%或更大。在标准交流115 V电源插座处测量电压就是这种变化范围。如果某只数字万用表仅用来检查插座是否有电,测量准确度为±3%的数字万用表就比较合适。 有些应用,例如汽车、医救航空或专用工业设备的校准,可能就需要较高的准确度。如果DMM的准确度为±2%,那么其读数100.0 V的可能范围为98.0 V至102.0 V。这对有些应用是没问题的,但对于敏感电子设备是不可接受的。 准确度还可能是在基本准确度指标上增加一个数字(字)。例如,±(2%+2)准确度表示如果万用表的读数为100.0 V,其范围可能为97.8 V至102.2 V。较高准确度的数字万用表可支持较多的应用。 福禄克手持万用表的基本直流准确度为0.5%至0.025%。 分辨率 分辨率是工具能够检测和显示的最小增量。 以两个直尺作为非电气测量工具的例子。对于一个标有1/16英寸刻度的直尺和另一个标有1/4英寸刻度的直尺,前者的分辨率更高。 以测试1.5 V家用电池为例。如果数字万用表(DMM)在3 V量程下的分辨率为1 mV,那么在读数为1 V时就可能观察到1 mV的变化。用户能够观察到千分之一伏特的变化,即0.001。 分辨率可能作为最大分辨率列在仪表的技术指标中,这是在仪表的最低量程设置下可能分辨出的最小值。 例如,如果最大分辨率为100 mV (0.1 V),则意味着当万用表的量程被设定为测量最高可能电压时,电压将被显示到最接近的十分之一伏特。 只要测量值在量程范围之内,通过降低数字万用表的量程设置,可提高分辨率。 量程 数字万用表的量程和分辨率是相关的,有时会在DMM的技术指标中列出。 许多万用表提供自动量程功能,根据测量幅值自动选择相应的量程。这样就能够提供最有意义的读数和最佳测量分辨率。 如果测量值高于设定量程,万用表将显示OL (过载)。在保证万用表不过载的情况下选择最低可能的量程,可获得最准确的测量值。 精度 精度是测量值与真值的接近程度。包含精密度和准确度两方面。精度表征方法:精度常使用三种方式来表征。 1)最大误差占真实值的百分比,如测量误差3%; 2)最大误差,如测量精度±0.02mm; 3)误差正态分布,如误差0%~10%占比例65%,误差10%~20%占比例20%,误差20%~30%占10%,误差30%以上占5%。 全自动定氮仪除了判断终点方法重要性以外,滴定的精度是仪器最重要的技术指标。如果滴定精度高的话,那仪器可信度高,如果滴定精度低到不能忍受的时候,那就不成为仪器。一些进口全自动定氮仪滴定精度:2ul/步、2.4ul/步、一些国产全自动定氮仪滴定精度:1ul/步。

    时间:2018-04-10 关键词: 精度 分辨率 准确度 量程 测量仪表

发布文章

技术子站

更多

项目外包