当前位置:首页 > 钽电容
  • 基于钽电容和氧化铌电容提高汽车系统性能

    解决医疗IT网络中的布线设施的方法 今天,网络设施的质量、性能和管理在IT战略和整个机构的性能和可靠性中发挥着直接的、可以衡量的作用。需要“高可用性”网络,同时减少基础设施故障,已经成为网络管理人员的首要任务。 信息技术及其以电子方式存储的信息在NHS改善质量、速度和容量的计划中发挥着关键作用。  结构化布线系统主要是由导线和配线架组成的隐藏的基础设施,为局域网(LAN)奠定了关键基础。 根据公认的统计数据,70%的网络故障是由布线引起的。这并不是说各机构购买的系统有问题,相反,现代布线是一种稳定的系统,很少会发生故障。事实上,布线导致的网络故障大多是管理不当造成的,如控制方法和文件管理方法差等问题,必须予以解决。  相关项目 网络可用性 高可用性网络通常用99.99%的可用时间表示,也就是说,网络不可用的时间只有0.01%(一年中共53分钟)。在以救死护伤为天职、一周七天、全天24小时运行的医疗环境中,这明显是不能接受的,因为医疗机构不能控制这些故障的实际发生时间。由于结构化布线系统经常用于关键的医疗设备中,任何基础设施故障都会引起灾难性后果,可能会危及患者的生命。此外,故障可能会分布在不同的地方,进一步提高了潜在的危害和成本。事实上,100%的可用性是不可能实现的,但我们可以采取措施,明显降低网络故障发生的频率和时间。  现在,智能布线系统在市场上已经成形,可以实时监测网络。有效管理物理层不仅带来了明显的管理优势和成本优势,还有助于实现管理良好的、可靠的弹性网络,最大限度地减少关键事务型医疗IT网络中的基础设施故障。  有效管理物理层要求全面、最新、100%准确的连接记录,以便找到问题,监测移动、增加和改动(MAC)的实现情况。 尽管这些记录的规模和复杂程度差异很大,但它们有一点是共同的,即它们的好坏取决于它们保持的信息。它们都需要手动更新,这对医疗机构一直是一个棘手的问题。医疗机构在日常运转中可能会忽略保持连接记录,导致连接记录滞后于实际情况。系统中保持的数据情况不一,有的“接近准确”,有的则“完全过时”。  如果没有阅读简便的、准确的接插连接记录,在网络中断时将很难跟踪故障,而且要耗费大量的时间。因疏忽断开服务器或重要的广域网链路,可能会使一个网段、甚至使整个网络中断几个小时的时间。由于医疗机构和NHSTrusts经常在许多不同地点和大楼中运行分布式网络,这些都要求网络服务,因此网络管理和维护问题进一步显现。分布式网络再加上连接记录差,使得技术人员每天要花费大量的时间来找问题。此外,由于预算紧张,负责这些关键任务的人员注定比较短缺。  网络管理人员面临着在实现之前定期审计移动、增加和变动(MAC)的问题,这一任务需要耗费大量的时间,对每次移动的成本有着重大影响。网络管理员对这一工作耗费的时间和成本非常头疼,因此把这一工作外包给布线系统安装商的情况并不少见。这通常会辅以定期网络审计,以确定通信设施的连接模式,从而进一步引发了成本。  如果没有定期进行审计,用户经常会发现,跳线可能一直连接到集线器或交换机端口上,但它们没有进一步连接到工作区。这会让人产生错误的印象,即有问题的集线器或交换机容量已经饱和,网络中需要增加有源设备。  解决方案  智能布线系统 通过采用智能布线系统实时监测系统,NHSTrusts和其它医疗机构开始解决这些问题。连接信息输送到布线管理软件中,布线管理软件自动更新记录,消除了数据库信息滞后于实际情况的可能。通过使用智能布线系统控制MAC,医疗机构不再需要多个团队进行简单的改动。此外,智能布线系统自动审计改动,大大降低了改动的成本。  通过使用智能布线系统实现前瞻式物理设施管理,医疗机构可以降低中断时间,实现可靠的高度容错的网络。没有哪种智能布线系统能够完全防止服务中断和系统停机,但通过提供与网络连接有关的精确信息,它可以明显降低服务中断和系统停机时间,更简便地排除故障。如果有人错误地拔下一条跳线,网络管理人员可以实时获得通知,包括被拔下的跳线位置等重要信息。通过这些详细信息,技术人员可以在几分钟内、而不是几个小时或几天内,更有效地解决连接问题,最大限度地降低关键事务型医疗IT网络的中断时间。  能够检测给定端口中的连接还意味着可以以电子方式引导移动、增加和改动(MAC)。数据库可以报告不正确的连接,技术人员可以立即校正问题。由于网络管理人员对记录的准确性拥有信心,因此不必预先审计这一过程,消除了额外的费用。  某些优秀的智能布线系统还提供了扩展的安全功能,可以防止未经授权进行连接/断开连接,防止关键事务型医疗IT网络受到威胁。系统可以在几秒钟内,把未经授权进行的连接/断开连接(非工作单安排)报告给网络管理员,如通过简单的网络级消息、电子邮件或短信。通过在配线架附近装一部摄像机,可以把非授权操作人员的照片作电子邮件附件发到报警系统上,或记录下来,以备日后调查使用。  总结 对医疗机构来说,网络实际上已经发展成为与公用事业同等的一项基本业务。需要至少99.99%的运行时间,同时减少基础设施故障,已经成为网络管理员的首要任务。  在关键事务型医疗IT网络中增加智能布线系统创建了一个可靠、容错、强大的受控物理设施,可以在分布式网络远程管理、中断时间、变动率、安全和网络审计成本等方面实现众多优势。有70%的网络故障是由布线引起的,通过最大限度地减少这些网络故障,智能布线系统可以帮助NHSTrusts和其它医疗机构节约计划外中断事件引发的时间和成本。智能布线技术至少可以满足未来10年的网络需求。

    时间:2020-09-10 关键词: 钽电容 氧化铌电容

  • 注意!钽电容或翻倍涨价!是供应商在危言耸听吗?

    注意!钽电容或翻倍涨价!是供应商在危言耸听吗?

    还记得前几年的MLCC涨价风波吗?主要供应商甚至在一年内四次提价,让采购员们面临MLCC一颗难求的窘境。 事实上,通用元器件的供应商厂家众多,价格一般平稳,但由于产业需求暴增或突发事件影响下,也会带来产能不足,缺货涨价的结果。前几年的MLCC就是这一原因,由于智能手机和汽车等激发的大量需求,再加上原有的产能不足,就导致了长达数年的MLCC涨价潮。 最近,据台媒报道,被动元件大厂国巨发出警告,钽电容或再年底价格将翻倍。 国巨表示,由于5G带动钽质电容需求,加上疫情带动涨价效应,预估到今年年底钽质电容价格将再增1倍。 21ic了解到,钽电容与MLCC、铝电解、和薄膜电容是业内常用的四大电容,钽电容具有高密度、高可靠性和稳定性、宽温度范围特性,广泛适用于工业、消费市场,据统计,2019年全球市场规模约16亿美元。 钽电容由于具有输出稳定且体积较小的优势,广泛应用于手机快充设备中,另外,对于户外温度变化范围大,且对使用寿命和可靠性有较高要求的5G设备,钽电容也是理想选择,随着5G商用开始,5G基站将大量部署,这对钽电容的需求也水涨船高。 目前,以美国VISHAY、KEMET、AVX公司为代表的国际钽电容器制造商主导国际钽电容市场,而由于二季度疫情在欧美蔓延,导致海外厂商产能受影响,供需缺口扩大,AVX在今年5月率先涨价,涨幅在10%-15%。国巨表示,部分品项涨价,新定价从5月开始生效直到9月底;厂商提高售价以来,周边现货零售已经涨价2倍到3倍,产业界预估到今年底涨价幅度可能还有1倍。 看来并非供应商危言耸听,在疫情的影响加上国际供应链的诸多不确定因素作用下,钽电容涨价潮或愈演愈烈。

    时间:2020-08-21 关键词: 钽电容

  • 钽电容换为陶瓷电容的注意事项,你知道吗?

    钽电容换为陶瓷电容的注意事项,你知道吗?

    什么是钽电容?它有什么作用?如果将钽电容换为陶瓷电容,其实需要注意的只有那两点,一方面是可靠性问题,另一方面原材料钽的问题。下面我们具体了解下相关内容! 第一是可靠性问题。钽电解电容器存在发生短路故障时导致冒烟和起火的可能性。出现冒烟和起火现象时,对于配备钽电解电容器的电子产品而言是致命的。另一个是原材料钽的问题。钽属于稀有金属,其产地在全世界屈指可数。因此,如果产地出现政治动荡等,就会陷入价格暴涨、供给不稳定的局面。只要原材料是稀有金属,钽电解电容器用户就不可能完全避免此类风险。 而解决这些问题的对策就是用片状多层陶瓷电容器来取代钽电解电容器。片状多层陶瓷电容器发生冒烟和起火的可能性要远远低于钽电解电容器。另外由于不使用稀有金属,价格和供给都更加稳定。而且还有一些钽电解电容器所不具备的优点。 其优点主要有两个。一是能削减贴装面积。因为片状多层陶瓷电容器单位体积的静电容量较大。另一个是用于DC-DC转换器等输出平滑电路时,可降低输出纹波电压。原因在于片状多层陶瓷电容器的等效串联电阻(ESR:Equivalent Series Resistance)较低。如图1所示,使用钽电解电容器时,输出纹波电压为56mV,而使用片状多层陶瓷电容器时则降到了7mV。 用于输出平滑用途时需要注意 不过,并不是只要单纯地将钽电解电容器换成片状多层陶瓷电容器,工作就结束了的。根据用途的不同,有时还需要注意一些问题。 图1:替换成片状多层陶瓷电容器可以抑制纹波电压 将DC-DC转换器的输出电容器由钽电解电容器换成片状多层陶瓷电容器时的输出电压波形。DC-DC转换器的开关频率为300MHz。钽电解电容器的容量为100μF。使用3 个 22μF的片状多层陶瓷电容器产品。替换前的纹波电压为56mV,更换成片状多层陶瓷电容器后降到了7mV。 典型事例是用于上面提到的DC-DC转换器等输出平滑电路时。虽然片状多层陶瓷电容器确实具备因ESR比较低而能降低输出纹波电压的优点,但ESR低的特性有时却是把“双刃剑”。原因是替换为片状多层陶瓷电容器后,DC-DC转换器反馈环路响应特性的相位会大幅偏移。最坏的情况会出现180度偏移,导致DC-DC转换器的输出异常振荡。这样的话,DC-DC转换器就无法发挥作用了。 为此,将片状多层陶瓷电容器用于输出平滑电路时,需要调整相位补偿电路的常数。如果相位补偿电路集成在DC-DC转换器IC的内部,需要测量被替换掉的钽电解电容器的ESR,然后串联插入ESR与钽电解电容器相同的电阻器。这样做就能抑制异常振荡。 详情请参见图2。图2(a)是单纯把构成DC-DC转换器输出平滑电路的电容器由钽电解电容器更换成片状多层陶瓷电容器后的输出电压波形。波形出现了异常振荡,DC-DC转换器的输出电压也随之大幅变化。图2(b)是对反馈环路相位补偿电路的常数进行调整后的波形。波形的异常振荡得到了抑制,输出电压降到了不会产生负面影响的水平。实际使用中如果达到了这种输出电压波形,就可放心使用。 图2:异常振荡时和正常工作时的输出电压波形 (a)为出现异常振荡时的输出电压波形。(b)为正常工作时的输出电压波形。通过调整反馈环路相位补偿电路的常数,能够防止异常振荡。 一般来说,DC-DC转换器反馈环路响应特性的相位裕度最好确保45度以上。若想满足这一要求,必须调整相位补偿电路的常数。 不过最近,通过在DC-DC转换器IC一侧进行改进,出现了不少即使直接利用ESR较低的片状多层陶瓷电容器也不会出现异常振荡等问题的产品。选择DC-DC转换器IC时,请确认其数据表(Data Sheet)等。如果注明有“使用片状多层陶瓷电容器也能稳定工作”字样,便可以放心使用。反之,如果没有注明,则需要采取上述的对策。以上就是钽电容的解析,希望能给大家帮助。

    时间:2020-05-25 关键词: 陶瓷电容 钽电解电容器 钽电容

  • 为什么轻易不要选择“钽电容”?

    为什么轻易不要选择“钽电容”?

    第一、钽电容失效的模式很恐怖,轻则烧毁冒烟,重则火光四溅。 这里不去赘述“钽电容”的失效模式的原理。 通过这个失效的现象,就知道:如果电容失效,只是短路造成电路无法工作,或者工作不稳定,都是小问题,大不了退货。但是如果造成了客户场地失火,则是需要赔偿对方的人员及财产损失的。那就麻烦大了。 这是我们不要去选用钽电容的重要原因。 第二、钽电容的成本高 看看我们的淘宝就可以知道100uF的钽电容与100uF的陶瓷电容的价格差别,大概钽电容的价格是陶瓷电容的10倍。 钽电容:10只8元;陶瓷电容100只5元。 如果电容容量需求在100uF以下的情况下,我们现在绝大多数下,耐压如果满足的情况下,我们一般需用陶瓷电容。 再大容量,或者再高耐压,陶瓷电容的封装大于1206的时候,尽量谨慎选择。 贴片陶瓷电容最主要的失效模式断裂(封装越大越容易失效):贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。 第三、钽电容未来将耗尽,有钱你都买不到。 早在2007 年,美国国防后勤署(DLA)十多年来已贮存大量钽矿物,为履行美国国会的会议决定,该组织将耗尽其拥有的最后140,000磅钽材料。 从美国国防后勤署购买钽矿石的买主已包括HC Starck、DM Chemi-Met、ABS合金公司、Umicore、Ulba冶金公司和Mitsui采矿公司,这些代表了将这些钽矿石加工制成电容器级粉末、钽制品磨损件或切削工具的众多公司。从美国国防后勤署购买这些钽矿石的投标人年复一年传统上是一贯的,这样当钽矿石供应变的吃紧时,因美国国防后勤署供应耗尽,一些公司只得抢夺新的矿石供应源。 为什么这是一个很重要的发展方向? 如果失去美国国防后勤署的钽矿石供应,估计2007年钽矿石供应市场留下150,000磅的缺口,2008年缺口为350,000磅。这个事件发生的时间不合时宜,因为现在的供应能力窘迫。比如第二大硬研矿石卖主澳大利亚的瓜利亚子公司在第四季度已总体削减矿石产量25%(即格林布什矿产量的一半),以便该公司能完成在澳大利亚的管理事宜。同样情形,在巴西冶金/CIF和巴拉那巴拿马(Paranapanema)两公司2006年的钽矿石产量已下降,原因是他们将兴趣转向开采更盈利的金属上。在非洲,主要供应源是刚果民主共和国(DRC)由于联合国的压力仍然没能达到产能极限,不过我们已经听到2006年许多投资者试图获取刚果库存钽矿石的报道,感觉这是钽矿石缺货的迹象。 钽电容器给设计工程师提供了在最小的物理尺寸内尽可能最高的容量,容量范围从47μF~1000μF特别有体积的优势,所以在集成度高又需要使用大容量,低ESR的场景下,钽电解电容有其独有优势。 大容量低耐压钽电容的替代产品:高分子聚合物固体铝电解电容器 高分子聚合物固体铝电解电容器与传统的电解电容相比,它采用具有高导电度、高稳定性的导电高分子材料作为固态电解质,代替了传统铝电解电容器内的电解液,它所采用的电解质电导率很高,再加上其独特的结构设计,大幅改善传统液态铝电解电容器的缺点,展现出极为优异的特性。 理想的高频低阻抗特性。高分子聚合物固体电解电容器的损耗极低,具有理想的高频低阻抗特性,所以被广泛应用于退耦、滤波等电路中,效果埋想,特别是高频滤波效果优秀。 通过一个实验可以更加直观和清楚地看出高分子聚合物固体铝电解电容器与普通电解电容之间的高频特性明显差异。在平滑电路输入叠加1MHz(峰一峰值电压8V)高频干扰信号,用1只47uF的高分子聚合物固体电解电容器滤波,可使噪声降到仅有峰一峰值电压30mV输出。要达到同样的滤波效果,需要并联4只1000uF的普通型液态铝电解电容器,或者并联接入3只100UF的钽电解电容器。 此外,在高频滤波效果更好的情况下,高分子聚合物固体铝电解电容器的体积明显小于普通型铝电解电容器。 随着工艺不断提升,高分子聚合物固体铝电解电容器优势逐步显现。同时,价格也需要进一步优化。

    时间:2018-03-30 关键词: 真心话 短路 失效 钽电容

  • 便携式电池供电医疗设备使用钽电容的考量因素

     背景介绍 便携式电池供电医疗设备的种类繁多,而能够可靠地为这些设备供电的充电器控制电路也有多种选择。精心选择如钽电容这样的无源元件,可以提升便携式设备内充电器控制和储能系统的整体性能。便携式电池供电医疗设备的供电既可以使用一次性电池,也可以使用用电池充电器充电的后备可充电电池。对医疗设备便携性和易用性的需求已经催生了充电控制电路的多项改良。充电器和电池系统已从由许多组件组成的电路,发展为基于集成微处理器的系统,不仅使用的无源元件少,而且布板空间也小。 鉴于医疗设备对高可靠性的要求,本文就商用钽电容和医用钽电容的设计取舍进行了举例,并介绍了有助于改善性能的一些新发展。本文还重点介绍了电容技术的一般性选择标准和可以在便携式医疗设备中使用的封装技术的进展情况。在便携式医疗设备中最常用的大容量电容类型有多层陶瓷电容 (MLCC)、铝电解电容和固体钽电容。表1就每种电容技术的某些一般特性和可能的缺点进行了介绍。 表1 便携式医疗设备使用的大容量电容的类型     电池充电器基础知识 对使用可充电二次电池的便携式设备来说,可以使用多种类型的充电器:降压充电器、离线充电器或者线性稳压器/充电器。最常用的类型是降压充电器。这种充电器可以把电池源电压转换为较低电压并予以稳压。转换器可通过外部交流/直流适配器或者内部适配器电路供电。线性稳压器结构紧凑,非常适用于低容量电池充电器应用。单芯片集成解决方案既可为便携式设备供电,同时还可单独对电池进行充电。 图1是小型直流/直流开关稳压器的例子。它可以为电池充电器提供同步脉冲开关。该脉冲电池充电系统散热小,采用TSSOP封装,高度仅1.2毫米。该器件特性丰富,其中包括可在关断时将电池(Vbat)和外部电源隔离开来。 充电器中使用的电容有多种类型。输入去耦电容用于旁路噪声。一般将0.1μF MLCC电容布置在Vcc引脚附近,用来滤除高频噪声。     图1 使用威世 Siliconix Si9731实现的锂离子或镍镉/镍氢微处理器电池充电器 输出电容类型的选择应取决于合适的ESR,以符合稳定负载线路范围,同时应进行下列项目的评估: 1. 能够降低功耗 2. 能够降低纹波电压 3. 能够满足系统负载线路的要求。 转换器负责提供负载电流和电压。随着负载的变化,电流的增加,电压会下降。稳压器可以保持恒定电压,但对负载电流的变化不能迅速做出响应,所以使用大容量电容来应对这样的变化,防止电压下降。如果转换器输出的电流要通过电感,它就无法瞬时响应,这时就需要在负载两端跨接一个并联电容组,来上拉电压。有时会混合使用MLCC和钽电容,以降低总体大容量电容的ESR。由于MLCC的阻抗较低,会先充电,然后才是大容量钽电容。 电源及输出电容的要求 便携式医疗设备使用的电池或为一次性电池,或为二次电池。一次性电池一般只使用一次。在电路工作过程中,活性化学物质被消耗殆尽。一旦放电完毕,电路将停止工作,必须更换新的电池。二次电池可以在放电完毕后充电,因为产生电能的化学反应可以逆转,从而实现对电池系统充电。电源、电池类型的选择视应用而定。医疗设备常用的一次性电池类型有碱性电池和锂电池。 二次电池有锂离子 (Li-ion) 电池、镍镉电池 (NiCad)、镍氢(NiMH) 电池和铅酸电池。其中锂离子电池最常用,这是因为锂离子电池的体积能量密度和质量能量密度最大,放电率极低,这意味着闲置时有良好的荷电保持能力。 表2 钽电容的功耗及容量范围     便携式设备电路需要输出电容,而输出电容通常由一次性或者二次电池供电,可以在负载瞬变过程中减轻电压过冲或者下冲。要有效地滤除噪声,电容的等效串联电阻 (ESR) 是重点考虑的参数。输出电容用来处理电路的纹波电流和电压。需要对电容组的过热予以控制,这样在电路工作中,不会超过最大允许功耗。需要确定的是,通过输出电容的纹波电流不超出允许值。 表2概述了在+25˚C和f=100kHz条件下各种封装(按外壳尺寸划分)的最大允许额定功率。对温升在+25℃以上的应用,建议应进一步进行降额。请参考电容生产厂家关于针对可适用的钽电封装的功率降额建议。 可使用公式P=Irms2 x ESR计算出最大允许交流纹波电流 (Irms),其中P表示钽电容外壳尺寸对应的最大允许功率,ESR则可根据电容的工作频率计算得出。 对钽电容,还需要遵守合适的电压降额规范,不可超出生产厂家建议的额定值。输出电容的工作电压应由电压电路状态决定。其可根据公式Vrated=Vpeak+Vdc计算得出,即纹波电压加上直流电压噪声。允许的纹波电压的计算方法为E=IxZ,其中Z表示电容器电阻。总体来说,较低的ESR可以帮助降低输出纹波噪声。 在电路中加入大容量电容还能在无负载条件下(此时电池尚未工作,使用线路电流供电)起到上电作用。当使用线路电流供电时,在选择大容量钽电容的额定值的时候,应遵从降额规范。 为电池供电的低压降稳压器(LDO)选择输出电容 便携式设备中的线性电压稳压器或低压降稳压器(LDO)均采用电池供电。电容的大小非常重要,因为LDO一般采用小型SOT封装。在负载变化时,常用 LDO来确保提供高精度电压。在50mA负载电流下,出现90mV压降非常典型。举例来说,如果低压降稳压器的生产厂家规定使用电容的目的是降低噪声,那么在选择电容类型的时候应考虑: 医疗设备的性能要求 规定的ESR安全工作范围 电容的尺寸及成本 额定电压 表3 各类型电容的ESR要求     要满足如表3所示的ESR要求,在电容技术方面有多项选择。通过检查电路负载线的稳定性,可以为线路的正常工作选择合适的电容技术。 对低压降 (LDO) 稳压器进行负载线稳定性分析可以得出各种负载情况下的最低和最高ESR 值。 举例来说,如果使用10μF的钽电容用于负载线瞬态稳定,10kHz下测得的ESR的安全工作范围为最大10Ω,最低10mΩ(见图2)。     图2 稳定运行的LDO稳压器对ESR的要求 在本例中,如果LDO要高效率地工作,则需要低ESR的最小尺寸的电容器。对该应用来说,符合要求的低ESR电容技术种类比较多。钽电容的ESR一般情况下都是生产厂家在100kHz条件下定义的。本应用需要10kHz下的ESR,以便实现合适负载线稳定性。 选择合适的电容可以通过10kHz时的阻抗-频率关系来确定。如表2所示,有几种固态钽电容适用于该应用。MLCC、钽电容、铝电解电容的对应ESR请参见表2。虽然与采用锰负极的标准固态钽电容相比,钽聚合物电容ESR更低,但由于近期采用二氧化锰(MnO2) 负极对钽电容结构的改进,部分标准固态钽电容产品的ESR 低于 50mΩ,完全可以用于LDO应用。     图3 0603钽电容的阻抗-频率曲线 图4显示了威世TM8 -298D 系列M 或0603外壳尺寸的电容器。0603钽电容在10kHz时的ESR为1.19 Ω,如图3的钽电容阻抗-频率曲线所示。该ESR正处于安全工作范围内,可实现出色的电路负载线稳定性。在本例中,如果采用具有10 mΩ以下超低ESR的MLCC电容,在电路中就需要给电容串联一个小电阻,以便为ESR提供安全工作范围。由于空间及组件数量有限,采用单个0603钽电容就可以同时满足ESR和空间要求。     图4 钽电容的尺寸缩减 在某些情况下,在电路中同时需要大容量电容来减少压降,以及超低ESR来处理纹波。在更高效率和更低功耗之间实现最佳平衡倾向于使用ESR较低的电容。 也可以使用其他具有较高ESR的电容技术。MLCC0 0805是采用400层0805大小的X5R介电层的电容,规格为10μF~10V。另有采用0603 X5R介电层的10μF~10V电容。它们的ESR在10kHz条件下为 20mΩ。与钽电容相比,MLCC电容的ESR非常低。然而对于在本应用中用于LDO的电容来说,更低的ESR并不具有优势。 在本例应用的电容选择中,电路板空间和成本也是需要考虑的因素。     图5 M.A.P. 钽电容封装 更先进的钽电容封装去掉了引线框,提高了体积封装效率和电气性能。图 6 对多阵列封装 (M.A.P.) 装配技术和传统封装技术进行了比较。在标准钽电容封装中取消引线框装配可以节省更多空间以容纳更多的钽芯。而在传统引线框封装中,钽电容封装的主体部分是塑封材料或者封装物。如图5所示,连接到引线框的正极引线也会占用封装空间。总的来说,传统引线框架封装可用体积有效利用率仅30%。 如图 6 所示,通过采用M.A.P.工艺提升封装中的钽芯放置精度,从而缩减整体封装尺寸,实现更严格的尺寸误差控制。采用M.A.P.工艺实现的封装还能够降低净空和为垂直方向的高密度线路提供更好的“参照线”。举例来说,标准的注塑引线框架钽电容D型最大高度为4.1mm,而采用M.A.P.工艺生产的D型的高度为1.65mm。     图6 最新 MAP 钽电容封装具有最高体积效率 借助M.A.P.工艺,钽电容的外壳尺寸一路从A下降到0805(目前的技术)到0603或者0402。钽粉的改良可以把10µF~10V容量的0805外壳尺寸减少到0603的外壳尺寸,如图 4 所示。 电容直流漏电/绝缘电阻比较 在用电池作为电源的时候,电容直流漏电流 (DCL) 应被视为损耗,因为电容会影响电池的使用状况和寿命。除了电池,大容量电容也用作便携式设备中的补充电源,以应对电路负载的变动。 许多便携式设备应用要求低DCL,以实现长时间、高效率的电池寿命。为应对负载变化,与电池并联一个大容量输出电容可以保持储电能力。在某些应用中,设备的运行时间是时断时续的短周期,在大多数时间里电池处于闲置状态。因此,该电容需要极低的DCL来满足便携式设备的应用需求,尽量延长电池的使用寿命。 直流漏电数值很小,所有电容都有这个问题。钽电容的漏电流为数微安,而MLCC的漏电流为数微微安。直流漏电流的测量方法是采用等效的电阻-电容串联电路,加上直流电压,在室温下测量电流。电容应串联一个1000Ω的电阻,以限制充电电流。     图7 钽电容的 DCL 曲线 描述DCL的术语和测量单位随电容技术不同而不同。DCL是用于钽电容的测量单位,而绝缘电阻 (IR) 则是用于MLCC的测量单位。根据电介质类型,MLCC有一个IR限值。对采用X5R电介质的大电容MLCC,IR限值为>10,000MΩ或 (R x C) ≥ 500ΩF,以低者为准。MLCC均采用符合军用产品规范55681的自动IR测试仪进行过IR最小值筛选。 DCL可根据欧姆定律,用电容的IR和额定电压计算得出。举例来说,MLCC的IR限值为100MΩ-µF,相当于钽电容标准DCL限值则为0.01,即(电容x电压)=0.01µA/µF V。 钽电容均根据规定的DCL最小值进行过筛选,或者不超过规定的最大值。钽电容DCL的测试系根据军用产品规范55365F。各种规格的钽电容之间的DCL差异比较明显,所以每种规格的钽电容的限值都是单独规定的。 在便携应用中,较长保压时间(soak time)下的DCL是电容重要的指标。对于有具体规格和钽芯设计的钽电容,某个生产批次中的DCL分布是可以量化的。如果应用要求极低DCL,可以方便地从某个批次中自动筛选出某个额定电压下具有特定DCL符合便携式设备使用条件的钽电容。 图8是一种47µF-10V的钽电容,虽然其最大DCL为4.7µA,根据特定的保压时间筛选后,可为应用提供超低DCL。以图8的元件为例,该批量可以按照10秒钟DCL 600nA的标准筛选,从而把总体 DCL 从 4.7µA 降至 600nA 限值。     图8 DCL限值应根据电池供电设备的工作时间和非工作时间来决定。举例来说,如果某便携式设备的工作时间很短,只有几秒钟,而随后长期处于闲置状态,那么大容量电容应具备低DCL,以保证较长的电池使用寿命。另外,应该对电路的总体静态电流和工作电流进行评估,以确定是否需要低DCL电容。 电池运行时间和DCL 对可充电二次电池来说,DCL也很重要,这样可以延长充电间隔时间,不过总体工作电流中可以允许输出电容一定程度的漏电流存在。评估电路在各种使用状况下的电流要求,了解电容的DCL,可以显著延长电池使用寿命。 通过测量DCL或者IR可以了解电容电介质的性能以及电介质层的质量。DCL电流在加电的情况下,会流经或者跨越电容电介质隔离层。对钽电容这样采用氧化膜制造的电容来说,DCL电流的主体构成部分是多种电流混合而成,有流经电介质的表面漏电流、因电介质材料极化而出现的电介质吸收 (DA) 电流、流经电介质材料的原生漏电流。类似的,采用基于钛酸钡的陶瓷电介质的MLCC的漏电流主要是流经电介质的漏电流,以及DA损耗和原生漏电流。 MLCC具有良好的低DCL特性,但在某些情况下,钽电容能够以更小的体积提供同样低的DCL。表5 比较说明了根据DCL要求正确评估和选择合适的电容的计算方法。如表5所示,钽电容一般按照DCL最大值来确定规格。标准二氧化锰 (MnO2)构造的钽电容在生产厂家处是按照 (.01xCV) 进行分级的。某些电容生产厂家还会随DCL信息提供具体的保压时间,并且根据比同级别的DCL最大值低得多的具体DCL限值进行电容器的预筛选。 选择适用的低DCL电容 举例来说,某种短工作占空比的便携式电池供电医疗设备需要线路每天启动电机几秒钟,然后关闭。这样的应用可以使用低DCL的大容量电容。 具体使用: DC/DC转换器,用于电机驱动 输入电压:1.5V 固定输出电压:3.3V 输出电流:200mA@2V 大容量输出电容:47µF 保压时间60秒时的DCL = 200nA 如果该47µF大容量电容是钽电容,则应进行适当的电压降额。降额应根据钽电容生产厂家的降额规范,具体示例见表4。本示例选择了10V的额定电压。 表4 钽电容的降额规范     MLCC的额定电压可以与工作电压相同或者略高,因此6V的额定电压已经足够。对 MLCC 而言,如果已知 IR (见表5)和工作电压 (4V),可以计算出 DCL。适用于低DCL应用的MLCC有X5R和X7R两种电介质。根据额定工作电压,可以根据欧姆定律,用元件的IR值计算出 DCL。 表5 低DCL电容器选择     为确定钽电容的 DCL 限值,对多个生产批次中的外壳尺寸为 D 和 F 的 MAP 47µF-10V 电容进行了批量测试,并对每个电容的在不同保压时间(60 秒)下的 DCL 和对应的保压时间都进行了记录,如图7 所示。然后采用统计分析方法,确定每个批次的较低 DCL。另外,还采用独特的成型工艺强化了负极,以提升和降低电容的DCL性能。对任何与标准批次相悖的DCL曲线都予以关注,最后找出DCL的较低限值。 图4所示的是各种封装选择和每种封装选择的体积要求。威世的572D系列钽电容既能满足DCL要求,又具有最高的体积效率,体积仅为8.39 mm3。如果对空间的要求不是那么严苛的话,该应用也可使用MLCC。X5R电介质MLCC的DCL低至187nA,与选择钽电容一样,只要一个大容量电容就能满足要求。MLCC X7R电介质电容的电容温度系数比X5R更加优越,但要组成大容量电容需要两个MLCC电容并联。 在某些电路中,施压后电容器保持电容的能力是一个重要的考量因素。对X5R电介质MLCC,在选择元件的额定电压时,应考虑其电容电压系数 (VCC)。如果包括纹波电压在内的直流应用电压接近MLCC的额定电压,VCC效应会导致该元件损耗部分电容。电容损耗可能会影响电路工作。另外,在选择元件的时候,还需要考虑温度对MLCC的IR的影响以及电容温度系数 (TCC)。生产厂家会提供特定电介质随温度上升IR的劣化曲线。设计时应对温度效应进行评估。 改善钽电容的DCL 钽电容的电介质层是一层五氧化二钽薄膜,覆盖在每颗钽芯表面上。其采用阳极化工艺,由厚5nm~10nm的N型氧化钽层和五氧化二钽纯半导体层复合而成。层厚与阳极化电压成比例,同时决定了元件的额定电压。对用于6V电池应用的固钽电容而言,最终的钽电介质层厚度为0.04微米或者40纳米。 超大容量的MLCC则采用浇覆厚度为2.0微米的陶瓷电介质薄层的方式来制造,这样比钽电容的要厚得多。MLCC采用层叠工艺,最终制造出多层电容。与钽电容一样,MLCC的电介质层厚度决定了额定电压,电介质层数决定了容量。介电常数的差异导致了IR的巨大差别。 钽电容的DCL会因为正极表面的机械损坏或者氧化层表面的破裂而上升。如图8所示,正极的外表面属于易损部分,受到热、机械和电气作用的共同影响。表面DCL会受湿度的影响,并导致长时间工作的不稳定。 改进钽芯的生产工艺,更好地控制氧化物层的厚度,可以帮助消除如图 8所示的表面DCL问题。在钽芯的外表面生成较厚的电介质薄膜,防止其受到机械损坏,从而大幅改善DCL性能,降低DCL。除了改进钽电容的正极结构,与聚合物负极结构相比,钽电容的二氧化锰负极结构具有更为优异的 DCL 性能,因该材料有更好的导电性。 图9显示了采用这种新技术制造而具有出色DCL性能的新型MAP 0603封装。结合对钽芯的改进,最新 MAP 系列钽封装能够改善装配、封装和端接工艺,避免机械损坏,提升电容的体积效率。 改进医用级钽电容的DCL可靠性 因为某些医疗设备需要高可靠性,特别是对关键任务型应用而言,电容生产厂家提供稳健且保守的设计来满足性能需求。通过精心的钽芯和钽粉设计,医用钽电容的性能会高出标准的商用钽电容以及采用传统技术生产的高可靠产品。     图9 生产厂家会对每种设计适用的钽粉进行评估。随电容器CV的增长,失效率随之增长,因此应针对具体的设计选择合适粒径的钽粉。对医用级设计而已,其目的是在可用的外壳尺寸范围内提供更为可靠的DCL性能。对商用级设计而言,其目的是通过以最小的可用外壳尺寸提供更高的-k CV钽粉,从而尽量降低成本,最大化设计收益。因此商用钽电容的DCL总体上会高于医用钽电容。 下面举例说明目前的医用TM8系列DCL改进后与传统高可靠194D系列的对比情况。 图10对F外壳尺寸的194D系列设计与TM8系列设计进行了比较。194D是一种用于众多高可靠应用中的老式设计。钽芯设计采用高-k CV粉末,为23kCV。而 TM8 是一种较新的医用级设计,使用10Kvc粉末,大幅度改善了DCL性能,而且采用的最新 MAP 装配工艺,不会增加板级空间占用。     图10 医疗设备中的高蓄能钽电容 小型便携式或者植入型心律转复除颤器 (ICD) 适用于与可能因室性快速型心律失常而突发心脏病死亡的患者。便携式除颤器与ICD具有类似功能,都是设计用于为心脏提供电疗,恢复正常心律。电疗线路采用高能充电电容,用于电击心脏组织。 某些设计采用高能铝电解电容,但需要后备电池以及一个用来实现重整期的程序,以在设备的生命周期内保持良好的充电效率。与铝电解电容相比,高能湿钽充电电容无需重整,且具有更高的能量密度。 电容的储能能力取决于电介质的相对电容率的值的大小和材料内的最大可允许电压。当电场出现后,任何电容电介质的导电行为都会导致电容损耗。而且损耗会随电场变化而加大,比如交流电。电介质的分子存在出现某种程度的极化,而在电场出现后,初始的时候这些分子的位移是相反的。部分能量消耗在分子的位移上,并在这个过程中消耗殆尽。当电场变化或者消失,这种损耗就体现为热量。 箔式铝电解电容浸没在导电电解质中。电介质由铝箔表面的氧化膜构成,其厚度一般为50到100纳米,其决定了单位电极面积的容量。钽电容也有氧化物膜层,但厚度要小得多,一般只有5到10纳米。选择储能设备使用的电容类型时,需要考虑工作寿命、板级空间和成本要求。因为心脏除颤需要非常高的能量,所以只有铝电解电容和湿钽电容适用。 结论 本文讨论了便携式医疗设备的各种应用及其使用的电路。针对这些便携式应用,有多种电容可供选择。选择适用于这类应用的电容时,优先考虑的电气参数是电容的DCL和ESR。由于某些医疗应用对可靠性和电池使用寿命要求极高,一些电容无法适用。

    时间:2015-05-12 关键词: 医疗设备 便携式电池 钽电容

  • 医疗钽电容推荐

    创新器件采用七种紧凑的外形尺寸,具有200nA的超低DCL和固有的高可靠性、筛选选项,包括针对关键的医疗和军工/航天应用的weibull失效率分级 Vishay 推出新款TM8系列高可靠性、表面贴装、具有低至200nA的超低直流泄露电流(DCL)的钽电容器。 在早期的医疗设备平台中,直流泄漏仅仅是尚可的水平,然而现在则要求更低的直流泄漏。通过使用Vishay独有的多阵列封装(MAP),新的TM8器件显着降低了直流漏电,并实现了更好的稳定性。借助专利的MAP组装技术,TM8电容器为在这些应用中实现尽可能高的可靠性和效率提供了一个健全的设计。此外,器件遵照MIL-PRF-55365标准进行了了严格的处理和测试。 在7种紧凑的外形尺寸内,TM8系列提供从1μF/40V至47μF/10V的容量-电压(CV)等级范围。电容器很适合植入式医疗设备、医疗仪器及军工/航天系统等关键应用中对长期性能的要求。TM8器件还具有特殊的筛选和为特定应用定制的选项。 Vishay胆电容为诸多设备中的滤波、耦合/解耦、直流阻塞和储能应用进行了优化,如起搏器、ICD、神经刺激器、助听器和人工耳蜗等医疗设备;病人监护设备、自动给药系统、成像和诊断设备等医疗仪器;军用和航天混合微电路/多芯片模块、智能军需、GPS系统、传感器及手持式便携电子系统。 为保证在苛刻环境中的可靠性和长期性能,Vishay提供了在+85℃下40小时的老化阶段或weibull分级B级,利用这两种筛选方法能够达到0.1%的失效率。浪涌电流选项包括选项A(在+25℃进行10个循环)和选项B(在-55℃/+85℃下进行10个循环)。Vishay使用专用生产线生产这些电容器,并经验丰富的员工确保在生产过程中各个环节的生产质量。 电容器采用紧凑的L、M、N、P、R、T和W外形代码,是空间受限的便携式/植入式应用的绝佳选择,同时其低DCL确保高效运行并延长电池寿命。TM8的L形接头允许采用高级电路板安装,在最终用户的量产中可对焊锡的圆角进行视觉检查(或自动光学检查)。 这些符合RoHS的器件的工作温度为-55℃~+85℃,电压降级情况下的温度可达+125℃,电压范围为2WVDC~40WVDC。 TM8电容器采用符合per EIA-481-1标准的卷带包装,现可提供样品,并已实现量产,大宗订货的供货周期为十周。 更多医疗电子信息请关注:21ic医疗电子频道

    时间:2012-05-14 关键词: 钽电容

  • 预计今年下半年高分子钽电容有可能缺货

      Kemet亚洲营业副总裁龙启宇最近在接受本刊专访时表示:“前年和去年上半年钽电容比较缺货,去年下半年到现在钽电容供需基本维持稳定,预计高分子钽电容下半年有可能缺货,因为现在主要供应商只有Kemet和三洋。以前还有NEC,但由于其工厂在泰国水灾中受到重创,需要时间恢复,因此高分子钽电容市场供应应该会发生波动。 Kemet的主要产品是电容,包括钽电容、高分子钽电容、薄膜电容和铝电解电容,基本上在整个垂直市场都有应用,包括风电,太阳能,新能源汽车、高速火车(如和谐号)等。 另外在IT行业,龙启宇透露:“台湾地区很多超薄型便携式电脑、平板电脑和智能手机都开始使用Kemet开发的高分子钽电容,因为这种钽电容的电容值很高,ESR值很低,而且可以做得很薄。以前手机都用钽电容,后来钽电容缺货,换成MLCC,但MLCC用于电源管理电路中会带来一些质量问题,比如杂音和回音。因此现在高端便携产品大多换用高分子钽电容,因为它能够为手机带来高质量的音频效果。” 最早Kemet只做钽电容和MLCC,但自从5年前收购了两家欧洲公司后,增加了薄膜电容和铝电解电容这两条产品线。龙启宇表示:“这两家欧洲公司的技术含量很高,主要做一些欧洲客户,而且薄膜电容和铝电解电容很多都是design-in的产品。5年前,日系厂商主要做日系的客户,欧洲厂商主要做欧洲的客户,但全球化之后,这些供应商都来中国寻求发展。目前市场竞争很激烈,Kemet之所以收购这家公司,就是因为他们拥有很好的技术和产品品质。未来我们会将生产更多地转到中国大陆和亚洲来,目前在苏州和马来西亚有工厂,这样在保证产品质量的同时还可以降低成本。Kemet目前在亚洲的销售额大概有4亿美金,仅薄膜电容和铝电容就占8,000万美金,所以这个市场很大。” TTI市场行销总监梁汉忠表示:“我们有一个市场策略是,只要是被动元件,我们就全都能向客户提供。每次客户听到我们这样说就很开心,有些供应商只做量大的,不做量少的,而Kemet都会做,有时甚至为了客户的一个整体解决方案或交钥匙解决方案,虽然量比较少,但还是会做。我们目前在亚洲做得很不错,特别是汽车和医疗电子市场。” 目前在电容供应市场,Kemet需要面对来自TDK-EPC、AVX、村田和Vishay等国际厂商的激烈竞争。那么,Kemet是如何打造它们的竞争优势呢?龙启宇表示:“我们的薄膜电容和铝电解电容产品具有可靠性高的长处,另外我们的工厂设在中国,在国内很多地方都有我们的分销商,反应速度比较快,同时我们有专业的技术团队,产品渗透力很强。 虽然大客户目前都是Kemet自己在支持,但Kemet也积极支持其分销商去开发他们的国内目标客户。龙启宇说:“这是因为有的客户喜欢选择信得过的分销商,我们的优势是清楚了解什么样的电容适合什么样的市场和客户,因为我们是专业生产电容的,我们会和客户一起谈新的解决方案来降低成本。” TTI是目前Kemet在全球最大的分销商。梁汉忠表示:“TTI是电阻、电容领域的专家,我们在无源元器件和互连方面能提供很好的技术支持。早在十几年前,TTI就在美国代理Kemet的产品,然后是欧洲、亚洲,再到中国。” 他介绍道,目前TTI在中国大陆有很多design-in,主要有两部分:一是供应链。有些客户从国外到中国来做大批量生产,我们就帮他们做备货和供应链管理。二是客户在中国有工厂,我们帮他们做design-in,特别是我们目前非常关注的新能源、交通运输和电源管理等垂直市场。TTI目前在电源管理市场的大客户有宝威电源(Power One)。另外,我们也刚开始关注军事和航天市场,今年我们会开始到工厂自动化、仪器仪表和工业控制市场,所以我们要将市场很详细地分开来看,因为每个垂直市场都有其特色和设计要求,我们会将知识发展得更完整。 现在Kemet的销售55%来源于直接客户,45%来自于国际及国内分销商。龙启宇表示,这是因为他们拥有资源优势,在中国大陆设有很多办事处,能快速渗透市场,并提供整体解决方案。 在亚洲,未来3年本土分销商增长的速度可能会低于国际分销商,因为国际分销商正在亚洲投入很多资源,逐步实现本地化。梁汉忠表示:“目前,TTI在中国设立了深圳、东莞、北京、苏州、厦门、上海、成都等办事处,我们还会继续增加,并吸收更多的本地人才和本地客户。随着中国本地客户对国际品质的需求越来越多,他们会更多采用像kemet这样的欧美厂商的产品。” 我们知道,最近这几年被动元件市场常常会缺货,那么,一旦缺货情况发生,Kemet是如何照顾其大客户和代理商的呢?龙启宇坦率地说:“缺货是周期性循环的,不会停止的。一旦这种情况发生,Kemet首先会照顾直接客户和大型的国际分销商。”  

    时间:2012-04-06 关键词: 高分子 钽电容

  • 便携式电池供电医疗设备中钽电容的使用

      背景介绍   便携式电池供电医疗设备的种类繁多,而能够可靠地为这些设备供电的充电器控制电路也有多种选择。精心选择如钽电容这样的无源元件,可以提升便携式设备内充电器控制和储能系统的整体性能。便携式电池供电医疗设备的供电既可以使用一次性电池,也可以使用用电池充电器充电的后备可充电电池。对医疗设备便携性和易用性的需求已经催生了充电控制电路的多项改良。充电器和电池系统已从由许多组件组成的电路,发展为基于集成微处理器的系统,不仅使用的无源元件少,而且布板空间也小。   鉴于医疗设备对高可靠性的要求,本文就商用     电池充电器基础知识   对使用可充电二次电池的便携式设备来说,可以使用多种类型的充电器:降压充电器、离线充电器或者线性稳压器/充电器。最常用的类型是降压充电器。这种充电器可以把电池源电压转换为较低电压并予以稳压。转换器可通过外部交流/直流适配器或者内部适配器电路供电。线性稳压器结构紧凑,非常适用于低容量电池充电器应用。单芯片集成解决方案既可为便携式设备供电,同时还可单独对电池进行充电。   图1是小型直流/直流开关稳压器的例子。它可以为电池充电器提供同步脉冲开关。该脉冲电池充电系统散热小,采用TSSOP封装,高度仅1.2毫米。该器件特性丰富,其中包括可在关断时将电池(Vbat)和外部电源隔离开来。   充电器中使用的电容有多种类型。输入去耦电容用于旁路噪声。一般将0.1μF MLCC电容布置在Vcc引脚附近,用来滤除高频噪声。欢迎转载,本文来自电子发烧友网(http://www.elecfans.com/)        图1 使用威世 Siliconix Si9731实现的锂离子或镍镉/镍氢微处理器电池充电器   输出电容类型的选择应取决于合适的ESR,以符合稳定负载线路范围,同时应进行下列项目的评估:   1. 能够降低功耗   2. 能够降低纹波电压   3. 能够满足系统负载线路的要求。   转换器负责提供负载电流和电压。随着负载的变化,电流的增加,电压会下降。稳压器可以保持恒定电压,但对负载电流的变化不能迅速做出响应,所以使用大容量电容来应对这样的变化,防止电压下降。如果转换器输出的电流要通过电感,它就无法瞬时响应,这时就需要在负载两端跨接一个并联电容组,来上拉电压。有时会混合使用MLCC和钽电容,以降低总体大容量电容的ESR。由于MLCC的阻抗较低,会先充电,然后才是大容量钽电容。   电源及输出电容的要求   便携式医疗设备使用的电池或为一次性电池,或为二次电池。一次性电池一般只使用一次。在电路工作过程中,活性化学物质被消耗殆尽。一旦放电完毕,电路将停止工作,必须更换新的电池。二次电池可以在放电完毕后充电,因为产生电能的化学反应可以逆转,从而实现对电池系统充电。电源、电池类型的选择视应用而定。医疗设备常用的一次性电池类型有碱性电池和锂电池。   二次电池有锂离子 (Li-ion) 电池、镍镉电池 (NiCad)、镍氢(NiMH) 电池和铅酸电池。其中锂离子电池最常用,这是因为锂离子电池的体积能量密度和质量能量密度最大,放电率极低,这意味着闲置时有良好的荷电保持能力。   表2 钽电容的功耗及容量范围        便携式设备电路需要输出电容,而输出电容通常由一次性或者二次电池供电,可以在负载瞬变过程中减轻电压过冲或者下冲。要有效地滤除噪声,电容的等效串联电阻 (ESR) 是重点考虑的参数。输出电容用来处理电路的纹波电流和电压。需要对电容组的过热予以控制,这样在电路工作中,不会超过最大允许功耗。需要确定的是,通过输出电容的纹波电流不超出允许值。   表2概述了在+25˚C和f=100kHz条件下各种封装(按外壳尺寸划分)的最大允许额定功率。对温升在+25℃以上的应用,建议应进一步进行降额。请参考电容生产厂家关于针对可适用的钽电封装的功率降额建议。   可使用公式P=Irms2 x ESR计算出最大允许交流纹波电流 (Irms),其中P表示钽电容外壳尺寸对应的最大允许功率,ESR则可根据电容的工作频率计算得出。   对钽电容,还需要遵守合适的电压降额规范,不可超出生产厂家建议的额定值。输出电容的工作电压应由电压电路状态决定。其可根据公式Vrated=Vpeak+Vdc计算得出,即纹波电压加上直流电压噪声。允许的纹波电压的计算方法为E=IxZ,其中Z表示电容器电阻。总体来说,较低的ESR可以帮助降低输出纹波噪声。   在电路中加入大容量电容还能在无负载条件下(此时电池尚未工作,使用线路电流供电)起到上电作用。当使用线路电流供电时,在选择大容量钽电容的额定值的时候,应遵从降额规范。   为电池供电的低压降稳压器(LDO)选择输出电容   便携式设备中的线性电压稳压器或低压降稳压器(LDO)均采用电池供电。电容的大小非常重要,因为LDO一般采用小型SOT封装。在负载变化时,常用 LDO来确保提供高精度电压。在50mA负载电流下,出现90mV压降非常典型。举例来说,如果低压降稳压器的生产厂家规定使用电容的目的是降低噪声,那么在选择电容类型的时候应考虑:   医疗设备的性能要求   规定的ESR安全工作范围   电容的尺寸及成本   额定电压   表3 各类型电容的ESR要求        要满足如表3所示的ESR要求,在电容技术方面有多项选择。通过检查电路负载线的稳定性,可以为线路的正常工作选择合适的电容技术。   对低压降 (LDO) 稳压器进行负载线稳定性分析可以得出各种负载情况下的最低和最高ESR 值。   举例来说,如果使用10μF的钽电容用于负载线瞬态稳定,10kHz下测得的ESR的安全工作范围为最大10Ω,最低10mΩ(见图2)。        图2 稳定运行的LDO稳压器对ESR的要求   在本例中,如果LDO要高效率地工作,则需要低ESR的最小尺寸的电容器。对该应用来说,符合要求的低ESR电容技术种类比较多。钽电容的ESR一般情况下都是生产厂家在100kHz条件下定义的。本应用需要10kHz下的ESR,以便实现合适负载线稳定性。   选择合适的电容可以通过10kHz时的阻抗-频率关系来确定。如表2所示,有几种固态钽电容适用于该应用。MLCC、钽电容、铝电解电容的对应ESR请参见表2。虽然与采用锰负极的标准固态钽电容相比,钽聚合物电容ESR更低,但由于近期采用二氧化锰(MnO2) 负极对钽电容结构的改进,部分标准固态钽电容产品的ESR 低于 50mΩ,完全可以用于LDO应用。        图3 0603钽电容的阻抗-频率曲线   图4显示了威世TM8 -298D 系列M 或0603外壳尺寸的电容器。0603钽电容在10kHz时的ESR为1.19 Ω,如图3的钽电容阻抗-频率曲线所示。该ESR正处于安全工作范围内,可实现出色的电路负载线稳定性。在本例中,如果采用具有10 mΩ以下超低ESR的MLCC电容,在电路中就需要给电容串联一个小电阻,以便为ESR提供安全工作范围。由于空间及组件数量有限,采用单个0603钽电容就可以同时满足ESR和空间要求。        图4 钽电容的尺寸缩减   在某些情况下,在电路中同时需要大容量电容来减少压降,以及超低ESR来处理纹波。在更高效率和更低功耗之间实现最佳平衡倾向于使用ESR较低的电容。   也可以使用其他具有较高ESR的电容技术。MLCC0 0805是采用400层0805大小的X5R介电层的电容,规格为10μF~10V。另有采用0603 X5R介电层的10μF~10V电容。它们的ESR在10kHz条件下为 20mΩ。与钽电容相比,MLCC电容的ESR非常低。然而对于在本应用中用于LDO的电容来说,更低的ESR并不具有优势。   在本例应用的电容选择中,电路板空间和成本也是需要考虑的因素。        图5 M.A.P. 钽电容封装   更先进的钽电容封装去掉了引线框,提高了体积封装效率和电气性能。图 6 对多阵列封装 (M.A.P.) 装配技术和传统封装技术进行了比较。在标准钽电容封装中取消引线框装配可以节省更多空间以容纳更多的钽芯。而在传统引线框封装中,钽电容封装的主体部分是塑封材料或者封装物。如图5所示,连接到引线框的正极引线也会占用封装空间。总的来说,传统引线框架封装可用体积有效利用率仅30%。   如图 6 所示,通过采用M.A.P.工艺提升封装中的钽芯放置精度,从而缩减整体封装尺寸,实现更严格的尺寸误差控制。采用M.A.P.工艺实现的封装还能够降低净空和为垂直方向的高密度线路提供更好的“参照线”。举例来说,标准的注塑引线框架钽电容D型最大高度为4.1mm,而采用M.A.P.工艺生产的D型的高度为1.65mm。        图6 最新 MAP 钽电容封装具有最高体积效率   借助M.A.P.工艺,钽电容的外壳尺寸一路从A下降到0805(目前的技术)到0603或者0402。钽粉的改良可以把10µF~10V容量的0805外壳尺寸减少到0603的外壳尺寸,如图 4 所示。   电容直流漏电/绝缘电阻比较   在用电池作为电源的时候,电容直流漏电流 (DCL) 应被视为损耗,因为电容会影响电池的使用状况和寿命。除了电池,大容量电容也用作便携式设备中的补充电源,以应对电路负载的变动。   许多便携式设备应用要求低DCL,以实现长时间、高效率的电池寿命。为应对负载变化,与电池并联一个大容量输出电容可以保持储电能力。在某些应用中,设备的运行时间是时断时续的短周期,在大多数时间里电池处于闲置状态。因此,该电容需要极低的DCL来满足便携式设备的应用需求,尽量延长电池的使用寿命。   直流漏电数值很小,所有电容都有这个问题。钽电容的漏电流为数微安,而MLCC的漏电流为数微微安。直流漏电流的测量方法是采用等效的电阻-电容串联电路,加上直流电压,在室温下测量电流。电容应串联一个1000Ω的电阻,以限制充电电流。        图7 钽电容的 DCL 曲线   描述DCL的术语和测量单位随电容技术不同而不同。DCL是用于钽电容的测量单位,而绝缘电阻 (IR) 则是用于MLCC的测量单位。根据电介质类型,MLCC有一个IR限值。对采用X5R电介质的大电容MLCC,IR限值为>10,000MΩ或 (R x C) ≥ 500ΩF,以低者为准。MLCC均采用符合军用产品规范55681的自动IR测试仪进行过IR最小值筛选。   DCL可根据欧姆定律,用电容的IR和额定电压计算得出。举例来说,MLCC的IR限值为100MΩ-µF,相当于钽电容标准DCL限值则为0.01,即(电容x电压)=0.01µA/µF V。   钽电容均根据规定的DCL最小值进行过筛选,或者不超过规定的最大值。钽电容DCL的测试系根据军用产品规范55365F。各种规格的钽电容之间的DCL差异比较明显,所以每种规格的钽电容的限值都是单独规定的。   在便携应用中,较长保压时间(soak TIme)下的DCL是电容重要的指标。对于有具体规格和钽芯设计的钽电容,某个生产批次中的DCL分布是可以量化的。如果应用要求极低DCL,可以方便地从某个批次中自动筛选出某个额定电压下具有特定DCL符合便携式设备使用条件的钽电容。   图8是一种47µF-10V的钽电容,虽然其最大DCL为4.7µA,根据特定的保压时间筛选后,可为应用提供超低DCL。以图8的元件为例,该批量可以按照10秒钟DCL 600nA的标准筛选,从而把总体 DCL 从 4.7µA 降至 600nA 限值。        图8   DCL限值应根据电池供电设备的工作时间和非工作时间来决定。举例来说,如果某便携式设备的工作时间很短,只有几秒钟,而随后长期处于闲置状态,那么大容量电容应具备低DCL,以保证较长的电池使用寿命。另外,应该对电路的总体静态电流和工作电流进行评估,以确定是否需要低DCL电容。   电池运行时间和DCL   对可充电二次电池来说,DCL也很重要,这样可以延长充电间隔时间,不过总体工作电流中可以允许输出电容一定程度的漏电流存在。评估电路在各种使用状况下的电流要求,了解电容的DCL,可以显著延长电池使用寿命。   通过测量DCL或者IR可以了解电容电介质的性能以及电介质层的质量。DCL电流在加电的情况下,会流经或者跨越电容电介质隔离层。对钽电容这样采用氧化膜制造的电容来说,DCL电流的主体构成部分是多种电流混合而成,有流经电介质的表面漏电流、因电介质材料极化而出现的电介质吸收 (DA) 电流、流经电介质材料的原生漏电流。类似的,采用基于钛酸钡的陶瓷电介质的MLCC的漏电流主要是流经电介质的漏电流,以及DA损耗和原生漏电流。   MLCC具有良好的低DCL特性,但在某些情况下,钽电容能够以更小的体积提供同样低的DCL。表5 比较说明了根据DCL要求正确评估和选择合适的电容的计算方法。如表5所示,钽电容一般按照DCL最大值来确定规格。标准二氧化锰 (MnO2)构造的钽电容在生产厂家处是按照 (.01xCV) 进行分级的。某些电容生产厂家还会随DCL信息提供具体的保压时间,并且根据比同级别的DCL最大值低得多的具体DCL限值进行电容器的预筛选。   选择适用的低DCL电容   举例来说,某种短工作占空比的便携式电池供电医疗设备需要线路每天启动电机几秒钟,然后关闭。这样的应用可以使用低DCL的大容量电容。   具体使用:   DC/DC转换器,用于电机驱动   输入电压:1.5V   固定输出电压:3.3V   输出电流:200mA@2V   大容量输出电容:47µF   保压时间60秒时的DCL = 200nA   如果该47µF大容量电容是钽电容,则应进行适当的电压降额。降额应根据钽电容生产厂家的降额规范,具体示例见表4。本示例选择了10V的额定电压。   表4 钽电容的降额规范        MLCC的额定电压可以与工作电压相同或者略高,因此6V的额定电压已经足够。对 MLCC 而言,如果已知 IR (见表5)和工作电压 (4V),可以计算出 DCL。适用于低DCL应用的MLCC有X5R和X7R两种电介质。根据额定工作电压,可以根据欧姆定律,用元件的IR值计算出 DCL。   表5 低DCL电容器选择        为确定钽电容的 DCL 限值,对多个生产批次中的外壳尺寸为 D 和 F 的 MAP 47µF-10V 电容进行了批量测试,并对每个电容的在不同保压时间(60 秒)下的 DCL 和对应的保压时间都进行了记录,如图7 所示。然后采用统计分析方法,确定每个批次的较低 DCL。另外,还采用独特的成型工艺强化了负极,以提升和降低电容的DCL性能。对任何与标准批次相悖的DCL曲线都予以关注,最后找出DCL的较低限值。   图4所示的是各种封装选择和每种封装选择的体积要求。威世的572D系列钽电容既能满足DCL要求,又具有最高的体积效率,体积仅为8.39 mm3。如果对空间的要求不是那么严苛的话,该应用也可使用MLCC。X5R电介质MLCC的DCL低至187nA,与选择钽电容一样,只要一个大容量电容就能满足要求。MLCC X7R电介质电容的电容温度系数比X5R更加优越,但要组成大容量电容需要两个MLCC电容并联。   在某些电路中,施压后电容器保持电容的能力是一个重要的考量因素。对X5R电介质MLCC,在选择元件的额定电压时,应考虑其电容电压系数 (VCC)。如果包括纹波电压在内的直流应用电压接近MLCC的额定电压,VCC效应会导致该元件损耗部分电容。电容损耗可能会影响电路工作。另外,在选择元件的时候,还需要考虑温度对MLCC的IR的影响以及电容温度系数 (TCC)。生产厂家会提供特定电介质随温度上升IR的劣化曲线。设计时应对温度效应进行评估。   改善钽电容的DCL   钽电容的电介质层是一层五氧化二钽薄膜,覆盖在每颗钽芯表面上。其采用阳极化工艺,由厚5nm~10nm的N型氧化钽层和五氧化二钽纯半导体层复合而成。层厚与阳极化电压成比例,同时决定了元件的额定电压。对用于6V电池应用的固钽电容而言,最终的钽电介质层厚度为0.04微米或者40纳米。   超大容量的MLCC则采用浇覆厚度为2.0微米的陶瓷电介质薄层的方式来制造,这样比钽电容的要厚得多。MLCC采用层叠工艺,最终制造出多层电容。与钽电容一样,MLCC的电介质层厚度决定了额定电压,电介质层数决定了容量。介电常数的差异导致了IR的巨大差别。   钽电容的DCL会因为正极表面的机械损坏或者氧化层表面的破裂而上升。如图8所示,正极的外表面属于易损部分,受到热、机械和电气作用的共同影响。表面DCL会受湿度的影响,并导致长时间工作的不稳定。   改进钽芯的生产工艺,更好地控制氧化物层的厚度,可以帮助消除如图 8所示的表面DCL问题。在钽芯的外表面生成较厚的电介质薄膜,防止其受到机械损坏,从而大幅改善DCL性能,降低DCL。除了改进钽电容的正极结构,与聚合物负极结构相比,钽电容的二氧化锰负极结构具有更为优异的 DCL 性能,因该材料有更好的导电性。   图9显示了采用这种新技术制造而具有出色DCL性能的新型MAP 0603封装。结合对钽芯的改进,最新 MAP 系列钽封装能够改善装配、封装和端接工艺,避免机械损坏,提升电容的体积效率。   改进医用级钽电容的DCL可靠性   因为某些医疗设备需要高可靠性,特别是对关键任务型应用而言,电容生产厂家提供稳健且保守的设计来满足性能需求。通过精心的钽芯和钽粉设计,医用钽电容的性能会高出标准的商用钽电容以及采用传统技术生产的高可靠产品。        图9   生产厂家会对每种设计适用的钽粉进行评估。随电容器CV的增长,失效率随之增长,因此应针对具体的设计选择合适粒径的钽粉。对医用级设计而已,其目的是在可用的外壳尺寸范围内提供更为可靠的DCL性能。对商用级设计而言,其目的是通过以最小的可用外壳尺寸提供更高的-k CV钽粉,从而尽量降低成本,最大化设计收益。因此商用钽电容的DCL总体上会高于医用钽电容。   下面举例说明目前的医用TM8系列DCL改进后与传统高可靠194D系列的对比情况。   图10对F外壳尺寸的194D系列设计与TM8系列设计进行了比较。194D是一种用于众多高可靠应用中的老式设计。钽芯设计采用高-k CV粉末,为23kCV。而 TM8 是一种较新的医用级设计,使用10Kvc粉末,大幅度改善了DCL性能,而且采用的最新 MAP 装配工艺,不会增加板级空间占用。        图10   医疗设备中的高蓄能钽电容   小型便携式或者植入型心律转复除颤器 (ICD) 适用于与可能因室性快速型心律失常而突发心脏病死亡的患者。便携式除颤器与ICD具有类似功能,都是设计用于为心脏提供电疗,恢复正常心律。电疗线路采用高能充电电容,用于电击心脏组织。   某些设计采用高能铝电解电容,但需要后备电池以及一个用来实现重整期的程序,以在设备的生命周期内保持良好的充电效率。与铝电解电容相比,高能湿钽充电电容无需重整,且具有更高的能量密度。   电容的储能能力取决于电介质的相对电容率的值的大小和材料内的最大可允许电压。当电场出现后,任何电容电介质的导电行为都会导致电容损耗。而且损耗会随电场变化而加大,比如交流电。电介质的分子存在出现某种程度的极化,而在电场出现后,初始的时候这些分子的位移是相反的。部分能量消耗在分子的位移上,并在这个过程中消耗殆尽。当电场变化或者消失,这种损耗就体现为热量。   箔式铝电解电容浸没在导电电解质中。电介质由铝箔表面的氧化膜构成,其厚度一般为50到100纳米,其决定了单位电极面积的容量。钽电容也有氧化物膜层,但厚度要小得多,一般只有5到10纳米。选择储能设备使用的电容类型时,需要考虑工作寿命、板级空间和成本要求。因为心脏除颤需要非常高的能量,所以只有铝电解电容和湿钽电容适用。   结论   本文讨论了便携式医疗设备的各种应用及其使用的电路。针对这些便携式应用,有多种电容可供选择。选择适用于这类应用的电容时,优先考虑的电气参数是电容的DCL和ESR。由于某些医疗应用对可靠性和电池使用寿命要求极高,一些电容无法适用。

    时间:2010-10-21 关键词: 电池供电 便携式 医疗设备 钽电容

发布文章

技术子站

更多

项目外包