当前位置:首页 > 锂空气电池
  • 关于空气电池的工作原理以及不同种类的特点分析

    关于空气电池的工作原理以及不同种类的特点分析

    在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的空气电池,那么接下来让小编带领大家一起学习空气电池。空气电池是化学电池的一种。构造原理与干电池相似,所不同的只是它的氧化剂取自空气中的氧。例如有一种空气电池,以锌为阳极,以氢氧化钠为电解液,而阴极是多孔的活性炭,因此能吸附空气中的氧以代替一般干电池中的氧化剂(二氧化锰)。下面主要描述三种空气电池的工作原理以及特点。 锂空气电池采用锂作为负极活性材料,采用多孔的气体扩散层电极作为正极材料,按电解质体系主要分为有机电解液体(非水性电解液体系)、水性电解液体系、混合电解液体系和全固态电解质体系。 铝空气电池的化学反应与锌空气电池类似,铝空气电池以高纯度铝Al(含铝99.99%)为负极、氧为正极,以氢氧化钾(KOH)或氢氧化钠(NaOH)水溶液为电解质。铝摄取空气中的氧,在电池放电时产生化学反应,铝和氧作用转化为氧化铝。 锌空气电池使用锌(Zn)作为正极,使用氧气作为负极,使用氢氧化钾(KOH)作为电解质。锌空气电池的化学反应类似于普通的碱性电池。基本工作原理是电池正电极上的锌和电解质中的OH-经过电化学反应(负电极反应)释放电子。同时,GDE(气体扩散电极或空气负电极)反应层中的催化剂与电解质接触,并通过扩散进入电池的空气中的氧气吸收电子,并进行电化学反应(正电极反应))。但是,锌空气电池的充电过程非常缓慢。通常,锌-空气电池的正极的锌板或锌颗粒被氧化成氧化锌并在放电过程中失效。通常,采用直接替换锌板或锌颗粒和电解质的方法。以便完全更换锌空气电池。 锌空气电池的充电模式打破了普通电池的传统充电模式。采用机械更换电池锌板或锌粒的“充电”方式,整体上代替了锌空气电池的活性物质,更换了整个锌空气电池。电池不再需要花费很长时间即可充电,更换20kWh电池组仅需1分40秒。只要沿公路安装锌板或锌粒和电解液盒的机械整体更换站,其效果就与目前内燃机车的加油站一样,直接“充电”,可以为用户提供极大的便利。 成组的锌空气电池具有良好的一致性,没有其他类型电池的充电和放电的不均匀现象。允许深度放电,电池的容量不受放电强度和温度的影响。能在-20~80℃的温度范围内正常工作。锌空气电池可以完全实现密封免维护,便于电池组能量的管理。 顾名思义,铝空气电池是一种使用铝和空气作为电池材料的新型电池。它是一种无污染,持久,稳定和可靠的电源,并且是一种非常环保的电池。电池的结构和所使用的原材料可根据不同的实际环境和要求进行更改。具有很大的适应性。它可以在陆地和深海中使用。它可以用作动力电池,也可以用作长寿命和高能量专用信号电池是一种非常强大的电池,具有广阔的应用前景。 锂空气电池的理论比能为11430Wh / kg(不包括O2重量),与汽油的比能相似。因此,锂空气电池系统的实际比能量有望达到1700Wh / kg。在过去的十年中,尤其是近年来,对锂空气电池进行了广泛的研究,并报告了许多重要的实验结果,但是最高电池的实际能量密度仅高于锂离子电池。因此,为了提高电池的能量密度和倍率性能以在未来的领域中实际应用,需要更多的突破。 与其他电池相比,锂空气电池具有高比能量,低成本,可充电性和环境友好性。但是,对于有机系统,对空气电极,电解质,催化剂等有一定了解,但是仍然存在一些重要问题,例如放电性能,能效,催化剂,空气电极设计,所有锂空气电池系统关键科学问题。这些问题的解决将促进锂空气电池的实际应用。相信通过阅读以上内容,每个人对空气电池都有初步的了解,希望大家对学习过程进行总结,以便不断提高设计水平。

    时间:2021-02-22 关键词: 锌空气电池 锂空气电池 铝空气电池

  • 关于锂硫电池与锂空气电池技术解析

    关于锂硫电池与锂空气电池技术解析

    什么是锂硫电池与锂空气电池?它们有什么区别?随着社会的快速发展,我们的锂硫电池与锂空气电池也在快速发展,那么你知道锂硫电池与锂空气电池的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。 从锂电诞生到应用才短短的几十年,然而电池产业已经逐渐替代化石能源。尤其是动力电源与3C设备对锂离子电池有着源源不断的需求。而目前的LiCoO2材料(理论比容量275mAh/g)始终制约着锂离子电池的发展和应用。目前商业发展中,Tesla和比亚迪作为电动汽车的领头行业,分别选择三元正极材料和LiFepO4为锂离子电池正极材料。但Tesla依旧使用松下制作供应的18650电芯,以上千个电芯组装电池包,为汽车供应动力。同样,LiFepO4由于理论容量只有170mAh/g,且振实密度低,比亚迪所推出的汽车多数还是油电混合的过渡状态。 锂硫电池是锂电池的一类,截至2019年尚始终处于科研开发环节。锂硫电池是以硫元素做为电池正极,金属锂做为负极的一类锂电池。单质硫在地球中储藏量极为丰富,有着价格实惠、绿色环保等特性。使用硫做为正极材料的锂硫电池,其材料理论比电容量和电池理论比能量较高,分別超过1675毫安时/g和2600Wh/kg,大大高过商业上普遍使用的钴酸锂电池的电容量(<150毫安时/g)。并且硫是一类对绿色环保的元素,对环境基本上没有环境污染,是一类非常有市场前景的锂电池。 锂硫电池是锂离子电池的一种,是以硫元素为正极,锂金属为负极的锂离子电池,其理论能量密度约为锂离子电池的5倍,尚处于发展的早期阶段。目前锂硫电池是锂离子电池普遍看好的新一代锂离子电池,目前进入研究实验室领域和各种前期资金,商业化前景一致乐观。 硫化锂可与金属锂负极反应生成硫化锂并沉积在其表面层,致使活性物质的损失以及负极性能的恶化;无法根据可逆的充电操作过程反应变成硫亦或是是高阶的多硫化物,造成了电容量的前所未有损耗。 锂空气电池是以锂为正极,空气中的氧为负极反应的电池。锂阳极的理论能量密度是锂离子电池的近10倍,因为阳极金属锂的质量非常轻,而活性阴极材料氧存在于自然环境中,不要储存在电池中。锂空气电池在技术方面面对更多挑战。除了金属锂的安全保存问题外,氧化反应形成的锂氧化物过于稳定,只有借助催化剂才能完成和还原反应。另外,电池周期数的问题还没有解决。 以上就是锂硫电池与锂空气电池的有关知识的详细解析,需要大家不断在实际中积累经验,这样才能设计出更好的产品,为我们的社会更好地发展。

    时间:2020-12-26 关键词: 电池 锂硫电池 锂空气电池

  • 电动汽车趋势:无线充电和锂空气电池?

    电动汽车趋势:无线充电和锂空气电池?

         新兴技术咨询公司Enderle总裁兼首席分析师罗布·恩德勒日前在美国科技资讯网站DigitalTrends刊登署名文章称,电动汽车自上世纪末现身至今,电池容量一直是困扰其发展的主要问题,而现如今,市场众多技术将帮助其找出解决方法,得到进一步发展。   以下是文章主要内容:   上世纪早些时候,第一代电动汽车面世,但由于电池能量无法与油箱媲美,致使电动汽车大面积夭折。十年前,由汽车厂商泰斯拉(Tesla)领衔的第二代电动汽车有大规模出现,即便电池较早前有了明显改善,但却仍继续阻碍着电动汽车的发展。与此同时,汽车燃油的经济性也得到了明显改善,从而进一步加剧了电动汽车与燃油类汽车竞争的难度。   虽然第三代电动汽车将得到众多改进,但最重要的改进还是迫切需要解决的能量问题。不过,市场上现在有众多技术,最终能够帮助电动汽车将燃油类汽车踢出比赛场。     感应充电   无论是智能手机还是电动汽车,通过感应充电技术,设备无需通过物理连接至电源便可进行充电。有趣的是,虽然泰斯拉在2003年便推出了电动汽车,而且其在各方面都领先与竞争对手,但尼桑和英菲尼迪却是将首批提供该充电功能的汽车厂商。要知道,汽车感应充电技术最初就是借由泰斯拉的Tesla Roadster为众人所知,但却似乎没有吸引到泰斯拉太大兴趣。   高通(Qualcomm)也拥有自己的感应充电技术,名为Halo,可用于停车场和州际公路。该技术要求汽车保持近距离,但不需要接触,相对于汽车插入充电,这个技术可以说是一个很大的改善。部分改善是,该设备可以完全埋入,大大降低了遭到破坏,或者被“二把刀”司机损坏的可能性。在多数情况下,你要做的就是停好车,你的汽车消费的任何能量都是免费的,而你会在月末收到一张能量消费清单。   高通现正在推广这项技术,除非该技术在路上安装,否则,其无法解决电池续航能力问题,不过,却可以减少相关问题的发生,让充电变得更加透明可靠。然而,技术标准不一致也会产生问题,整个电动汽车行业都早受到困扰,不统一的标准就意味着,你必须寻找一个你的车能够进行充电的停车场,而且道路充电解决方案也将不可行。这或许是制住泰斯拉前进步伐的原因。   锂空气电池   IBM和其他企业正在研发一项很有前景的技术:锂空气电池,其能处理一个油箱的能量密度。在过去的几年里,冶金术取得了重大进步,让基于锂空气技术的电池能够在10年内实现。如果说,电池拥有与油箱同样的能量容量,且体积大小相同,可以用来替换泰斯拉Tesla S的巨型电池组,你或许会开这辆车,然后让里程翻两番。开行到1000英里时,你不需要过多的担心充电插头。更有可能的是,工程师们或许会使用一个更小的电池,让电动汽车更轻售价更低。加上充电插头更加普遍,这项几乎或许会成为电动汽车行业的规则颠覆者,显示出比汽油更高的能源效率。   超级电容器(Supercapacitors和ultracapacitors)   超级电容器是电池的替代,事实上其已经应用于商用车辆之中。电容器是固态的,其拥有一个近乎无限的生命周期,能够充放电数千次,速度快于锂离子电池,且不会造成损伤。在某种程度上,电容器和普通的电池就像是闪存和硬磁盘,最开始闪存表现较好,但却比硬磁盘更贵。甚至iPod最开始都有硬驱动。但是随着闪存价格下滑,其市场占有率越来越高,现在硬磁盘正在被市场淘汰。   不幸的是,电容器仍处于转变初期。现在,电容器价格非常高昂,经过一段时间会充电失败,而且其能源密度比电池还低。从这些看到,电容器或许不会在在近期内解决电动汽车的能源问题,但是就像闪存,其价格有望大幅下跌,能量密度会增加,自放电率也会有所改善。不过,电容器已经在混合动力装置中采用,用户可以分分钟内为电容器快速充好电,然后电容器会在用户开车的途中自动为电池充电。   下一个泰斯拉在哪里?   这里我指的不是泰斯拉这间公司,而是泰斯拉这个人,他很早变离世,而致他死亡的或许是一种神秘的死亡射线,而他生前曾研究过广播能量。英特尔和其他企业一直在努力打入这个领域,但是其要想实现在个人电子设备上运行,还有很长的路要走,要想要该技术能够在汽车上使用,或许还要等上数十年。不过,一旦该技术研发成功,其将能够永远解决电动汽车的电池问题,到时,我们将生活在一个电气世界,而我们也会遭遇到一些健康问题需要解决:虽然在黑暗中发光这个想法很酷,但是我们需要避开“死亡射线”这个部分。无论如何,我都认为,广播能量将预示着电动汽车永恒时代的最终到来。

    时间:2020-09-03 关键词: 无线充电 超级电容 感应充电 锂空气电池

  • 锂空气电池破难关 引领跨时代续航

    锂空气电池破难关 引领跨时代续航

    据英国报道,化学教授克莱尔·格雷和她的团队前不久攻克了锂空气电池开发中的技术难关。 报道称,如果能把该技术从实验室的演示品转变为商品,那么汽车只充一次电就能从伦敦驶到爱丁堡(两地相距约650公里),所用电池的成本和重量却只有今日电动汽车所用锂离子电池的1/5。 格雷教授表示:“我们取得的成就使这项技术向前迈出了重要一步,预示着全新的研究领域。我们仍未全盘解决这一化学机制所固有的问题,但我们的成果确实揭示了前行的道路。” 和目前的可充电电池中盛行的锂离子技术相比,锂空气电池理论上可存储的能量要多得多,以至于全球的研究人员都在开展锂空气电池的研究。 发表在美国《科学》周刊上的一篇研究论文显示,剑桥的这个团队攻克了这种技术中的部分实际问题——尤其是化学上的不稳定问题。此前,由于这种化学上的不稳定,锂空气电池会显示出性能迅速衰退的现象。 锂空气电池的基本化学原理十分简单。这种电池通过锂和氧结合成过氧化锂实现放电,再通过施加电流逆转这一过程而完成充电。如何可靠地令上述反应反复发生是该技术面临的挑战。剑桥的科学家对相关化学过程做了调整以提高其可控性。比如,他们将过氧化锂转变为更易处理的氢氧化锂,还向系统中添加了碘化锂,并用石墨烯制作了渗透性极好的“蓬松”电极。所谓石墨烯,是12年前曼彻斯特大学发现的一种碳的同素异形体。 研究人员表示,剑桥实验室中展示的电池系统效率达90%,可充电2000次。不过他们表示,可能至少还需10年的工作才能将该电池变为可用于汽车和电网蓄电的商业电池。电网蓄电装置用于存储太阳能和风能发电站间歇发出的电力,以便在需要的时候使用。 格雷教授表示:“我们获得了该技术的专利,其知识产权归剑桥大学商业化机构剑桥实业所有。我们正与多家公司合作推进这项技术。”

    时间:2015-12-08 关键词: 锂电池 充电 续航 电源资讯 锂空气电池

  • 锂空气电池破难关  引领跨时代续航

    锂空气电池破难关 引领跨时代续航

    据英国《金融时报》网站报道,化学教授克莱尔·格雷和她的团队前不久攻克了锂空气电池开发中的技术难关。 报道称,如果能把该技术从实验室的演示品转变为商品,那么汽车只充一次电就能从伦敦驶到爱丁堡(两地相距约650公里),所用电池的成本和重量却只有今日电动汽车所用锂离子电池的1/5。 格雷教授表示:“我们取得的成就使这项技术向前迈出了重要一步,预示着全新的研究领域。我们仍未全盘解决这一化学机制所固有的问题,但我们的成果确实揭示了前行的道路。” 和目前的可充电电池中盛行的锂离子技术相比,锂空气电池理论上可存储的能量要多得多,以至于全球的研究人员都在开展锂空气电池的研究。 发表在美国《科学》周刊上的一篇研究论文显示,剑桥的这个团队攻克了这种技术中的部分实际问题——尤其是化学上的不稳定问题。此前,由于这种化学上的不稳定,锂空气电池会显示出性能迅速衰退的现象。 锂空气电池的基本化学原理十分简单。这种电池通过锂和氧结合成过氧化锂实现放电,再通过施加电流逆转这一过程而完成充电。如何可靠地令上述反应反复发生是该技术面临的挑战。剑桥的科学家对相关化学过程做了调整以提高其可控性。比如,他们将过氧化锂转变为更易处理的氢氧化锂,还向系统中添加了碘化锂,并用石墨烯制作了渗透性极好的“蓬松”电极。所谓石墨烯,是12年前曼彻斯特大学发现的一种碳的同素异形体。 研究人员表示,剑桥实验室中展示的电池系统效率达90%,可充电2000次。不过他们表示,可能至少还需10年的工作才能将该电池变为可用于汽车和电网蓄电的商业电池。电网蓄电装置用于存储太阳能和风能发电站间歇发出的电力,以便在需要的时候使用。 格雷教授表示:“我们获得了该技术的专利,其知识产权归剑桥大学商业化机构剑桥实业所有。我们正与多家公司合作推进这项技术。”

    时间:2015-12-08 关键词: 充电 趣科技 续航能力 锂空气电池

  • 基因修饰的病毒可提高锂空气电池性能

    近日美国麻省理工学院研究人员发现,将经过基因修饰的病毒添加到纳米线生产中,可以改进锂空气电池的性能。 基因修饰主要是指利用生物化学方法修改dna序列,将目的基因片段导入宿主细胞内,或者将特定基因片段从基因组中删除,从而达到改变宿主细胞基因型或者使得原有基因型得到加强的作用。 基因修饰目前已经广泛应用于人类生活的各个领域,在医学上可以利用基因修饰的方法抑制某些病毒类宿主细胞内的病毒复制,从而达到治疗的目的。 锂空气电池则是一种用锂作阳极,以空气中的氧气作为阴极反应物的电池,可以应用于新能源汽车。 麻省理工研究人员这项工作的关键之处在于增加了纳米线的表面积,从而提高了电池充放电过程中电化学活性发生的面积。研究人员利用一种被称为m13 的基因修饰病毒制备纳米线阵列,每个约有80纳米。在这种情况下,氧化锰线(非常适用于锂空气电池阴极材料)实际上是由该病毒组成的。但是和通过常规化学方法的纳米线“生长”不同,这些病毒构成的纳米线具有粗糙、高低不平的表面,这样极大地增加了其表面积。 此外,纳米线之间不孤立,该病毒自然产生三维交联的纳米线结构,提高了电极的稳定性。过程的最后一步是添加少量的金属(如钯),极大地提高了纳米线的导电性,同时在充放电期间能够催化反应。 总之,这些改进有可能比目前的锂离子电池能量密度高两到三倍。这项工作获得了美国陆军研究办公室和国家科学基金会支持,相关研究成果已经发表在nature communications。

    时间:2013-12-18 关键词: 电源资讯 纳米线 基因修饰 锂空气电池

  • 科学家发现M13病毒能帮助电池提高性能

    锂空气电池近年来一直是研究热点,它的容电量有潜力大幅提高。不过,科学家需要先找到更加耐用的电极材料,增加电池的可充电次数,这个想法才能实现。 麻省理工学院研究人员让转基因病毒参与到纳米线的生产中,解决了一些技术难题。纳米线的宽度类似红细胞,在电池中可以用作电极。技术的关键在于增加纳米线的表面积,增加充电和用电过程中电极的活跃范围。 一种名叫M13的转基因病毒能够抓取水中的金属分子,组成稳定的结构。科学家用M13病毒收集制作电池阴极的极佳材料——氧化锰,制造大约80纳米宽的氧化锰纳米线。和传统化学方法制造的纳米线相比,病毒纳米线表面粗糙不平,表面积显著增大。最后还要加入少量钯等金属元素,提升电极的导电性,促进充电和放电时的化学反应。 麻省理工学院能源教授贝尔彻说,M13的生物合成过程和鲍鱼长壳差不多。鲍鱼就是从海水中收集钙,再组成坚固的外壳。 有了病毒的帮助,新型电池的能量密度能够达到目前顶尖锂离子电池的2到3倍,并且在诸多方面优势明显。新电池电极表面积更大,充电和放电效率更高。其制造工艺更加简单、安全,病毒于常温状态下就能在水中完成工作,传统方法必须的高温条件和危险化学品已经没有用武之地。病毒制造的纳米线相互交错关联,制成的电极更加稳定。另外,电池对电极的金属材质要求降低,成本也更加合理。 贝尔彻强调说,研究还处于早期阶段,只做出了阴极,而电解液等关键部分仍然有待开发。此外,新型电池经测试可以充电50次,要真正应用,这个数字得上千才行。 贝尔彻还表示,目前在实验中虽然利用生物技术,通过病毒收集金属分子,但可能不是长久之计。如果将来找到最合适的材料,并且通过测试,工业生产中可能会采用别的办法,方便定量控制。 多年来,科学家一直热衷于病毒电池的研究。2010年,马里兰大学科学家让烟草花叶病毒(TMV)帮助电池进行化学反应,收集电流,增强电池的储电能力。同年,麻省理工学院科学家马克•艾伦也提出,可以利用M13病毒制造氟化铁阴极,希望制造轻巧持久的可充电池。

    时间:2013-11-18 关键词: 电源资讯 电池阴极材料 锂空气电池

  • 无线充电、锂空气电池或成电动汽车新趋势

      无线充电示意图 新兴技术咨询公司Enderle总裁兼首席分析师罗布·恩德勒日前在美国科技资讯网站DigitalTrends刊登署名文章称,电动汽车自上世纪末现身至今,电池容量一直是困扰其发展的主要问题,而现如今,市场众多技术将帮助其找出解决方法,得到进一步发展。 上世纪早些时候,第一代电动汽车面世,但由于电池能量无法与油箱媲美,致使电动汽车大面积夭折。十年前,由汽车厂商泰斯拉(Tesla)领衔的第二 代电动汽车有大规模出现,即便电池较早前有了明显改善,但却仍继续阻碍着电动汽车的发展。与此同时,汽车燃油的经济性也得到了明显改善,从而进一步加剧了 电动汽车与燃油类汽车竞争的难度。 虽然第三代电动汽车将得到众多改进,但最重要的改进还是迫切需要解决的能量问题。不过,市场上现在有众多技术,最终能够帮助电动汽车将燃油类汽车踢出比赛场。 感应充电 无论是智能手机还是电动汽车,通过感应充电技术,设备无需通过物理连接至电源便可进行充电。有趣的是,虽然泰斯拉在2003年便推出了电动汽车,而 且其在各方面都领先与竞争对手,但尼桑和英菲尼迪却是将首批提供该充电功能的汽车厂商。要知道,汽车感应充电技术最初就是借由泰斯拉的Tesla Roadster为众人所知,但却似乎没有吸引到泰斯拉太大兴趣。 高通也拥有自己的感应充电技术,名为Halo,可用于停车场和州际公路。该技术要求汽车保持近距离,但不需要接触,相对于汽车插入充电,这个技术可 以说是一个很大的改善。部分改善是,该设备可以完全埋入,大大降低了遭到破坏,或者被“二把刀”司机损坏的可能性。在多数情况下,你要做的就是停好车,你 的汽车消费的任何能量都是免费的,而你会在月末收到一张能量消费清单。 高通现正在推广这项技术,除非该技术在路上安装,否则,其无法解决电池续航能力问题,不过,却可以减少相关问题的发生,让充电变得更加透明可靠。然 而,技术标准不一致也会产生问题,整个电动汽车行业都早受到困扰,不统一的标准就意味着,你必须寻找一个你的车能够进行充电的停车场,而且道路充电解决方 案也将不可行。这或许是制住泰斯拉前进步伐的原因。 锂空气电池 IBM和其他企业正在研发一项很有前景的技术:锂空气电池,其能处理一个油箱的能量密度。在过去的几年里,冶金术取得了重大进步,让基于锂空气技术 的电池能够在10年内实现。如果说,电池拥有与油箱同样的能量容量,且体积大小相同,可以用来替换泰斯拉Tesla S的巨型电池组,你或许会开这辆车,然后让里程翻两番。开行到1000英里时,你不需要过多的担心充电插头。更有可能的是,工程师们或许会使用一个更小的 电池,让电动汽车更轻售价更低。加上充电插头更加普遍,这项几乎或许会成为电动汽车行业的规则颠覆者,显示出比汽油更高的能源效率。 超级电容器 超级电容器是电池的替代,事实上其已经应用于商用车辆之中。电容器是固态的,其拥有一个近乎无限的生命周期,能够充放电数千次,速度快于锂离子电 池,且不会造成损伤。在某种程度上,电容器和普通的电池就像是闪存和硬磁盘,最开始闪存表现较好,但却比硬磁盘更贵。甚至iPod最开始都有硬驱动。但是 随着闪存价格下滑,其市场占有率越来越高,现在硬磁盘正在被市场淘汰。 不幸的是,电容器仍处于转变初期。现在,电容器价格非常高昂,经过一段时间会充电失败,而且其能源密度比电池还低。从这些看到,电容器或许不会在近 期内解决电动汽车的能源问题,但是就像闪存,其价格有望大幅下跌,能量密度会增加,自放电率也会有所改善。不过,电容器已经在混合动力装置中采用,用户可 以分分钟内为电容器快速充好电,然后电容器会在用户开车的途中自动为电池充电。

    时间:2013-08-13 关键词: 无线充电 电动汽车 锂空气电池

  •  新一代电动汽车:配备无线充电和锂空气电池?

    新一代电动汽车:配备无线充电和锂空气电池?

    新兴技术咨询公司Enderle总裁兼首席分析师罗布·恩德勒日前在美国科技资讯网站DigitalTrends刊登署名文章称,电动汽车自上世纪末现身至今,电池容量一直是困扰其发展的主要问题,而现如今,市场众多技术将帮助其找出解决方法,得到进一步发展。以下是文章主要内容:  上世纪早些时候,第一代电动汽车面世,但由于电池能量无法与油箱媲美,致使电动汽车大面积夭折。十年前,由汽车厂商泰斯拉(Tesla)领衔的第二代电动汽车有大规模出现,即便电池较早前有了明显改善,但却仍继续阻碍着电动汽车的发展。与此同时,汽车燃油的经济性也得到了明显改善,从而进一步加剧了电动汽车与燃油类汽车竞争的难度。 虽然第三代电动汽车将得到众多改进,但最重要的改进还是迫切需要解决的能量问题。不过,市场上现在有众多技术,最终能够帮助电动汽车将燃油类汽车踢出比赛场。 感应充电 无论是智能手机还是电动汽车,通过感应充电技术,设备无需通过物理连接至电源便可进行充电。有趣的是,虽然泰斯拉在2003年便推出了电动汽车,而且其在各方面都领先与竞争对手,但尼桑和英菲尼迪却是将首批提供该充电功能的汽车厂商。要知道,汽车感应充电技术最初就是借由泰斯拉的Tesla Roadster为众人所知,但却似乎没有吸引到泰斯拉太大兴趣。 高通(Qualcomm)也拥有自己的感应充电技术,名为Halo,可用于停车场和州际公路。该技术要求汽车保持近距离,但不需要接触,相对于汽车插入充电,这个技术可以说是一个很大的改善。部分改善是,该设备可以完全埋入,大大降低了遭到破坏,或者被“二把刀”司机损坏的可能性。在多数情况下,你要做的就是停好车,你的汽车消费的任何能量都是免费的,而你会在月末收到一张能量消费清单。 高通现正在推广这项技术,除非该技术在路上安装,否则,其无法解决电池续航能力问题,不过,却可以减少相关问题的发生,让充电变得更加透明可靠。然而,技术标准不一致也会产生问题,整个电动汽车行业都早受到困扰,不统一的标准就意味着,你必须寻找一个你的车能够进行充电的停车场,而且道路充电解决方案也将不可行。这或许是制住泰斯拉前进步伐的原因。 锂空气电池 IBM 和其他企业正在研发一项很有前景的技术:锂空气电池,其能处理一个油箱的能量密度。在过去的几年里,冶金术取得了重大进步,让基于锂空气技术的电池能够在 10年内实现。如果说,电池拥有与油箱同样的能量容量,且体积大小相同,可以用来替换泰斯拉Tesla S的巨型电池组,你或许会开这辆车,然后让里程翻两番。开行到1000英里时,你不需要过多的担心充电插头。更有可能的是,工程师们或许会使用一个更小的电池,让电动汽车更轻售价更低。加上充电插头更加普遍,这项几乎或许会成为电动汽车行业的规则颠覆者,显示出比汽油更高的能源效率。 超级电容器(Supercapacitors和ultracapacitors) 超级电容器是电池的替代,事实上其已经应用于商用车辆之中。电容器是固态的,其拥有一个近乎无限的生命周期,能够充放电数千次,速度快于锂离子电池,且不会造成损伤。在某种程度上,电容器和普通的电池就像是闪存和硬磁盘,最开始闪存表现较好,但却比硬磁盘更贵。甚至iPod最开始都有硬驱动。但是随着闪存价格下滑,其市场占有率越来越高,现在硬磁盘正在被市场淘汰。 不幸的是,电容器仍处于转变初期。现在,电容器价格非常高昂,经过一段时间会充电失败,而且其能源密度比电池还低。从这些看到,电容器或许不会在在近期内解决电动汽车的能源问题,但是就像闪存,其价格有望大幅下跌,能量密度会增加,自放电率也会有所改善。不过,电容器已经在混合动力装置中采用,用户可以分分钟内为电容器快速充好电,然后电容器会在用户开车的途中自动为电池充电。 下一个泰斯拉在哪里? 这里我指的不是泰斯拉这间公司,而是泰斯拉这个人,他很早变离世,而至他死亡的或许是一种神秘的死亡射线,而他生前曾研究过广播能量。英特尔和其他企业一直在努力打入这个领域,但是其要想实现在个人电子设备上运行,还有很长的路要走,要想要该技术能够在汽车上使用,或许还要等上数十年。不过,一旦该技术研发成功,其将能够永远解决电动汽车的电池问题,到时,我们将生活在一个电气世界,而我们也会遭遇到一些健康问题需要解决:虽然在黑暗中发光这个想法很酷,但是我们需要避开“死亡射线”这个部分。无论如何,我都认为,广播能量将预示着电动汽车永恒时代的最终到来。

    时间:2013-07-15 关键词: 电动汽车 电源资讯 感应充电 锂空气电池

  • IBM研发锂空气电池

    日前 IBM和其他企业正在研发一项很有前景的技术:锂空气电池,其能处理一个油箱的能量密度。在过去的几年里,冶金术取得了重大进步,让基于锂空气技术的电池能够在10年内实现。如果说,电池拥有与油箱同样的能量容量,且体积大小相同,可以用来替换泰斯拉Tesla S的巨型电池组,你或许会开这辆车,然后让里程翻两番。开行到1000英里时,你不需要过多的担心充电插头。更有可能的是,工程师们或许会使用一个更小的电池,让电动汽车更轻售价更低。加上充电插头更加普遍,这项几乎或许会成为电动汽车行业的规则颠覆者,显示出比汽油更高的能源效率。

    时间:2013-07-15 关键词: 电动汽车 电源资讯 锂空气电池

  • 提升EV锂电池能量密度的新方法问世

    韩国研究人员发现在锂电池中的Li2CO3根据锂空气电池中电解质的介电性能(dielectric properties),能够选择性地作为放电反应的最终产物。此外Li2CO3在锂-氧气/二氧化碳电池循环中能够发生可逆反应。 锂空气电池的最高理论能量密度约为3500瓦时/千克,是下一代电动车能量储存系统的良好动力源(600405,股吧),可使电动车实现更长的形式里程。锂空气电池的结构基于一对夹层电极(intercalation electrode)。在充电时,锂离子从阴极移动至电解液然后插进阳极;放电时,该过程逆转。 研究者表示,这项发现非常重要,因为在含有二氧化碳的环境中,锂空气电池中Li2CO3的形成是不可避免的,然而目前发现了可以促使其发生可逆反应的物质,可使电池的循环性能更稳定。

    时间:2013-06-27 关键词: 电源资讯 锂空气电池

  • 对二次锂空气电池的一些看法

    笔者认为锂空气电池得不到重点研究利用主要有以下几点原因,个人观点。 1. 氧气透气膜问题:可以说没有一种膜可以做到可以让氧气透过,而不让CO2从空气透入和阻碍绝有机溶剂挥发。同碱性燃料电池和锌空气电池一样,空气中的CO2是一个很大困扰。 2. 氧还原催化剂:要使锂空气电池可逆,氧气还原产物不能到-2价(如Li2O, LiOH, 等)。现在大多催化剂要么催化氧气四电子还原,要么催化过氧化物歧化分解。即使纯碳,它也会慢慢催化过氧化物歧化分解。本人注意到一些文献做出非常飘亮的数据,但忘记所用的催化剂本身是一个二次锂电池的正极材料,把催化剂本身的容量算到碳容量上去。 3. 安全性:即使氧还原产物是理想的可逆过氧化物,它是一个极危险的氧化剂。另外,Li2O2与二氧化碳在少量水汽催化下分解出氧气并生成Li2CO3(一种水下制氧方法),导致反应不可逆。 4. 非水电解液:氧气还原过程产生过氧阴离子自由基中间体,它极活泼,分解绝大多数有机物。在污物处理上就是利用这一原理处理有机污染物。虽然在电池界认为是过氧化物亲核进攻有机溶剂,但真真反应的是过氧阴离子自由基。 5. 正极电流集:空气电极板腐蚀也是一个严重问题,在氧存在下铝接头会很快腐蚀,使电池失活。另外,对二次电池来说,溶解氧对锂负极腐蚀也必须考虑。

    时间:2013-01-31 关键词: 电源技术解析 氧气透气膜 锂空气电池

  • 锂空气电池性能及未普及的原因

    锂空气电池性能及未普及的原因

    锂空气电池这是一种由日本产业技术综合研究所与日本学术振兴会(JSPS)共同开发出的一种新构造的大容量锂空气电池。 锂空气电池 理论上可实现大容量的“锂空气电池”作为新一代大容量电池而备受瞩目。不过此前的锂空气电池存在正极蓄积固体反应生成物,阻隔了电解液与空气的接触,导致停止放电等问题。 负极(金属锂)采用有机电解液,正极(空气)方面则使用水性电解液,两极由固体电解质隔开,以防止两电解液发生混合。由于固体电解质只通过锂离子,因此电池的反应可无阻碍地进行。正极的反应生成物具有水溶性,不产生固体物质。实验证明该电池可连续放电50000mAh/g(空气极的单位质量)。 该技术极有望用于汽车电池。如果在汽车用支架上更换正极的水性电解液,用卡盒等方式补充负极的金属锂的话,汽车可实现连续行驶且无需充电等待时间。可以从用过的水性电解液中轻松提取金属锂,锂能够反复使用。可以说是用金属锂作为燃料的新型燃料电池。 锂离子电池目前已经开始在电动汽车上应用,为了实现长距离行驶,作为蓄电池时的高性能化和低成本化备受期待。但目前的锂离子电池受制于电池容量很难实现长距离行驶,要实现长距离行驶必须在汽车上配备大量的电池,因此存在车体价格大幅上升的问题。 要实现电动汽车的普及,能源密度需达到目前的约6~7倍。因此,理论上能源密度远远大于锂离子电池的金属锂空气电池备受关注。由于锂空气电池的正极使用空气中的氧做活性物质,理论上正极容量无限大,因此可实现大容量。 [!--empirenews.page--] 解密锂空气电池 大容量锂-空气电池并非新概念,至今都未普及原因是它存在致命缺陷,日本的研究院克服了这个困难,但 要想实现商用,可能还需要10年。减碳,对于人类福祉来说,绝对不是离谱的要求,但对于全球汽车业来说,却是一件困难的事情。 众所周知,锂离子电池广泛用于手机和笔记本电脑等,目前也已经是下一代充电式混合动力车和电动车的理想之选。它比其它汽车电池的密度更高、电量更充足,但也更贵,受制于电池容量,充电后的行驶距离仍不够远。即将于2010年上市的雪佛兰Volt混合动力汽车如果仅仅使用电池,只能行驶40公里。尽管仍有改进的空间,但锂离子电池的潜力依然有限。普遍认为,要实现电动汽车的普及,能源密度需达到目前的约6~7倍。于是,理论上能源密度远远大于锂离子电池的金属锂空气电池备受关注。虽然仍使用有机溶媒,但它却以全新的构成极大提高电池的能量密度。 锂-空气电池并非新概念。由于在正极上使用空气中的氧作为活性物质,理论上正极的容量密度是无限的,可加大容量。另外,如果负极使用金属锂,理论容量会比锂离子充电电池提高一位数。但是,为什么锂-空气电池至今都未普及?原因是它存在致命缺陷,即固体反应生成物氧化锂(Li2O)会在正极堆积,使电解液与空气的接触被阻断,从而导致放电停止。 2009年2月,日本产业技术综合研究所能源技术研究部门能源界面技术研究小组组长周豪慎和日本学术振兴会(JSPS)外籍特别研究员王永刚共同开发出了新构造的大容量锂空气电池。他们通过将电解液分成两种来解决上述问题。在负极(金属锂)一侧使用有机电解液,在正极(空气)一侧使用水性电解液。在两种电解液之间设置只有锂离子穿过的固体电解质膜,将两者隔开。这样便可防止电解液混合,并促进电池发生反应。 负极用电解液组合使用的是含有锂盐的有机电解液。虽然不能弃用有机溶媒,但却限定了使用方法。正极用水性电解液使用碱性水溶性凝胶,与微细化后的碳和低价氧化物催化剂形成的正极组合。在锂-空气电池中,由于放电反应生成的并非是固体的Li2O,而是容易溶解在水性电解液中的LiOH(氢氧化锂)。氧化锂在空气电极堆积后,不会导致工作停止。水及氮等也不会穿过固体电解质的隔壁,因此不存在与负极的锂金属发生反应的危险。而且,在充电时,如果配置充电专用的正极,还可防止充导电致空气电极的腐蚀和老化。 实验证明,以0.1A/g的放电率进行放电时,放电容量约为9000mAh/g,而以前的锂-空气电池的放电容量仅为700~3000mAh/g,可以说实现了容量的大幅增加。另外,如果使用水溶液取代水溶性凝胶,便可在空气中以0.1A/g的放电率连续放电20天,其放电容量约为5万mAh/g(空气极的单位质量),比原来高一位数。由于金属锂电池的容量原本就比锂离子电池高一位数,因此该数值共比锂离子充电电池高两位数。 现在,由于水溶液的性能较高,而在易用性上凝胶更为出色,科学家们今后需要考虑决定究竟对这两者中的哪一个进行开发。了解到,这种技术还可考虑与单纯的充电电池不同的使用方法。如果不对电池进行充电,而是通过汽车底座更换正极的水性电解液,以卡盒等方式补给负极的金属锂,汽车便可实现无需充电等待时间,立即行驶。而且,通过回收用过的水性电解液,以电气方式重新生成金属锂,还可继续作为电池负极燃料循环使用,避免产生其他污染。锂-空气电池可以说是以金属锂为燃料的新型燃料电池。 科学家认为,锂空气电池的性能是锂离子电池的10倍,可以提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。全球不少实验室都在研究这种技术,但如果没有重大突破,要想实现商用可能还需要10年。

    时间:2013-01-31 关键词: 电源技术解析 电解液 空气电池 锂空气电池

  • 锂空气电池阴极关键材料研究取得进展

    锂空气电池阴极关键材料研究取得进展

    锂空气电池是一种用锂作阳极,以空气中的氧气作为阴极反应物的电池。 锂空气电池是一种新型的金属空气电池,其理论能量密度为5200Wh/kg,高出现有电池体系1到2个数量级,可完全满足未来电动汽车对电源能量密度的要求(700 Wh/kg)。 在中科院、国家自然科学基金委、山东省杰青基金和青岛市太阳能储能技术重点实验室等攻关项目支持下,中科院青岛生物能源与过程研究所仿生能源与储能系统团队在锂空气电池阴极关键材料研究中取得系列新进展,相关研究成果发表于Chem. Commun., J. Phys. Chem. C, ChemSusChem., Coordin. Chem. Rev.等杂志上,并在电解质、电极材料体系和液流电池结构设计方面申请多项专利(一项电解质体系材料专利(ZL 200910249811.4)已获授权)。 针对目前锂空气电池面临的充放电能量转化效率低、深度放电循环寿命短等两个核心问题,该团队从氮化物材料出发,通过材料及结构设计,构建了一系列高效的锂空气电池阴极材料(CN 102646839 A; CN 102034985 A)。过渡金属氮化物(如MoN等)因其外层电子排布与贵金属Pt相似,对有机电解质体系界面表现出稳定的、良好的催化活性。该团队通过构效关系研究,设计构建了纳米复合结构的高性能锂空气电池阴极,成功地降低了电池的充放电极化,提高了能量转化效率(Chem. Commun., 2011, 47, 11291-11293; ChemSusChem, 2012, 5, 1712-1715)。 同时,针对目前锂空气电池循环寿命短等问题,该团队通过将Co元素引入氮化物材料,设计合成了具有双效催化性能的Co3Mo3N三元材料,构建了基于该材料的介孔纳米阴极,大大提高了锂空气电池在深度放电时的循环寿命(J. Phys. Chem. C, 2013, 117, 858865)。此外,通过液流电池的结构设计,可大大消除非活性物质对电极界面的污染,并可通过有机无机复合电解质体系设计,将循环寿命提高70%(CN 102637890 A)。 基于上述研究,该团队在Coordin. Chem. Rev.发表文章,综述了氮化物纳米材料在能量储存方面,特别是在锂空高能电池中的应用,重点分析了氮化物在锂空气电池应用中的问题、解决方法和广阔前景。   锂空气电池阴极关键材料研究取得进展

    时间:2013-01-31 关键词: 电源资讯 空气电池 阴极材料 锂空气电池

  • 锂空气电池新突破:让续航里程不再头疼

      近年来电动汽车已不仅仅是一个概念,而是在逐步走进人们的生活。不过相比传统燃油汽车火热受捧的局面,电动车却是门可罗雀,与前者形成强烈反差,症结就在于电池的寿命、续航里程依旧让人头疼。 不过科技在进步,创新时刻在发生。最近有研究人员宣布,锂空气电池的稳定性获得突破。如果新技术能投入商用,那么未来电动汽车将有望拥有与传统燃油汽车相同甚至更强的续航能力,电动车不受待见的命运或将由此逆转。 锂空气电池寻求突破 多年来,研究人员一直希望能用锂空气电池代替传统的锂离子电池,因为前者拥有更强的蓄电能力,比性能最好的锂离子电池都要高出 10 倍以上,可提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。 锂空气电池虽然具有广阔的应用前景,但由于内部结构的不稳定性,难以找到可用的电解液和电极材料,在几次充放电之后就会解体,这让锂空气电池迟迟无法进入消费市场。 锂空气电池在放电时,阳极的锂释放电子后成为锂阳离子,锂阳离子穿过电解质材料,在阴极与氧气以及从外电路流过来的电子结合生成氧化锂或者过氧化锂,并留在阴极,充电过程则相反。整个充放电循环要求有稳定的电极与电解质环境。但是在之前的研究中,人们始终无法维持这两者的稳定性,被当做阴极的碳棒会与电解质产生各种意料之外的副反应,从而导致碳棒逐渐解体,几次充放电循环过后,一块锂空气电池就彻底无法使用了。这使得科学家们不得不在研究中另辟蹊径。 以黄金作电极 近日,来自苏格兰圣安德鲁斯大学的研究人员为锂空气电池的突破带来喜讯,其解决方法就是金子。他们的研究成果已发表在《科学》(Science)上。 由彼得·布鲁斯领导的研究人员制造出了一种使用DMSO(二甲亚砜)作为电解液,并用多孔的黄金作为电极的锂空气电池实验模型,这种实验电池在充放电100次以后,其电池容量仍能保持最初的95%。 研究团队将传统的碳阴极换成了惰性的纳米级金阴极,其稳定性要远高于碳棒;他们还将之前由聚碳酸酯(polycarbonates)或聚醚(polyethers)制作的电解液,换成了一种名叫二甲基亚砜(DMSO)的导电溶液,这种溶液不那么容易在阴极发生反应。事实证明他们成功了,新的 “纳米金 - 二甲基亚砜” 组合的稳定性要远远超出原有组合。 “锂离子电池的储能密度很高,从这点来看它是我们的最佳选择。它已经逐渐渗透到我们的生活,包括在电动汽车上的应用。”布鲁斯说,“我们也发现,现在汽车电池的储电量至少再扩充一倍才能真正满足行驶的要求。这一点传统锂离子电池无法企及,所以我们才将目光投向了锂空气电池。” 观测到局部可逆性 无独有偶。美国橡树岭国家实验室的研究团队也解决了锂空气电池中的一项难题:可逆性,这对于该类电池实现重复充电和成本降低很重要。相关研究报告已发表在近期出版的《纳米技术》杂志上。 在此项研究中,科学家利用尖端为20纳米的原子力显微镜(AFM),基于锂离子导电玻璃陶瓷电解质,利用直流电测量了显微镜在循环过程中尖端高度的变化,以分析锂微粒的增长,从而探究电池的可逆性。他们观测到了锂微粒的局部可逆性——当最小的微粒形成时,可逆程度达到了最高水平。研究人员发现,尖端高度的增加和下降都与电流的变化相关。这意味着他们可能制造出具有活跃阳极的纳米电池,锂空气电池的可逆性有望在未来得到进一步的提高。 发现新型催化剂 另外,麻省理工学院的研究人员近日也开发出一种新型催化剂,可使锂空气电池的充放电效率得到显著提高。该催化剂由金-铂金合金纳米粒子组成。测试发现,电池的放电效率达到了77%,高出之前70%的纪录。这项成果发表在《美国化学会志》杂志上。 这一新催化剂加快了金属锂与氧气的反应速度,从而减少了电池在充放电过程中的能量损失。催化剂中的金原子促进锂和氧的结合,而铂金原子则加快了充电反应的进行。除了提高效率,加快反应速度,该催化剂还能最大限度地减少氧化锂的堆积,提高锂空气电池的寿命。麻省理工学院的研究人员将继续深入研究金-铂金催化剂,了解它们是如何工作的,并努力减少金和铂金的使用量以降低催化剂的成本。同时还将研究其他材料的组合,以找出新的催化剂。 汽车主动力从汽油向电力转变是21世纪上半叶最重要的技术变革之一,而锂空气电池是现今汽车电池研究开发的焦点之一,包括美国国家实验室和IBM在内的不少研究机构和企业都在致力于锂空气电池创新性研究。 IBM称,如果一切顺利,锂空气电池有望在2020年和2030年间进行批量生产。 “上述结果非常鼓舞人心,它意味着锂空气电池的前景并不是毫无希望的。”加拿大滑铁卢大学的化学家琳达·纳扎尔说。不过,纳扎尔和其他科学家也表示,新型锂空气电池还没有办法迅速投入商业化使用,因为锂空气电池仍需要更多的技术改进,如在阴极上使用更好的催化剂以及性能出众的多功能电解质等,如能克服这些障碍,锂空气电池将前途无量。

    时间:2012-09-12 关键词: 续航 锂空气电池

  • IBM 着力研制锂空气电池,「呼吸」一次就能让电动车跑上 500 英里(视频)

    IBM 着力研制锂空气电池,「呼吸」一次就能让电动车跑上 500 英里(视频)

    还在担心电动车的续航力吗?IBM正在研制的锂空气电池可能会在将来打消你这方面的顾虑。据称使用这种电池的电动车一次充电后可以行驶500英里(大约800公里)呢。它的原理是在行驶过程中将空气中的氧分子与电池中的锂离子及电子进行反应,从而产生电能。每次充电的时候,氧气就会被排出电池之外,仿佛就好像是真的在「呼吸」一般。除了能提供比现在广泛使用在电动车上的锂离子电池更强的续航力之外,另外非常重要的一点是这种电池在重量上也减轻了许多。虽然目前锂空气电池仍在实验阶段,但IBM已经在与化工巨子AsahiKasei及CentralGlass展开合作,希望能在2030年前将其投入市场。点击跳转可以看到IBM「电池500」计划实验室的图集,当然也有一段锂空气电池的介绍视频。  

    时间:2012-04-28 关键词: IBM 500 电动车 新鲜事 锂空气电池

发布文章

技术子站

更多

项目外包