鼾声检测

我要报错
  • 在MCU端部署GRU模型实现鼾声检测

    本研究旨在开发一种在资源受限的微控制器单元(MCU)上运行的方法,用以进行鼾声检测。不同于使用CNN进行声音检测的方式,我们采用门控循环单元(GRU)模型以对音频数据进行处理和分析。通过采用优化模型结构、模型量化等常用的模型优化方式,我们最终成功将GRU模型适配到低功耗的MCU平台,使其能够在不依赖外部计算资源的情况下,独立完成端侧的鼾声检测任务,无需联网。实验结果表明,该模型在保持较高准确性的同时,能够有效降低系统算力需求,满足移动健康监测设备的实时性与便携性要求。这一研究为鼾症患者的持续监测和睡眠健康管理提供了一种新的解决方案,同时也拓展了深度学习在嵌入式系统中的应用前景。

  • 在MCU端部署GRU模型实现鼾声检测:科技与健康管理的融合

    随着人工智能技术的快速发展,深度学习模型在各个领域的应用日益广泛。特别是在医疗健康领域,深度学习模型的引入为疾病的早期检测、持续监测和健康管理提供了全新的解决方案。鼾声检测作为睡眠呼吸障碍监测的重要一环,也受益于深度学习技术的发展。本文将探讨在微控制器单元(MCU)端部署门控循环单元(GRU)模型实现鼾声检测的技术背景、实现方法及其潜在应用。